Comparison of Spatio-Temporal Variability of Daily Maximum Flows in Cold-Season (Winter and Spring) in Southern Quebec (Canada)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Station Descriptions and Data Sources
2.2. Data Analysis
2.2.1. Analysis of Spatial Variability of Seasonal Daily Maximum Flows
2.2.2. Analysis of Temporal Variability (Long-Term Trend) of Seasonal Daily Maximum Flows
- -
- The original Mann–Kendall (MK) test was applied in the first step. Its mathematical description and application in hydroclimatology were outlined in detail by [26]. The purpose of this test was to detect the long-term trend of a non-autocorrelated hydroclimatic series;
- -
- Given that the original MK test did not account for short-term and long-term persistence effects (STP and LTP), two tests were applied in the second step to eliminate the following short-term persistence effects: the prewhitening method (MMK-PW) tests, developed by [27], and the trend-free prewhitening method (TFPW) tests described by [28]. The purpose of both tests was to eliminate autocorrelation in the series data;
- -
- -
- -
- -
3. Results
3.1. Comparison of Spatial Variability of Winter and Spring Daily Maximum Flows and Correlation Analysis
3.2. Comparison of Temporal Variability (Stationarity) of Winter and Spring Maximum Daily Flows
4. Discussion
4.1. Spatial Variability of Winter and Spring Maximum Daily Flows
4.2. Temporal Variability of Winter and Spring Maximum Daily Flows
- -
- The increase in temperatures during the winter in southern Quebec. This increase has already been observed by several authors [9,10]. This increase would, thus, cause an early melting of snow which would be at the origin of the increase in the maximum daily flows in winter. Early snowmelt has been observed in many parts of North America (e.g., [13,15,57,58,59,60]);
- -
- The increased frequency of precipitation in the form of rain. Such an increase would likely have caused the increase in the magnitude of winter maximum daily flows. This increase was observed in a few watersheds analyzed as part of this study, both on the south shore and on the north shore (the results are not presented here).
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aygün, O.; Kinnard, C.; Campeau, S. Impacts of climate change on the hydrology of northern midlatitude cold regions. Prog. Phys. Geogr. Earth Environ. 2020, 44, 338–375. [Google Scholar] [CrossRef]
- Berghuisjs, W.R.; Aalbers, E.E.; Larsen, J.R.; Transcoso, R.; Woods, R.A. Recent changes in extreme floods across multiple continents. Environ. Res. Lett. 2017, 12, 114035. [Google Scholar] [CrossRef]
- Blöschl, G.; Hall, J.; Viglioni, A.; Perdigão, R.A.; Merz, B.; Lun, D.; Arheimer, B.; Aronica, G.T.; Bilibashi, A.; Boháč, M.; et al. Changing climate both increases and decreases European river floods. Nature 2019, 573, 108–111. [Google Scholar] [CrossRef] [PubMed]
- Buttle, J.M.; Allen, D.M.; Caissie, D.; Davison, B.; Hayashi, M.; Peters, D.L.; Whitfield, P.H. Flood processes in Canada: Regional and special aspects. Can. Water Resour. J. 2016, 41, 7–30. [Google Scholar] [CrossRef]
