Probabilistic Approach to Tank Design in Rainwater Harvesting Systems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Probabilistic Modeling of a Rainwater Tank
2.2. Continuous Simulation
2.3. Model Validation
2.4. Application
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Whitmee, S.; Haines, A.; Beyrer, C.; Boltz, F.; Capon, A.G.; De Souza Dias, B.F.; Ezeh, A.; Frumkin, H.; Gong, P.; Head, P.; et al. Safeguarding human health in the Anthropocene epoch: Report of the Rockefeller Foundation-Lancet Commission on planetary health. Lancet 2015, 386, 1973–2028. [Google Scholar] [CrossRef] [PubMed]
- Cook, B.I.; Mankin, J.S.; Anchukaitis, K.J. Climate Change and Drought: From Past to Future. Curr. Clim. Chang. Rep. 2018, 4, 164–179. [Google Scholar] [CrossRef]
- Monier, E.; Gao, X. Climate change impacts on extreme events in the United States: An uncertainty analysis. Clim. Chang. 2015, 131, 67–81. [Google Scholar] [CrossRef] [Green Version]
- Mukherjee, S.; Mishra, A.; Trenberth, K.E. Climate Change and Drought: A Perspective on Drought Indices. Curr. Clim. Chang. Rep. 2018, 4, 145–163. [Google Scholar] [CrossRef]
- Dada, A.; Urich, C.; Berteni, F.; Pezzagno, M.; Piro, P.; Grossi, G. Suya Duyarlı Şehirler: Parma’da (Kuzey İtalya) Kentsel Sel Direncini Artırmak İçin Bütünleşik Bir Yaklaşım-Water sensitive cities: An integrated approach to enhance urban flood resilience in Parma (Northern Italy). Climate 2021, 9, 152. [Google Scholar] [CrossRef]
- Jacobson, C.R. Identification and quantification of the hydrological impacts of imperviousness in urban catchments: A review. J. Environ. Manag. 2011, 92, 1438–1448. [Google Scholar] [CrossRef]
- Miller, J.D.; Kim, H.; Kjeldsen, T.R.; Packman, J.; Grebby, S.; Dearden, R. Assessing the impact of urbanization on storm runoff in a peri-urban catchment using historical change in impervious cover. J. Hydrol. 2014, 515, 59–70. [Google Scholar] [CrossRef] [Green Version]
- Scalenghe, R.; Ajmone-Marsan, F. The anthropogenic sealing of soils in urban areas. Landsc. Urban Plan. 2009, 90, 1–10. [Google Scholar] [CrossRef]
- Qadir, M.; Sharma, B.R.; Bruggeman, A.; Choukr-Allah, R.; Karajeh, F. Non-conventional water resources and opportunities for water augmentation to achieve food security in water scarce countries. Agric. Water Manag. 2007, 87, 2–22. [Google Scholar] [CrossRef]
- Campisano, A.; Butler, D.; Ward, S.; Burns, M.J.; Friedler, E.; Debusk, K.; Fisher-jeffes, L.N.; Ghisi, E.; Rahman, A.; Furumai, H. Urban rainwater harvesting systems: Research, implementation and future perspectives. Water Res. 2017, 115, 195–209. [Google Scholar] [CrossRef]
- Alim, M.A.; Rahman, A.; Tao, Z.; Samali, B.; Khan, M.M.; Shirin, S. Suitability of roof harvested rainwater for potential potable water production: A scoping review. J. Clean. Prod. 2020, 248, 119226. [Google Scholar] [CrossRef]
- Judeh, T.; Shahrour, I.; Comair, F. Smart Rainwater Harvesting for Sustainable Potable Water Supply in Arid and Semi-Arid Areas. Sustainability 2022, 14, 9271. [Google Scholar] [CrossRef]
