Modeling Surface Water–Groundwater Interactions: Evidence from Borkena Catchment, Awash River Basin, Ethiopia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. SWAT–MODFLOW Model Setup
2.2.1. SWAT Model Setup and Input Data
2.2.2. SWAT Model Calibration and Validation
2.2.3. MODFLOW Model Setup
Conceptual Model
- The base flow of the Borkena River increases after passing through the alluvial aquifers as it flows through the volcanic rock channel.
- The boreholes drilled along the lowest elevation areas were artesian.
- A large swamp developed at the southern part of the Borkena Catchment
Model Discretization
Aquifer Hydraulic Properties
River–Aquifer Interactions
Groundwater Pumping
2.2.4. SWAT–MODFLOW Modeling
3. Result and Discussion
3.1. SWAT–MODFLOW
3.1.1. Water Balance Analysis
3.1.2. Recharge Estimation
3.1.3. Surface Water–Groundwater Interactions
3.2. Aquifer Connectivity
3.3. The Spatial Distribution of the Groundwater Head
3.4. Inter-Basin Groundwater Transfer
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sophocleous, M. Interactions between groundwater and surface water: The state of the science. Hydrogeol. J. 2002, 10, 52–67. [Google Scholar] [CrossRef]
- Winter, T.C.; Harvey, J.; Franke, O.; Alley, W. Ground Water and Surface Water: A Single Resource, Circular 1139; US Geological Survey: Grand Forks, ND, USA, 1998.
- Gleeson, T.; Richter, B. How much groundwater can we pump and protect environmental flows through time? Presumptive standards for conjunctive management of aquifers and rivers. River Res. Appl. 2018, 34, 83–92. [Google Scholar] [CrossRef]
- Stevenazzi, S.; Masetti, M.; Beretta, G.P. Groundwater vulnerability assessment: From overlay methods to statistical methods in the Lombardy Plain area. Acque Sotter. -Ital. J. Groundw. 2017, 6. [Google Scholar] [CrossRef]
- Li, M.; Liang, X.; Xiao, C.; Cao, Y. Quantitative evaluation of groundwater–Surface water interactions: Application of cumulative exchange fluxes method. Water 2020, 12, 259. [Google Scholar] [CrossRef]
- Malagò, A.; Pagliero, L.; Bouraoui, F.; Franchini, M. Comparing calibrated parameter sets of the SWAT model for the Scandinavian and Iberian peninsulas. Hydrol. Sci. J. 2015, 60, 949–967. [Google Scholar] [CrossRef]
- Anderson, M.; Woessner, W.; Hunt, R. Applied groundwater modeling: Simulation of flow and advective transport. J. Hydrol. 1992, 140, 393–395. [Google Scholar]
- Lewandowski, J.; Meinikmann, K.; Krause, S. Groundwater–surface water interactions: Recent advances and interdisciplinary challenges. Water 2020, 12, 296. [Google Scholar] [CrossRef]
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large area hydrologic modeling and assessment part I: Model development 1. J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Arnold, J.G.; Moriasi, D.N.; Gassman, P.W.; Abbaspour, K.C.; White, M.J.; Srinivasan, R.; Santhi, C.; Harmel, R.; Van Griensven, A.; Van Liew, M.W. SWAT: Model use, calibration, and validation. Trans. ASABE 2012, 55, 1491–1508. [Google Scholar] [CrossRef]
- Langevin, C.D.; Hughes, J.D.; Banta, E.R.; Niswonger, R.G.; Panday, S.; Provost, A.M. Documentation for the MODFLOW 6 Groundwater Flow Model; No. 6-A55; US Geological Survey: Grand Forks, ND, USA, 2017.
- Namitha, M.; JS, D.K.; Sreelekshmi, H. Ground water flow modelling using visual modflow. J. Pharmacogn. Phytochem. 2019, 8, 2710–2714. [Google Scholar]
- Mohammed, M.; Ayalew, B. Modeling for Inter-Basin Groundwater Transfer Identification: The Case of Upper Rift Valley Lakes and Awash River Basins of Ethiopia. J. Water Resour. Prot. 2016, 8, 1222. [Google Scholar] [CrossRef]
- Wu, D.D.; Anagnostou, E.N.; Wang, G.; Moges, S.; Zampieri, M. Improving the surface-ground water interactions in the Community Land Model: Case study in the Blue Nile Basin. Water Resour. Res. 2014, 50, 8015–8033. [Google Scholar] [CrossRef] [Green Version]
- Taye, M.T.; Ebrahim, G.Y.; Nigussie, L.; Hagos, F.; Uhlenbrook, S.; Schmitter, P. Integrated water availability modelling to assess sustainable agricultural intensification options in the Meki catchment, Central Rift Valley, Ethiopia. Hydrol. Sci. J. 2022, 67, 2271–2293. [Google Scholar] [CrossRef]
- Walter, M.T.; Shaw, S.B.; Garen, D.C.; Moore, D.S. “Curve Number Hydrology in Water Quality Modeling: Uses, Abuses, and Future Directions,” by David C. Garen and Daniel S. Moore. J. Am. Water Resour. Assoc. 2005, 41, 1491. [Google Scholar] [CrossRef]
- Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Williams, J.R. Soil and Water Assessment Tool Theoretical Documentation; Version 2005; USDA-ARS Grassland, Soil and Water Research Laboratory: Temple, TX, USA, 2005. Available online: www.brc.tamus.edu/swat/doc.html (accessed on 15 January 2020).