- Mallakpour, I.; Villarini, G. The changing nature of flooding across the Central United States. Nat. Clim. Chang. 2015, 5, 250–254. [Google Scholar] [CrossRef]
- Mangini, W.; Viglione, A.; Hall, J.; Hundecha, Y.; Ceola, S.; Montanari, A.; Rogger, M.; Salinas, J.L.; Borzi, I.; Parajka, J. Detection of trends in magnitude and frequency of flood peaks across Europe. Hydrol. Sci. J. 2018, 63, 493–512. [Google Scholar] [CrossRef]
- Boyer, C.; Chaumont, D.; Chartier, I.; Roy, A.G. Impact of climate change on the hydrology of St. Lawrence tributaries. J. Hydrol. 2010, 384, 65–83. [Google Scholar] [CrossRef]
- Brown, R.D. Analysis of snow cover variability and change in Québec, 1948–2005. Hydrol. Process. 2010, 24, 1929–1954. [Google Scholar] [CrossRef]
- Guerfi, N.; Assani, A.A.; Mesfioui, M.; Kinnard, C. Comparison of the temporal variability of winter daily extreme temperatures and precipitations in southern Quebec (Canada) using the Lombard and copula methods. Int. J. Climatol. 2015, 35, 4237–4246. [Google Scholar] [CrossRef]
- Yagouti, A.; Boulet, G.; Vincent, L.; Vescovi, L.; Mekis, E. Observed changes in daily temperature and precipitation indices for Southern Québec, 1960–2005. Atmos.-Ocean 2008, 46, 243–256. [Google Scholar] [CrossRef]
- Assani, A.A.; Charron, S.; Matteau, M.; Mesfioui, M.; Quessy, J.-F. Temporal variability modes of floods for catchments in the St. Lawrence watershed (Quebec, Canada). J. Hydrol. 2010, 385, 292–299. [Google Scholar] [CrossRef]
- Burn, D.H.; Whitfield, P.H. Changes in floods regimes in Canada. Can. Water Resour. J. 2016, 41, 139–150. [Google Scholar] [CrossRef]
- Cunderlik, J.M.; Ouarda, T.B.M.J. Trend in the timing and magnitude of floods in Canada. J. Hydrol. 2009, 375, 471–480. [Google Scholar] [CrossRef]
- Hodgkins, G.A.; Whitfield, P.H.; Burn, D.H.; Hannaford, J.; Renard, B.; Stahl, K.; Fleig, A.K.; Madsen, H.; Mediero, L.; Korhoneb, J.; et al. Climate-driven variability in the occurrence of major flood across North America and Europe. J. Hydrol. 2017, 552, 704–717. [Google Scholar] [CrossRef]
- Mazouz, R.; Assani, A.A.; Quessy, J.-F.; Légaré, G. Comparison of the interannual variability of spring heavy floods characteristics of tributaries of the St. Lawrence River in Quebec (Canada). Adv. Water Resour. 2012, 35, 110–120. [Google Scholar] [CrossRef]
- Zadeh, S.M.; Burn, D.H.; O’Brien, N. Detection of trends in flood magnitude and frequency in Canada. J. Hydrol. Reg. Stud. 2020, 28, 100673. [Google Scholar] [CrossRef]
- Beauchamp, M.; Assani, A.A.; Landry, R.; Massicotte, P. Temporal variability of the magnitude and timing of winter maximum daily flows in southern Quebec (Canada). J. Hydrol. 2015, 529, 410–417. [Google Scholar] [CrossRef]
- Tramblay, Y.; Mimeau, L.; Neppel, L.; Vinet, F.; Sauquet, E. Detection and attribution of flood trends in Mediterranean basins. Hydrol. Earth Syst. Sci. 2019, 23, 4419–4431. [Google Scholar] [CrossRef]
- Kinnard, C.; Bzeouich, G.; Assani, A. Impacts of summer and winter conditions on summer river low flows in low elevation, snow-affected catchments. J. Hydrol. 2022, 605, 127393. [Google Scholar] [CrossRef]
