Utilizing NDWI, MNDWI, SAVI, WRI, and AWEI for Estimating Erosion and Deposition in Ping River in Thailand
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Satellite Imagery
2.3. Satellite Image Extraction Method
2.3.1. Normalized Difference Water Index (NDWI)
2.3.2. Modified Normalized Difference Water Index (MNDWI)
2.3.3. Soil Adjustment Vegetation Index (SAVI)
2.3.4. Water Ratio Index (WRI)
2.3.5. Automated Water Extraction Index (AWEI)
2.4. Model Validation
3. Results and Discussion
3.1. Ping Rivershape Extracted from Satellite Images
3.2. Result Consistency and Accuracy
3.3. Riverbank Erosion and Deposition
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pörtner, H.O.; Roberts, D.C.; Adams, H.; Adler, C.; Aldunce, P.; Ali, E.; Begum, R.A.; Betts, R.; Kerr, R.B.; Biesbroek, R. Climate Change 2022: Impacts, Adaptation and Vulnerability; IPCC: Geneva, Switzerland, 2022.
- Laonamsai, J.; Ichiyanagi, K.; Kamdee, K.; Putthividhya, A.; Tanoue, M. Spatial and temporal distributions of stable isotopes in precipitation over Thailand. Hydrol. Process. 2021, 35, e13995. [Google Scholar] [CrossRef]
- Laonamsai, J.; Ichiyanagi, K.; Patsinghasanee, S.; Kamdee, K. Controls on Stable Isotopic Characteristics of Water Vapor over Thailand. Hydrol. Process. 2021, 35, e14202. [Google Scholar] [CrossRef]
- Laonamsai, J.; Ichiyanagi, K.; Patsinghasanee, S.; Kamdee, K.; Tomun, N. Application of Stable Isotopic Compositions of Rainfall Runoff for Evaporation Estimation in Thailand Mekong River Basin. Water 2022, 14, 2803. [Google Scholar] [CrossRef]
- Pavanelli, D.; Cavazza, C.; Lavrnić, S.; Toscano, A. The long-term effects of land use and climate changes on the hydro-morphology of the Reno river catchment (Northern Italy). Water 2019, 11, 1831. [Google Scholar] [CrossRef] [Green Version]
- Shrestha, S.; Imbulana, N.; Piman, T.; Chonwattana, S.; Ninsawat, S.; Babur, M. Multimodelling approach to the assessment of climate change impacts on hydrology and river morphology in the Chindwin River Basin, Myanmar. Catena 2020, 188, 104464. [Google Scholar] [CrossRef]
- Darby, S.E.; Leyland, J.; Kummu, M.; Räsänen, T.A.; Lauri, H. Decoding the drivers of bank erosion on the Mekong river: The roles of the Asian monsoon, tropical storms, and snowmelt. Water Resour. Res. 2013, 49, 2146–2163. [Google Scholar] [CrossRef]
- Alam, J.B.; Uddin, M.; Ahmed, J.U.; Cacovean, H.; Rahman, H.M.; Banik, B.K.; Yesmin, N. Study of morphological change of river old Brahmaputra and its social impacts by remote sensing. Geogr. Tech. 2007, 2, 1–11. [Google Scholar]
- Petts, G.E. Changing River Channels: The Geographical Tradition; Wiley: New York, NY, USA, 1995. [Google Scholar]
- Lewin, J.; Ashworth, P.J. Defining large river channel patterns: Alluvial exchange and plurality. Geomorphology 2014, 215, 83–98. [Google Scholar] [CrossRef]
- Leopold, L.B.; Wolman, M.G. River Channel Patterns: Braided, Meandering, and Straight; US Government Printing Office: Washington, DA, USA, 1957.