- Burns, M.J.; Fletcher, T.D.; Hatt, B.E.; Anthony, R.; Walsh, C.J. Can allotment-scale rainwater harvesting manage urban flood risk and protect stream health? In Proceedings of the 7th International Conference on Sustainable Techniques and Strategies for Urban Water Management 2010, Lyon, France, 27 June–1 July 2010; pp. 1–10. [Google Scholar]
- Freni, G.; Liuzzo, L. Effectiveness of rainwater harvesting systems for flood reduction in residential urban areas. Water 2019, 11, 1389. [Google Scholar] [CrossRef] [Green Version]
- Peng, J.; Zhang, X.M.; Zhang, Y.H. Study on combining flood control with rainwater utilization of airports in China. IOP Conf. Ser. Earth Environ. Sci. 2018, 191, 012133. [Google Scholar] [CrossRef]
- Schuetze, T.; Chelleri, L. Integrating decentralized rainwater management in urban planning and design: Flood resilient and sustainable water management using the example of coastal cities in The Netherlands and Taiwan. Water 2013, 5, 593–616. [Google Scholar] [CrossRef] [Green Version]
- Hamel, P.; Fletcher, T.D. The impact of stormwater source-control strategies on the (low) flow regime of urban catchments. Water Sci. Technol. 2014, 69, 739–745. [Google Scholar] [CrossRef]
- Teston, A.; Piccinini Scolaro, T.; Kuntz Maykot, J.; Ghisi, E. Comprehensive Environmental Assessment of Rainwater Harvesting Systems: A Literature Review. Water 2022, 14, 2716. [Google Scholar] [CrossRef]
- Campisano, A.; Modica, C. Optimal sizing of storage tanks for domestic rainwater harvesting in Sicily. Resour. Conserv. Recycl. 2012, 63, 9–16. [Google Scholar] [CrossRef]
- Londra, P.A.; Kotsatos, I.E.; Theotokatos, N.; Theocharis, A.T.; Dercas, N. Reliability analysis of rainwater harvesting tanks for irrigation use in greenhouse agriculture. Hydrology 2021, 8, 132. [Google Scholar] [CrossRef]
- Palla, A.; Gnecco, I.; Lanza, L.G. Non-dimensional design parameters and performance assessment of rainwater harvesting systems. J. Hydrol. 2011, 401, 65–76. [Google Scholar] [CrossRef]
- Palla, A.; Gnecco, I. On the Effectiveness of Domestic Rainwater Harvesting Systems to Support Urban Flood Resilience. Water Resour. Manag. 2022, 36, 5897–5914. [Google Scholar] [CrossRef]
- Ward, S.; Memon, F.A.; Butler, D. Rainwater harvesting: Model-based design evaluation. Water Sci. Technol. 2010, 61, 85–96. [Google Scholar] [CrossRef] [PubMed]
- Ghisi, E. Parameters Influencing the Sizing of Rainwater Tanks. Water Resour. Manag. 2010, 24, 2381–2403. [Google Scholar] [CrossRef]
- Fewkes, A.; Butler, D. Simulating the performance of rainwater collection and reuse systems using behavioural models. Build. Serv. Eng. Res. Technol. 2000, 21, 99–106. [Google Scholar] [CrossRef]
- Fewkes, A.; Warm, P. Method of modelling the performance of rainwater collection systems in the United Kingdom. Build. Serv. Eng. Res. Technol. 2000, 21, 257–265. [Google Scholar] [CrossRef]
- Lopes VA, R.; Marques, G.F.; Dornelles, F.; Medellin-azuara, J. Performance of Rainwater Harvesting Systems under Scenarios of Non-Potable Water Demand and Roof area Typologies using a Stochastic Approach. J. Clean. Prod. 2017, 148, 304–313. [Google Scholar] [CrossRef]
- Mitchell, V.G.; Mccarthy, D.T.; Deletic, A.; Fletcher, T.D. Urban stormwater harvesting e sensitivity of a storage behaviour model. Environ. Model. Softw. 2008, 23, 782–793. [Google Scholar] [CrossRef]