- Belzile, L.; Bérubé, P.; Hoang, V.D.; Leclerc, M. Méthode Écohydrologique de Détermination des Débits Réservés Pour la Protection des Habitats du Poisson Dans les Rivières du Québec; Rapport présenté par l’INRS-Eau et le Groupe-conseil Génivar inc; au Ministère de l’Environnement et de la Faune et à Pêches et Océans Canada: Quebec City, QC, Canada, 1997; 83p. [Google Scholar]
- Dinpashoh, Y.; Mirabbasi, R.; Jhajharia, D.; Abianeh, H.Z.; Mostafaeipour, A. Effect of short-term and long-term persistence on identification of temporal trends. J. Hydrol. Eng. ASCE 2014, 19, 617–625. [Google Scholar] [CrossRef]
- Kumar, S.; Duffy, C.J. Detecting hydroclimatic change spatio-temporal analysis of time series in Colorado River basin. J. Hydrol. 2009, 374, 1–15. [Google Scholar] [CrossRef]
- Kumar, S.; Merwade, V.; Kam, J.; Thurner, M. Streamflow trends in Indiana: Effects of long term persistence, precipitation and subsurface drains. J. Hydrol. 2009, 374, 171–183. [Google Scholar] [CrossRef]
- Quessy, J.F.; Favre, A.C.; Saïd, M.; Champagne, M. Statistical inference in Lombard’s smooths-change model. Environmetrics 2011, 22, 882–893. [Google Scholar] [CrossRef]
- Serinaldi, F.; Kilsby, C. The importance of prewhiting in change point analysis under persitence. Stoch. Environ. Res. Risk Assess 2016, 30, 763–777. [Google Scholar] [CrossRef]
- Sneyers, R. On the Statistical Analysis of Series of Observations; Technical Notes N°143; World Meteorological Organization: Geneva, Switzerland, 1990; 192p. [Google Scholar]
- Von Storch, H. Misuses of statistical analysis in climate research. In Analysis of Climate Variability; von Storch, H., Navarra, A., Eds.; Springer: Dordrecht, The Netherlands, 1999; pp. 11–26. [Google Scholar]
- Yue, S.; Pilon, P.; Phinney, B.; Cavadias, G. The influence of autocorrelation on the ability to detect trend in hydrological series. Hydrol. Process. 2002, 16, 1807–1829. [Google Scholar] [CrossRef]
- Hamed, K.H.; Rao, A.R. A modified Mann-Kendall trend test for autococorrelated data. J. Hydrol. 1998, 204, 182–196. [Google Scholar] [CrossRef]
- Yue, S.; Wang, C.Y. The Mann-Kendall test modified by effective sample size to detect trend in serially correlated hydrological series. Water Resour. Manag. 2004, 18, 201–218. [Google Scholar] [CrossRef]
- Hamed, K.H. Trend detection in hydrologic data: The Mann-Kendall trend test under the scaling hypothesis. J. Hydrol. 2008, 394, 350–363. [Google Scholar] [CrossRef]
- Koutsoyiannis, D.; Montanari, A. Spatial analysis of hydroclimatic time series: Uncertainy and insights. Water Resour. Res. 2007, 43, W05429. [Google Scholar] [CrossRef]
- Pettitt, A.N. A non-parametric approach to the change-point problem. J. R. Stat. Soc. Ser. C 1979, 28, 126–135. [Google Scholar] [CrossRef]
- Lombard, F. Rank tests for changepoint problems. Biometrika 1985, 74, 615–624. [Google Scholar] [CrossRef]
- Douglas, E.M.; Vogel, R.M.; Kroll, C.N. Trends in flood and low flows in the United States: Impact of spatial correlation. J. Hydrol. 2000, 240, 90–105. [Google Scholar] [CrossRef]