- Ahmed, A.A.; Fawzi, A. Meandering and bank erosion of the River Nile and its environmental impact on the area between Sohag and El-Minia, Egypt. Arab. J. Geosci. 2011, 4, 1–11. [Google Scholar] [CrossRef]
- Rust, B.R. Structure and process in a braided river. Sedimentology 1972, 18, 221–245. [Google Scholar] [CrossRef]
- Al-Bahrani, H.S. Spatial prediction and classification of water quality parameters for irrigation use in the Euphrates River (Iraq) using GIS and satellite image analyses. Int. J. Sustain. Dev. Plan. 2014, 9, 389–399. [Google Scholar] [CrossRef] [Green Version]
- Saprathet, T.; Losiri, C.; Sitthi, A.; Laonamsai, J. Monitoring of Morphological Change in Lam Phachi River Using Geo-informatics System. In Applied Geography and Geoinformatics for Sustainable Development: Proceedings of ICGGS 2022; Springer: Berlin/Heidelberg, Germany, 2022; pp. 51–64. [Google Scholar]
- Mukherjee, N.R.; Samuel, C. Assessment of the temporal variations of surface water bodies in and around Chennai using Landsat imagery. Indian J. Sci. Technol. 2016, 9, 1–7. [Google Scholar] [CrossRef]
- Laonamsai, J.; Ichiyanagi, K.; Patsinghasanee, S. Isotopic temporal and spatial variations of tropical rivers in Thailand reflect monsoon precipitation signals. Hydrol. Process. 2021, 35, e14068. [Google Scholar] [CrossRef]
- Grove, J.R.; Croke, J.; Thompson, C. Quantifying different riverbank erosion processes during an extreme flood event. Earth Surf. Process. Landf. 2013, 38, 1393–1406. [Google Scholar] [CrossRef]
- ThaiPBS. Sand Mining Activity in the Lam Phachi River. Available online: https://news.thaipbs.or.th/content/282181 (accessed on 29 May 2019).
- Duong Thi, T.; Do Minh, D. Riverbank stability assessment under river water level changes and hydraulic erosion. Water 2019, 11, 2598. [Google Scholar] [CrossRef] [Green Version]
- Lusiagustin, V.; Kusratmoko, E. Impact of sand mining activities on the environmental condition of the Komering river, South Sumatera. In AIP Conference Proceedings; AIP Publishing LLC: Melville, NY, USA, 2017; p. 030198. [Google Scholar]
- Gierszewski, P.J.; Habel, M.; Szmańda, J.; Luc, M. Evaluating effects of dam operation on flow regimes and riverbed adaptation to those changes. Sci. Total Environ. 2020, 710, 136202. [Google Scholar] [CrossRef] [PubMed]
- Totirakul, V. Physical Environmental Impact from Sand Extraction in the Ping River along the Chiang Mai-Lamphun Provincial Boundary; Chiang Mai University: Chiang Mai, Thailand, 1999. [Google Scholar]
- Sharma, D.; Babel, M.S. Application of downscaled precipitation for hydrological climate-change impact assessment in the upper Ping River Basin of Thailand. Clim. Dyn. 2013, 41, 2589–2602. [Google Scholar] [CrossRef]
- Pholkern, K.; Srisuk, K.; Grischek, T.; Soares, M.; Schäfer, S.; Archwichai, L.; Saraphirom, P.; Pavelic, P.; Wirojanagud, W. Riverbed clogging experiments at potential river bank filtration sites along the Ping River, Chiang Mai, Thailand. Environ. Earth Sci. 2015, 73, 7699–7709. [Google Scholar] [CrossRef]
- Miller, H.M. Users and Uses of Landsat 8 Satellite Imagery: 2014 Survey Results; US Department of the Interior, US Geological Survey: Washington, DC, USA, 2016.
- Loveland, T.R.; Irons, J.R. Landsat 8: The plans, the reality, and the legacy. Remote Sens. Environ. 2016, 185, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Marangoz, A.M.; Sekertekin, A.; Akçin, H. Analysis of land use land cover classification results derived from sentinel-2 image. In Proceedings of the 17th international multidisciplinary scientific GeoConference surveying geology and mining ecology management, SGEM, Vienna, Austria, 5 July 2017; pp. 25–32. [Google Scholar]
- Li, J.; Roy, D.P. A global analysis of Sentinel-2A, Sentinel-2B and Landsat-8 data revisit intervals and implications for terrestrial monitoring. Remote Sens. 2017, 9, 902. [Google Scholar] [CrossRef] [Green Version]