- Bacchi, B.; Balistrocchi, M.; Grossi, G. Proposal of a semi-probabilistic approach for storage facility design. Urban Water J. 2008, 5, 195–208. [Google Scholar] [CrossRef]
- Becciu, G.; Raimondi, A.; Dresti, C. Semi-probabilistic design of rainwater tanks: A case study in Northern Italy. Urban Water J. 2018, 15, 192–199. [Google Scholar] [CrossRef]
- Becciu, G.; Raimondi, A. An analytical probabilistic approach for sizing rainwater tanks. In Acqua e Città 2011: Pianificazione, Protezione e Gestione; La Loggia, G., Paoletti, P., Beccin , G., Eds.; Centro Studi Idraulica Urbana: Brescia, Italy, 2011; pp. 1–13. [Google Scholar]
- Cheng, G.; Huang, G.; Guo, Y.; Baetz, B.W.; Dong, C. Stochastic Rainwater Harvesting System Modeling Under Random Rainfall Features and Variable Water Demands. Water Resour. Res. 2021, 57, e2021WR029731. [Google Scholar] [CrossRef]
- Raimondi, A.; Becciu, G. On pre-filling probability of flood control detention facilities. Urban Water J. 2015, 12, 344–351. [Google Scholar] [CrossRef]
- Raimondi, A.; Becciu, G. Performance of Green Roofs for Rainwater Control. Water Resour. Manag. 2021, 35, 99–111. [Google Scholar] [CrossRef]
- Raimondi, A.; Marchioni, M.; Sanfilippo, U.; Becciu, G. Infiltration-exfiltration systems design under hydrological uncertainty. WIT Trans. Built Environ. 2020, 194, 143–154. [Google Scholar] [CrossRef]
- Raimondi, A.; Marchioni, M.; Sanfilippo, U.; Becciu, G. Vegetation survival in green roofs without irrigation. Water 2021, 13, 136. [Google Scholar] [CrossRef]
- Raimondi, A.; Marchioni, M.; Sanfilippo, U.; Stroppa, F.F.; Becciu, G. Probabilistic Estimation of Runoff From Green Roofs. Int. J. Comput. Methods Exp. Meas. 2022, 10, 13–25. [Google Scholar] [CrossRef]
- Wang, J.; Guo, Y. Proper Sizing of Infiltration Trenches Using Closed-Form Analytical Equations. Water Resour. Manag. 2020, 34, 3809–3821. [Google Scholar] [CrossRef]
- Zhang, S.; Guo, Y. Analytical Equation for Estimating the Stormwater Capture Efficiency of Permeable Pavement Systems. J. Irrig. Drain. Eng. 2015, 141, 06014004. [Google Scholar] [CrossRef]
- Raimondi, A.; Di Chiano, M.G.; Marchioni, M.; Sanfilippo, U.; Becciu, G. Probabilistic Modelling of Sustainable Urban Drainage Systems. Urban Ecosyst. 2022. [Google Scholar] [CrossRef]
- Guo, Y.; Baetz, B.W. Sizing of Rainwater Storage Units for Green Building Applications. J. Hydrol. Eng. 2007, 12, 197–205. [Google Scholar] [CrossRef]
- Guo, R.; Guo, Y. Stochastic modelling of the hydrologic operation of rainwater harvesting systems. J. Hydrol. 2018, 562, 30–39. [Google Scholar] [CrossRef]
- García, V.J.; García-Bartual, R.; Cabrera, E.; Arregui, F.; Garca-Serra, J. Stochastic Model to Evaluate Residential Water Demands. J. Water Resour. Plan. Manag. 2004, 130, 386–394. [Google Scholar] [CrossRef]
- Barbosa, L.R.; Almeida, C.D.N.; Coelho, V.H.R.; Freitas, E.D.S.; Galvão, C.D.O.; Araújo, J.C.D. Sub-hourly rainfall patterns by hyetograph type under distinct climate conditions in Northeast of Brazil: A comparative inference of their key properties. Rbrh 2018, 23, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Brasil, J.B.; Guerreiro, M.S.; de Andrade, E.M.; de Queiroz Palácio, H.A.; Medeiros, P.H.A.; Ribeiro Filho, J.C. Minimum Rainfall Inter-Event Time to Separate Rainfall Events in a Low Latitude Semi-Arid Environment. Sustainability 2022, 14, 1721. [Google Scholar] [CrossRef]