- Khaliq, M.N.; Ouarda, T.B.M.J.; Gachon, P. Identification of temporal trends in annual and seasonal low flows occuring in Canadian rivers: The effect of short- and long-term persistence. J. Hydrol. 2009, 369, 183–197. [Google Scholar] [CrossRef]
- Assani, A.A.; Landry, R.; Kinnard, C.; Azouaoui, O.; Demers, C.; Lacasse, K. Comparison of the spatiotemporal variability of temperature, precipitation, and maximum daily spring flows in two watersheds in Quebec characterized by different land use. Adv. Meteorol. 2016, 2016, 3746460. [Google Scholar] [CrossRef]
- Muma, M.; Assani, A.A.; Landry, R.; Quessy, J.-F.; Mesfioui, M. Effects of the change from forest to agriculture land use on the spatial variability of summer extreme daily flow charactersitics in southern Quebec (Canada). J. Hydrol. 2011, 407, 153–163. [Google Scholar] [CrossRef]
- Quilbé, R.; Rousseau, A.; Moquet, J.-S.; Savary, S.; Ricard, S.; Garbouj, M.S. Hydrological response of a watershed to historical land use evolution and future land use scenarios under climate change conditions. Hydrol. Earth Syst. Sci. 2008, 12, 101–110. [Google Scholar] [CrossRef]
- Sylvain, J.M.; Assani, A.A.; Landry, R.; Quessy, J.-F.; Kinnard, C. Comparison of the spatio-temporal variability of annual minimum daily extreme flow characteristics as a function of land use and dam management mode in Quebec, Canada. Water 2015, 7, 1232–1245. [Google Scholar] [CrossRef]
- Bullock, A.; Acreman, M.C. The role of wetlands in the hydrological cycle. Hydrol. Earth Syst. Sci. 2003, 7, 358–389. [Google Scholar] [CrossRef]
- Acreman, M.C.; Holden, J. How wetlands affect floods. Wetlands 2013, 33, 773–786. [Google Scholar] [CrossRef]
- Lane, C.R.; Leibowitz, S.G.; Autrey, B.C.; LeDuc, S.D.; Alexander, L.C. Hydrological, physical, and chemical functions and connectivity of non-floodplain wetland to downstream waters: A review. JAWRA J. Am. Water Resour. Assoc. 2018, 54, 346–371. [Google Scholar] [CrossRef]
- Blanchette, M.; Rousseau, A.N.; Foulon, E.; Savary, S.; Poulin, M. What would have been the impacts on low flow support and high flow attenuation under steady state land cover conditions? J. Environ. Manag. 2019, 234, 448–457. [Google Scholar] [CrossRef] [PubMed]
- Holden, J.; Burt, T.P. Runoff production in blanket peat covered catchments. Water Resour. Res. 2003, 39, 1191. [Google Scholar] [CrossRef]
- Quin, A.; Destouni, G. Large-scale comparison of flow-variability dampening by lakes and wetlands in the landscape. Land Degrad. Dev. 2018, 29, 3617–3627. [Google Scholar] [CrossRef]
- Rains, M.C. Water sources and hydrodynamics of closed-basin depressions, Cook Inlet Region, Alaska. Wetlands 2011, 31, 377–387. [Google Scholar] [CrossRef]
- Rajib, A.; Golden, H.E.; Lane, C.R.; Wu, Q. Surface depression and wetland water storage improves major river basin hydrologic predictions. Water Resour. Res. 2020, 56, e2019WR026561. [Google Scholar] [CrossRef]
- Shook, K.R.; Pomeroy, J.W. Memory effects of depressional storage in Northern Prairie hydrology. Hydrol. Process. 2011, 25, 3890–3898. [Google Scholar] [CrossRef]