- Qiu, S.; Zhu, Z.; He, B. Fmask 4.0: Improved cloud and cloud shadow detection in Landsats 4–8 and Sentinel-2 imagery. Remote Sens. Environ. 2019, 231, 111205. [Google Scholar] [CrossRef]
- Warmerdam, F. The geospatial data abstraction library. In Open Source Approaches in Spatial Data Handling; Springer: Berlin/Heidelberg, Germany, 2008; pp. 87–104. [Google Scholar]
- Xu, H. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int. J. Remote Sens. 2006, 27, 3025–3033. [Google Scholar] [CrossRef]
- Feyisa, G.L.; Meilby, H.; Fensholt, R.; Proud, S.R. Automated Water Extraction Index: A new technique for surface water mapping using Landsat imagery. Remote Sens. Environ. 2014, 140, 23–35. [Google Scholar] [CrossRef]
- Guo, Q.; Pu, R.; Li, J.; Cheng, J. A weighted normalized difference water index for water extraction using Landsat imagery. Int. J. Remote Sens. 2017, 38, 5430–5445. [Google Scholar] [CrossRef]
- Xu, X.; Xu, S.; Jin, L.; Song, E. Characteristic analysis of Otsu threshold and its applications. Pattern Recognit. Lett. 2011, 32, 956–961. [Google Scholar] [CrossRef]
- Gao, B.-C. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- McFeeters, S.K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- da Silva, V.S.; Salami, G.; da Silva, M.I.O.; Silva, E.A.; Monteiro Junior, J.J.; Alba, E. Methodological evaluation of vegetation indexes in land use and land cover (LULC) classification. Geol. Ecol. Landsc. 2020, 4, 159–169. [Google Scholar] [CrossRef]
- Huete, A.R. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Qi, J.; Chehbouni, A.; Huete, A.R.; Kerr, Y.H.; Sorooshian, S. A modified soil adjusted vegetation index. Remote Sens. Environ. 1994, 48, 119–126. [Google Scholar] [CrossRef]
- Fang-fang, Z.; Bing, Z.; Jun-sheng, L.; Qian, S.; Yuanfeng, W.; Yang, S. Comparative analysis of automatic water identification method based on multispectral remote sensing. Procedia Environ. Sci. 2011, 11, 1482–1487. [Google Scholar] [CrossRef] [Green Version]
- Shen, L.; Li, C. Water body extraction from Landsat ETM+ imagery using adaboost algorithm. In Proceedings of the 18th International Conference on Geoinformatics, Beijing, China, 18–20 June 2010; pp. 1–4. [Google Scholar]
- Visa, S.; Ramsay, B.; Ralescu, A.L.; Van Der Knaap, E. Confusion matrix-based feature selection. MAICS 2011, 710, 120–127. [Google Scholar]
- Payne, C.; Panda, S.; Prakash, A. Remote sensing of river erosion on the Colville River, North Slope Alaska. Remote Sens. 2018, 10, 397. [Google Scholar] [CrossRef] [Green Version]
- Szabo, S.; Gácsi, Z.; Balazs, B. Specific features of NDVI, NDWI and MNDWI as reflected in land cover categories. Landsc. Environ. 2016, 10, 194–202. [Google Scholar] [CrossRef]
- Al-lami, A.K.; Abbood, R.A.; Al Maliki, A.A.; Al-Ansari, N. Using vegetation indices for monitoring the spread of Nile Rose plant in the Tigris River within Wasit province, Iraq. Remote Sens. Appl. Soc. Environ. 2021, 22, 100471. [Google Scholar] [CrossRef]
- Dube, T.; Mutanga, O.; Sibanda, M.; Bangamwabo, V.; Shoko, C. Evaluating the performance of the newly-launched Landsat 8 sensor in detecting and mapping the spatial configuration of water hyacinth (Eichhornia crassipes) in inland lakes, Zimbabwe. Phys. Chem. Earth Parts A/B/C 2017, 100, 101–111. [Google Scholar] [CrossRef]
- Zhang, D. A coefficient of determination for generalized linear models. Am. Stat. 2017, 71, 310–316. [Google Scholar] [CrossRef]
- Chander, S.; Pompapathi, V.; Gujrati, A.; Singh, R.P.; Chaplot, N.; Patel, U.D. GROWTH OF INVASIVE AQUATIC MACROPHYTES OVER TAPI RIVER. In The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, In Proceedings of the ISPRS TC V Mid-term Symposium “Geospatial Technology—Pixel to People”, Dehradun, India, 20–23 November 2018; Volume XLII-5, pp. 829–833.