- Dunkerley, D. Identifying individual rain events from pluviograph records: A review with analysis of data from an Australian dryland site. Hydrol. Process. Int. J. 2008, 22, 5024–5036. [Google Scholar] [CrossRef]
- Freitas, E.D.S.; Coelho, V.H.R.; Xuan, Y.; de CD Melo, D.; Gadelha, A.N.; Santos, E.A.; Galvão, C.D.O.; Ramos Filho, G.M.; Barbosa, L.R.; Huffman, G.J.; et al. The performance of the IMERG satellite-based product in identifying sub-daily rainfall events and their properties. J. Hydrol. 2020, 589, 125128. [Google Scholar] [CrossRef]
- Sattari, M.T.; Rezazadeh-Joudi, A.; Kusiak, A. Assessment of different methods for estimation of missing data in precipitation studies. Hydrol. Res. 2017, 48, 1032–1044. [Google Scholar] [CrossRef]
- Balistrocchi, M.; Bacchi, B. Modelling the statistical dependence of rainfall event variables through copula functions. Hydrol. Earth Syst. Sci. 2011, 15, 1959–1977. [Google Scholar] [CrossRef] [Green Version]
Case | D (mm/day) | Ad 1 (mm) | n° of Persons 2 | As 3 (mm) | Ad/As (%) |
---|---|---|---|---|---|
(a) | 1.2 | 438 | 15 | 929.7 | 47 |
(b) | 1.6 | 584 | 20 | 929.7 | 63 |
(c) | 2.0 | 730 | 25 | 929.7 | 79 |
Milan (1971–2017) 1 | |
---|---|
μh [mm] | 7.17 |
μθ [days] | 0.14 |
μd [days] | 2.29 |
σh [mm] | 11.98 |
σθ [days] | 0.20 |
σd [days] | 4.34 |
Correlation Index | |
---|---|
ρh,θ (-) | 0.714 |
ρθ,d (-) | −0.005 |
ρh,d (-) | 0.018 |
D (mm/day) | Parameter n (-) |
---|---|
1.2 | 1 |
1.6 | 1 |
2 | 2 |
D = 1.2 (mm/day) | D = 1.6 (mm/day) | D = 2 (mm/day) | |||||
---|---|---|---|---|---|---|---|
T (years) | F (-) | W (m3) | Iv (-) | W (m3) | Iv (-) | W (m3) | Iv (-) |
2 | 0.5 | 1.42 | 0.53 | 1.58 | 0.47 | 2.48 | 0.50 |
5 | 0.8 | 3.26 | 0.74 | 3.60 | 0.66 | 5.40 | 0.67 |
10 | 0.9 | 4.73 | 0.82 | 5.18 | 0.74 | 7.88 | 0.75 |
20 | 0.95 | 6.08 | 0.86 | 6.75 | 0.80 | 10.13 | 0.80 |
50 | 0.98 | 8.33 | 0.91 | 8.78 | 0.85 | 12.83 | 0.84 |
Ds | 15.60 | 0.97 | 20.80 | 0.95 | 26.00 | 0.92 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Chiano, M.G.; Marchioni, M.; Raimondi, A.; Sanfilippo, U.; Becciu, G. Probabilistic Approach to Tank Design in Rainwater Harvesting Systems. Hydrology 2023, 10, 59. https://doi.org/10.3390/hydrology10030059
Di Chiano MG, Marchioni M, Raimondi A, Sanfilippo U, Becciu G. Probabilistic Approach to Tank Design in Rainwater Harvesting Systems. Hydrology. 2023; 10(3):59. https://doi.org/10.3390/hydrology10030059
Chicago/Turabian StyleDi Chiano, Maria Gloria, Mariana Marchioni, Anita Raimondi, Umberto Sanfilippo, and Gianfranco Becciu. 2023. "Probabilistic Approach to Tank Design in Rainwater Harvesting Systems" Hydrology 10, no. 3: 59. https://doi.org/10.3390/hydrology10030059
APA StyleDi Chiano, M. G., Marchioni, M., Raimondi, A., Sanfilippo, U., & Becciu, G. (2023). Probabilistic Approach to Tank Design in Rainwater Harvesting Systems. Hydrology, 10(3), 59. https://doi.org/10.3390/hydrology10030059