- Shook, K.; Pomeroy, J.W.; Spence, C.; Boychuk, L. Storage dynamics simulations in prairie wetland hydrology models: Evaluation and parameterization. Hydrol. Process. 2013, 27, 1875–1889. [Google Scholar] [CrossRef]
- Yu, F.; Harbor, J. The effects of topographic depressions on multiscale overland flow connectivity: A high-resolution spatiotemporal pattern analysis approach based on connectivity statistics. Hydrol. Process. 2019, 33, 1403–1419. [Google Scholar] [CrossRef]
- Assani, A.A. Comparison of annual flood characteristics in four watersheds in relation to the wetland surface areas (southern Quebec, Canada). Wetl. Ecol. Manag. 2022, 30, 1181–1196. [Google Scholar] [CrossRef]
- Assani, A.A. Impact of wetland surface area on seasonal daily extreme flow characteristics during the summer-fall season in Southern Quebec (Canada). Int. J. Environ. Sci. Nat. Resour. 2022, 30, 556278. [Google Scholar] [CrossRef]
- Assani, A.A.; Zeroual, A.; Roy, A.; Kinnard, C. Spatial-temporal variability of seasonal daily minimum flows in southern Quebec: Synthesis on the impacts of climate, agriculture and wetlands. Hydrol. Res. 2022, 53, 1494–1509. [Google Scholar] [CrossRef]
- Assani, A.A.; Zeroual, A.; Roy, A.; Kinnard, C. Impacts of agricultural areas on spatio-temporal variability of daily extreme flows during the transitional seasons (spring and fall) in Southern Quebec. Water 2021, 13, 3487. [Google Scholar] [CrossRef]
- Ruiz, J. Modernization agriculture and agricultural land cover in Quebec (1951–2011). Cah. Géographie Québec 2019, 63, 213–230. [Google Scholar] [CrossRef]
- Burn, D.H. Climatic influences on streamflow timing in the headwaters of the Mackenzie River Basin. J. Hydrol. 2008, 352, 225–238. [Google Scholar] [CrossRef]
- Cayan, D.R.; Kammeriener, S.A.; Dettinger, M.D.; Caprio, J.M.; Peterson, D.H. Changes in the onset of spring in the western United States. Bull. Am. Meteorol. Soc. 2001, 82, 399–415. [Google Scholar] [CrossRef]
- Déry, S.J.; Stahl, K.; Moore, R.D.; Whitfield, P.H.; Menounos, B.; Burford, J.E. Detection of runoff timing changes in pluvial, nival and glacial rivers of western Canada. Water Resour. Res. 2009, 45, W04426. [Google Scholar] [CrossRef]
- Hodgkins, G.A.; Dudley, R.W. Change in the timing of winter spring stream flows in eastern North America. 1913–2002. Geophys. Res. Lett. 2006, 33, L06402. [Google Scholar] [CrossRef] [Green Version]
Rivers | Code | ID | Drainage Area (Km²) | Latitude (N) | Longitude (W) |
---|---|---|---|---|---|
Southeastern Hydroclimatic Region | |||||
Châteaugay | SE1 | 30,905 | 2492 | 45°19′ | 73°45′ |
Eaton | SE2 | 30,234 | 646 | 45°28′ | 71°39′ |
Nicolet | SE3 | 30,101 | 562 | 45°47′ | 71°58′ |
Etchemin | SE4 | 23,303 | 1152 | 46°39′ | 71°39′ |
Beaurivage | SE5 | 23,401 | 708 | 46°39′ | 71°17′ |
Du Sud | SE6 | 23,106 | 821 | 46°49′ | 70°45′ |
Eastern Hydroclimatic Region | |||||
Ouelle | E1 | 22,704 | 796 | 47°22′ | 67°57′ |
Du Loup | E2 | 22,513 | 1042 | 47°36′ | 69°38′ |
Trois-Pistoles | E3 | 22,301 | 930 | 48°05′ | 69°11′ |
Rimouski | E4 | 22,003 | 1615 | 48°24′ | 68°33′ |
Matane | E5 | 21,601 | 1655 | 48°46′ | 67°32′ |
Blanche | E6 | 21,700 | 223 | 48°47′ | 67°41′ |