- Gascon, F.; Bouzinac, C.; Thépaut, O.; Jung, M.; Francesconi, B.; Louis, J.; Lonjou, V.; Lafrance, B.; Massera, S.; Gaudel-Vacaresse, A. Copernicus Sentinel-2A calibration and products validation status. Remote Sens. 2017, 9, 584. [Google Scholar] [CrossRef] [Green Version]
- Flood, N. Comparing Sentinel-2A and Landsat 7 and 8 using surface reflectance over Australia. Remote Sens. 2017, 9, 659. [Google Scholar] [CrossRef] [Green Version]
- Mallinis, G.; Mitsopoulos, I.; Chrysafi, I. Evaluating and comparing Sentinel 2A and Landsat-8 Operational Land Imager (OLI) spectral indices for estimating fire severity in a Mediterranean pine ecosystem of Greece. GIScience Remote Sens. 2018, 55, 1–18. [Google Scholar] [CrossRef]
- Bristow, C.S.; Best, J.L. Braided rivers: Perspectives and problems. Geol. Soc. Lond. Spec. Publ. 1993, 75, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Reinfelds, I.; Nanson, G. Formation of braided river floodplains, Waimakariri River, New Zealand. Sedimentology 1993, 40, 1113–1127. [Google Scholar] [CrossRef]
- Bridge, J.S.; Lunt, I.A. Depositional models of braided rivers. In Braided Rivers: Process, Deposits, Ecology and Management; International Association of Sedimentologists Special Publication 36; John Wiley & Sons: Hoboken, NJ, USA, 2006; Volume 36, pp. 11–50. [Google Scholar]
- Morisawa, M. Distribution of stream-flow direction in drainage patterns. J. Geol. 1963, 71, 528–529. [Google Scholar] [CrossRef]
- Nanson, G.C.; Knighton, A.D. Anabranching rivers: Their cause, character and classification. Earth Surf. Process. Landf. 1996, 21, 217–239. [Google Scholar] [CrossRef]
- Smith, D.G.; Smith, N.D. Sedimentation in anastomosed river systems; examples from alluvial valleys near Banff, Alberta. J. Sediment. Res. 1980, 50, 157–164. [Google Scholar] [CrossRef]
- Chaiwongsaen, N.; Choowong, M. Assessment of the Lower Ping River’s riverbank erosion and accretion, Northern Thailand using Geospatial Technique; Implication for river flow and sediment load management. Environ. Asia 2019, 12, 36–47. [Google Scholar]
- Wasson, R.J.; Ziegler, A.; Lim, H.S.; Teo, E.; Lam, D.; Higgitt, D.; Rittenour, T.; Ramdzan, K.N.B.M.; Joon, C.C.; Singhvi, A.K. Episodically volatile high energy non-cohesive river-floodplain systems: New information from the Ping River, Thailand, and a global review. Geomorphology 2021, 382, 107658. [Google Scholar] [CrossRef]
- Kondolf, G.M. PROFILE: Hungry water: Effects of dams and gravel mining on river channels. Environ. Manag. 1997, 21, 533–551. [Google Scholar] [CrossRef] [PubMed]
- Chaiwongsaen, N.; Nimnate, P.; Choowong, M. Morphological changes of the Lower Ping and Chao Phraya Rivers, North and Central Thailand: Flood and coastal equilibrium analyses. Open Geosci. 2019, 11, 152–171. [Google Scholar] [CrossRef]
- Patsinghasanee, S.; Kimura, I.; Shimizu, Y.; Nabi, M.; Chub-Uppakarn, T. Coupled studies of fluvial erosion and cantilever failure for cohesive riverbanks: Case studies in the experimental flumes and U-Tapao River. J. Hydro-Environ. Res. 2017, 16, 13–26. [Google Scholar] [CrossRef]
- Patsinghasanee, S.; Kimura, I.; Shimizu, Y.; Nabi, M. Cantilever failure investigations for cohesive riverbanks. In Proceedings of the Institution of Civil Engineers-Water Management; Thomas Telford Ltd.: London, UK, 2017; pp. 93–108. [Google Scholar]
- Valentin, C.; Poesen, J.; Li, Y. Gully erosion: Impacts, factors and control. Catena 2005, 63, 132–153. [Google Scholar] [CrossRef]
Satellite | Date | Month | Year | Path/Row | Cloud Cover | Source |