Southwestern Hydroclimatic Region | |||||
Petite Nation | SW1 | 40,406 | 1331 | 45°47′ | 75°05′ |
Du Nord | SW2 | 40,110 | 1163 | 45°31′ | 74°20′ |
L’Assomption | SW3 | 52,219 | 1286 | 46°02′ | 73°26′ |
Matawin | SW4 | 50,119 | 1387 | 46°40′ | 73°55′ |
Vermillon | SW5 | 50,144 | 2662 | 47°39′ | 72°57′ |
Variables | Winter | Spring |
---|---|---|
Physiographic Variables | ||
Drainage density (km/km²) | −0.022 | 0.524 ** |
Mean Slope (m/km) | −0.304 | −0.043 |
Forest surface area (%) | −0.393 | −0.075 |
Agricultural surface area (%) | 0.489 ** | 0.452 * |
Wetlands surface area (%) | −0.321 | −0.726 ** |
Climatic Variables | ||
Winter/Spring total rainfall (mm) | 0.383 | −0.128 |
Winter/Spring total snowfall (cm) | −0.191 | 0.625 ** |
Winter/Spring total precipitations (mm) | −0.095 | 0.458 * |
Winter–Spring total rainfall (mm) | −0.128 | |
Winter–Spring total snowfall (cm) | 0.625 ** | |
Winter–Spring total precipitations (rainfall + snowfall) (mm) | 0.458 * | |
Winter daily maximum temperature (°C) | 0.525 ** | |
March daily maximum temperature (°C) | 0.369 | |
Spring daily maximum temperature (°C) | −0.505 ** | |
April daily maximum temperature (°C) | −0.511 ** | |
May daily maximum temperature (°C) | −0.488 ** | |
Winter–Spring daily maximum temperature (°C) | −0.481 ** |
Rivers | MK | MMK-PW | TFPW | MMKY | MMKH | LTP | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Z | p-Value | Z | p-Value | Z | p-Value | Z | p-Value | Z | p-Value | Z | p-Value | |
Southeastern Hydroclimatic Region | ||||||||||||
Chateaugay | 3.81 ** | 0.000 | 3.41 ** | 0.000 | 3.78 ** | 0.000 | 8.25 ** | 0.000 | 3.30 ** | 0.001 | 3.81 ** | 0.000 |
Eaton | 1.85 * | 0.064 | 1.61 | 0.110 | 1.61 | 0.110 | 3.34 ** | 0.001 | 1.65 | 0.099 | 1.57 | 0.116 |
Nicolet SW | 1.24 | 0.216 | 1.27 | 0.210 | 1.23 | 0.220 | 3.72 ** | 0.007 | 1.24 | 0.216 | 1.04 | 0.298 |
Etchemin | 2.69 ** | 0.007 | 2.91 ** | 0.000 | 2.99 ** | 0.000 | 5.61 ** | 0.000 | 2.65 ** | 0.007 | 3.14 ** | 0.002 |
Beaurivage | 4.71 ** | 0.000 | 3.36 ** | 0.000 | 4.80 ** | 0.000 | 5.74 ** | 0.000 | 5.68 ** | 0.000 | 2.56 ** | 0.002 |
Du Sud | 3.30 ** | 0.001 | 3.50 ** | 0.000 | 3.53 ** | 0.000 | 8.32 ** | 0.000 | 3.30 ** | 0.001 | 3.14 ** | 0.002 |
Eastern Hydroclimatic Region | ||||||||||||
Ouelle | 3.20 ** | 0.000 | 3.99 ** | 0.000 | 4.03 ** | 0.000 | 8.03 ** | 0.000 | 3.99 ** | 0.000 | 3.34 ** | 0.001 |
Du Loup | 3.43 ** | 0.001 | 3.69 ** | 0.000 | 3.41 ** | 0.000 | 7.47 ** | 0.000 | 2.92 ** | 0.004 | 2.85 ** | 0.004 |
Trois-Pistoles | 4.07 ** | 0.000 | 4.33 ** | 0.000 | 3.96 ** | 0.000 | 8.48 ** | 0.000 | 4.07 ** | 0.000 | 5.72 ** | 0.000 |
Rimouski | 4.69 ** | 0.000 | 4.94 ** | 0.000 | 4.58 ** | 0.000 | 10.39 ** | 0.000 | 3.78 ** | 0.000 | 3.34 ** | 0.001 |
Matane | 4.34 ** | 0.000 | 4.51 ** | 0.000 | 4.26 ** | 0.000 | 7.02 ** | 0.000 | 4.92 ** | 0.000 | 4.74 ** | 0.000 |
Blanche | 3.59 ** | 0.000 | 2.47 ** | 0.010 | 3.06 ** | 0.000 | 4.38 ** | 0.000 | 3.59 ** | 0.000 | 2.33 ** | 0.020 |
Southwestern Hydroclimatic Region | ||||||||||||
Petite Nation | 4.94 ** | 0.000 | 4.21 ** | 0.000 | 4.87 ** | 0.000 | 10.29 ** | 0.000 | 5.26 ** | 0.000 | 4.29 ** | 0.000 |
Du Nord | 3.49 ** | 0.000 | 3.54 ** | 0.000 | 3.35 ** | 0.000 | 6.99 ** | 0.000 | 3.49 ** | 0.000 | 3.06 ** | 0.002 |
L’Assomption | 3.18 ** | 0.001 | 3.36 ** | 0.000 | 3.02 ** | 0.000 | 9.00** | 0.000 | 4.72 ** | 0.000 | 2.61 ** | 0.009 |
Matawin | 4.49 ** | 0.000 | 4.46 ** | 0.000 | 4.27 ** | 0.000 | 6.36 ** | 0.000 | 5.05 ** | 0.000 | 4.73 ** | 0.000 |
Vermillon | 3.06 ** | 0.002 | 3.36 ** | 0.000 | 3.43 ** | 0.000 | 3.76 ** | 0.000 | 3.08 ** | 0.002 | 4.55 ** | 0.000 |
Rivers | MK | MMK-PW | TFPW | MMKY | MMKH | LTP | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Z | p-Value | Z | p-Value | Z | p-Value | Z | p-Value | Z | p-Value | Z | p-Value | |
Southeastern Hydroclimatic Region | ||||||||||||
Chateaugay | 0.42 | 0.676 | 0.48 | 0.632 | 0.46 | 0.642 | 1.29 | 0.198 | 0.786 | 0.432 | 0.40 | 0.691 |
Eaton | −1.22 | 0.222 | −1.52 | 0.129 | −1.55 | 0.120 | −1.37 | 0.222 | −1.22 | 0.222 | −1.43 | 0.154 |
Nicolet SW | 0.10 | 0.919 | 0.12 | 0.901 | 0.14 | 0.890 | 0.295 | 0.768 | 0.10 | 0.919 | 0.08 | 0.940 |
Etchemin | 1.12 | 0.266 | 1.23 | 0.219 | 1.56 | 0.120 | 0.295 | 0.768 | 0.93 | 0.352 | 0.54 | 0.590 |
Beaurivage | 1.87 | 0.461 | 1.78 * | 0.076 | 2.22 ** | 0.026 | 2.32 ** | 0.020 | 0.015 | 0.96 | 0.96 | 0.336 |
Du Sud | 1.91 * | 0.057 | 1.07 | 0.283 | 1.35 | 0.177 | 3.11 ** | 0.002 | 0.057 | 1.16 | 1.16 | 0.247 |
Eastern Hydroclimatic Region | ||||||||||||
Ouelle | 3.59 ** | 0.000 | 2.75 ** | 0.006 | 3.66 ** | 0.000 | 5.49 ** | 0.000 | 3.02 ** | 0.003 | 2.07 ** | 0.038 |
Du Loup | 0.43 | 0.671 | 0.18 | 0.859 | 0.28 | 0.780 | 1.06 | 0.290 | 0.34 | 0.732 | 0.26 | 0.800 |
Trois-Pistoles | 1.06 | 0.291 | 0.83 | 0.405 | 1.08 | 0.280 | 3.17 ** | 0.002 | 0.93 | 0.355 | 0.55 | 0.580 |
Rimouski | −0.98 | 0.326 | −0.68 | 0.494 | −0.76 | 0.446 | −2.52 ** | 0.012 | −0.87 | 0.384 | −0.87 | 0.389 |
Matane | 1.79 * | 0.074 | 1.49 | 0.136 | 1.83 | 0.068 | 4.13 ** | 0.000 | 2.01 ** | 0.045 | 1.22 | 0.224 |
Blanche | 1.44 | 0.149 | 0.67 | 0.502 | 1.61 | 0.108 | 1.11 | 0.265 | 2.16 ** | 0.031 | 0.54 | 0.589 |
Southwestern Hydroclimatic Region | ||||||||||||
Petite Nation | 3.64 ** | 0.000 | 2.72 ** | 0.007 | 3.53 ** | 0.000 | 8.21 ** | 0.000 | 3.07 ** | 0.002 | 2.13 ** | 0.033 |
Du Nord | 1.41 | 0.160 | 1.19 | 0.236 | 1.22 | 0.222 | 3.49 ** | 0.001 | 2.12 ** | 0.033 | 1.07 | 0.286 |
L’Assomption | 1.73 ** | 0.084 * | 1.82 ** | 0.069 | 1.97 ** | 0.049 | 2.98 ** | 0.003 | 2.17 ** | 0.029 | 1.10 | 0.272 |
Matawin | 2.45 ** | 0.014 | 2.29 * | 0.023 | 2.54 ** | 0.011 | 5.66 ** | 0.000 | 2.60 ** | 0.009 | 1.77 * | 0.078 |
Vermillon | 1.70 ** | 0.090 * | 1.70 * | 0.088 | 1.72 * | 0.086 | 4.000 ** | 0.000 | 1.44 | 0.150 | 1.28 | 0.200 |
Winter | Spring | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Pettitt Test | Lombard Test | Pettitt Test | Lombard Test | |||||||
K | p-Values | T | Sn | T1-T2 | K | p-Values | T | Sn | T1-T2 | |
Southeastern Hydroclimatic Region | ||||||||||
Chateaugay | 1054 * | 0.000 | 1962 | 0.143 * | 1961–1962 | 288 | 1.018 | 0.002 | ||
Eaton | 613 | 0.068 | - | 0.044 * | 1958–1959 | 497 | 0.233 | 0.017 | ||