---|---|---|---|---|---|---|
Landsat-8 | 12 | June | 2015 | 150/35 | USGS | |
Sentinel-2A | 10 | June | 2022 | R104 | 8.97% | ESA |
Reference Data | |||
---|---|---|---|
Water | Others | ||
Classified Data | Water | TP | FP |
Others | FN | TN |
Reference Data | Accuracy (%) | Precision (%) | Sensitivity (%) | |||
---|---|---|---|---|---|---|
Water | Others | |||||
NDWI | Water | 109 | 0 | 79.10 | 100 | 72.19 |
Others | 42 | 50 | ||||
MNDWI | Water | 129 | 1 | 88.56 | 99.23 | 85.43 |
Others | 22 | 49 | ||||
SAVI | Water | 126 | 3 | 86.07 | 97.67 | 83.44 |
Others | 25 | 47 | ||||
WRI | Water | 118 | 1 | 83.08 | 99.16 | 78.15 |
Others | 33 | 49 | ||||
AWEI | Water | 131 | 1 | 89.55 | 99.24 | 86.75 |
Others | 20 | 49 |
Reference Data | Accuracy (%) | Precision (%) | Sensitivity (%) | |||
---|---|---|---|---|---|---|
Water | Others | |||||
NDWI | Water | 141 | 5 | 92.54 | 96.58 | 93.38 |
Others | 10 | 45 | ||||
MNDWI | Water | 135 | 5 | 89.55 | 96.43 | 89.40 |
Others | 16 | 45 | ||||
SAVI | Water | 146 | 6 | 94.53 | 96.05 | 96.69 |
Others | 5 | 44 | ||||
WRI | Water | 143 | 3 | 94.53 | 97.95 | 94.70 |
Others | 8 | 47 | ||||
AWEI | Water | 139 | 2 | 93.03 | 98.58 | 92.05 |
Others | 12 | 48 |
Index | Total Surface Area (km2) | Erosion (km2) | Accretion (km2) | Unchanged (km2) | |
---|---|---|---|---|---|
Year 2015 | Year 2022 | ||||
NDWI | 15.1832 | 14.7022 | 5.0413 | 5.5223 | 9.6609 |
MNDWI | 15.2715 | 14.0196 | 3.4429 | 4.6948 | 10.5767 |
SAVI | 15.9412 | 15.3205 | 4.4632 | 5.0839 | 10.8573 |
WRI | 14.7039 | 14.1978 | 4.4773 | 4.9834 | 9.7205 |
AWEI | 16.1156 | 16.0887 | 5.1365 | 5.1634 | 10.9522 |
Average | 15.4431 | 14.8658 | 4.5123 | 5.0896 | 10.3535 |
Combined Five indices | 16.8805 | 16.5058 | 5.1789 | 5.5536 | 11.3269 |
Index | Left Bank | Right Bank | ||
---|---|---|---|---|
Erosion (km2) | Accretion (km2) | Erosion (km2) | Accretion (km2) | |
NDWI | 2.7595 | 2.2502 | 2.2818 | 3.2721 |
MNDWI | 1.8195 | 2.0893 | 1.6234 | 2.6055 |
SAVI | 2.4725 | 2.0752 | 1.9907 | 3.0087 |
WRI | 2.4687 | 2.0941 | 2.0086 | 2.8893 |
AWEI | 2.6609 | 2.2543 | 2.4756 | 2.9091 |
Average | 2.4494 | 2.1688 | 2.0629 | 2.9208 |
Combined Five indices | 2.9428 | 2.3799 | 2.2361 | 3.1737 |
Avg. Length (km) | 39.5709 | 35.2201 | 30.0689 | 39.7968 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laonamsai, J.; Julphunthong, P.; Saprathet, T.; Kimmany, B.; Ganchanasuragit, T.; Chomcheawchan, P.; Tomun, N. Utilizing NDWI, MNDWI, SAVI, WRI, and AWEI for Estimating Erosion and Deposition in Ping River in Thailand. Hydrology 2023, 10, 70. https://doi.org/10.3390/hydrology10030070
Laonamsai J, Julphunthong P, Saprathet T, Kimmany B, Ganchanasuragit T, Chomcheawchan P, Tomun N. Utilizing NDWI, MNDWI, SAVI, WRI, and AWEI for Estimating Erosion and Deposition in Ping River in Thailand. Hydrology. 2023; 10(3):70. https://doi.org/10.3390/hydrology10030070
Chicago/Turabian StyleLaonamsai, Jeerapong, Phongthorn Julphunthong, Thanat Saprathet, Bounhome Kimmany, Tammarat Ganchanasuragit, Phornsuda Chomcheawchan, and Nattapong Tomun. 2023. "Utilizing NDWI, MNDWI, SAVI, WRI, and AWEI for Estimating Erosion and Deposition in Ping River in Thailand" Hydrology 10, no. 3: 70. https://doi.org/10.3390/hydrology10030070
APA StyleLaonamsai, J., Julphunthong, P., Saprathet, T., Kimmany, B., Ganchanasuragit, T., Chomcheawchan, P., & Tomun, N. (2023). Utilizing NDWI, MNDWI, SAVI, WRI, and AWEI for Estimating Erosion and Deposition in Ping River in Thailand. Hydrology, 10(3), 70. https://doi.org/10.3390/hydrology10030070