Nicolet SW | 678 * | 0.047 | 1962 | 0.027 | - | 239 | 1.256 | 0.000 | ||
Etchemin | 935 * | 0.002 | 1972 | 0.095 * | 1971–1972 | 631 | 0.078 | 0.016 | ||
Beaurivage | 1369 * | 0.000 | 1972 | 0.219 * | 1971–1972 | 603 | 0.104 | 0.032 | ||
Du Sud | 1015 * | 0.000 | 1972 | 0.119 * | 1972–1972 | 679 | 0.047 | 0.038 | ||
Eastern Hydroclimatic Region | ||||||||||
Ouelle | 1256 * | 0.000 | 1971 | 0.186 * | 1970–1972 | 1167 * | 0.000 | 1967 | 0.176 * | 1966–1967 |
Du Loup | 1039 * | 0.000 | 1972 | 0.130 * | 1971–1972 | 323 | 0.856 | 0.002 | ||
Trois-Pistoles | 1099 * | 0.000 | 1972 | 0.179 * | 1971–1972 | 498 | 0.266 | 0.010 | ||
Rimouski | 1216 * | 0.000 | 1972 | 0.237 * | 1942–1978 | 444 | 0.402 | 0.009 | ||
Matane | 1038 * | 0.000 | 1973 | 0.189 * | 1947–1948 | 637 | 0.074 | 0.038 | ||
Blanche | 795 * | 0.006 | 1971 | 0.120 * | 1934–2005 | 556 | 0.112 | 0.027 | ||
Southwestern Hydroclimatic Region | ||||||||||
Petite Nation | 1432 * | 0.000 | 1970 | 0.273 * | 1963–1972 | 1079 * | 0.000 | 1966 | 0.128 * | 1964–1965 |
Du Nord | 1067 * | 0.000 | 1972 | 0.131 * | 1971–1972 | 594 | 0.103 | 0.017 | ||
L’Assomption | 1068 * | 0.000 | 1972 | 0.114 * | 1971–1972 | 743 * | 0.022 | 1969 | 0.037 | |
Matawin | 1042 * | 0.000 | 1968 | 0.243 * | 1971–1972 | 855 * | 0.003 | 1969 | 0.064 * | 1968–1969 |
Vermillon | 783 * | 0.014 | 1972 | 0.076 * | 1949–1950 | 696 | 0.039 | 1968 | 0.028 |
Rivers | 1930–2019 | 1930–1974 | 1975–2019 |
---|---|---|---|
Southeastern Hydroclimatic Region | |||
Châteaugay | −0.061 | 0.102 | −0.236 |
Eaton | −0.158 | −0.088 | −0.163 |
Nicolet SW | −0.266 ** | −0.378 ** | −0.208 |
Etchemin | 0.019 | −0.125 | −0.027 |
Beuarivage | −0.181 | −0.257 | −0.423 ** |
Du Sud | −0.063 | −0.232 | −0.046 |
Eastern Hydroclimatic Region | |||
Ouelle | 0.218 ** | 0.030 | 0.118 |
Du Loup | −0.007 | −0.125 | 0.058 |
Trois-Pistoles | 0.042 | −0.120 | 0.078 |
Rimouski | 0.047 | −0.020 | 0.143 |
Matane | 0.219 ** | −0.444 ** | 0.295 |
Blanche | 0.395 ** | −0.068 | 0.357 ** |
Southwestern Hydroclimatic Region | |||
Du Nord | 0.076 | −0.245 | 0.140 |
Petite Nation | 0.202 | −0.031 | −0.001 |
L’Assomption | 0.001 | −0.164 | 0.032 |
Matawin | 0.096 | −0.030 | −0.041 |
Vermillon | 0.008 | 0.097 | −0.130 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Assani, A.A. Comparison of Spatio-Temporal Variability of Daily Maximum Flows in Cold-Season (Winter and Spring) in Southern Quebec (Canada). Hydrology 2023, 10, 44. https://doi.org/10.3390/hydrology10020044
Assani AA. Comparison of Spatio-Temporal Variability of Daily Maximum Flows in Cold-Season (Winter and Spring) in Southern Quebec (Canada). Hydrology. 2023; 10(2):44. https://doi.org/10.3390/hydrology10020044
Chicago/Turabian StyleAssani, Ali Arkamose. 2023. "Comparison of Spatio-Temporal Variability of Daily Maximum Flows in Cold-Season (Winter and Spring) in Southern Quebec (Canada)" Hydrology 10, no. 2: 44. https://doi.org/10.3390/hydrology10020044
APA StyleAssani, A. A. (2023). Comparison of Spatio-Temporal Variability of Daily Maximum Flows in Cold-Season (Winter and Spring) in Southern Quebec (Canada). Hydrology, 10(2), 44. https://doi.org/10.3390/hydrology10020044