- Daggupati, P.; Pai, N.; Ale, S.; Douglas-Mankin, K.R.; Zeckoski, R.W.; Jeong, J.; Parajuli, P.B.; Saraswat, D.; Youssef, M.A. A recommended calibration and validation strategy for hydrologic and water quality models. Trans. ASABE 2015, 58, 1705–1719. [Google Scholar]
- Abbaspour, K.C.; Yang, J.; Maximov, I.; Siber, R.; Bogner, K.; Mieleitner, J.; Zobrist, J.; Srinivasan, R. Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT. J. Hydrol. 2007, 333, 413–430. [Google Scholar] [CrossRef]
- Yang, J.; Reichert, P.; Abbaspour, K.C.; Xia, J.; Yang, H. Comparing uncertainty analysis techniques for a SWAT application to the Chaohe Basin in China. J. Hydrol. 2008, 358, 1–23. [Google Scholar] [CrossRef]
- Mathevet, T.; Michel, C.; Andréassian, V.; Perrin, C. A bounded version of the Nash-Sutcliffe criterion for better model assessment on large sets of basins. IAHS Publ. 2006, 307, 211. [Google Scholar]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- ECDSWC-WEDSWS. Ethiopian Construction Design and Supervision Works Corporation, Water and Energy Design and Supervision Works Sector (ECDSWC-WEDSWS) Kobo-Chefa Groundwater Evaluation Report. V. III. 2019; Unpublished. [Google Scholar]
- ECDSWC-WEDSWS. Ethiopian Construction Design and Supervision Works Corporation, Water and Energy Design and Supervision Works Sector (ECDSWC-WEDSWS) (KCVTW-01-19) Well Completion Report. V. I. 2020; Unpublished. [Google Scholar]
- ECDSWC-WEDSWS. Ethiopian Construction Design and Supervision Works Corporation, Water and Energy Design and Supervision Works Sector (ECDSWC-WEDSWS) (KCVTW-02-19) Well Completion Report. V. II. 2020; Unpublished. [Google Scholar]
- ECDSWC-WEDSWS. ECDSWC-WEDSWS. Ethiopian Construction Design and Supervision Works Corporation, Water and Energy Design and Supervision Works Sector (ECDSWC-WEDSWS) (KCVTW-03-19) Well Completion Report. V. III. 2020; Unpublished. [Google Scholar]
- Freeze, R.A.; Cherry, J.A. Groundwater; Prentice-Hall Inc.: Eaglewood Cliffs, NJ, USA, 1979. [Google Scholar]
- Wilson, C.P. Groundwater Hydrology, 2nd ed.; Todd, D.K., Ed.; Wiley: New York, NY, USA, 1980; p. 552. ISBN 0 471 08641 X. [Google Scholar]
- Todd, D.K.; Mays, L.W. Groundwater Hydrology; John Wiley & Sons: Hoboken, NJ, USA, 2004. [Google Scholar]
- Unnikrishnan, M.; Sarda, V.K. Streambed Hydraulic conductivity: A state of art. Int. J. Mod. Trends Eng. Res. 2016, 3, 209–217. [Google Scholar]
- Bailey, R.T.; Wible, T.C.; Arabi, M.; Records, R.M.; Ditty, J. Assessing regional-scale spatio-temporal patterns of groundwater–surface water interactions using a coupled SWAT-MODFLOW model. Hydrol. Process. 2016, 30, 4420–4433. [Google Scholar] [CrossRef]
- Bailey, R.; Park, S. SWAT-MODFLOW Tutorial Version 3 Documentation for Preparing and Running SWAT-MODFLOW Simulations; Department of Civil and Environmental Engineering, Colorado State University: Fort Collins, CO, USA, 2019. [Google Scholar]
- Chernet, T. Hydrogeological Map of Ethiopia, 1:2.000.000; Ethiopian Institute of Geological Surveys: Addis Ababa, Ethiopia, 1988. [Google Scholar]
- Kebede, S. Groundwater in Ethiopia: Features, Numbers and Opportunities; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Gidafie, D.; Tafesse, N.; Hagos, M. Estimation of Groundwater Recharge Using Water Balance Model: A Case Study in the Gerado Basin, North Central Ethiopia. Int. J. Earth Sci. Eng. 2016, 9, 942–950. [Google Scholar]
- Mechal, A.; Birk, S.; Dietzel, M.; Leis, A.; Winkler, G.; Mogessie, A.; Kebede, S. Groundwater flow dynamics in the complex aquifer system of Gidabo River Basin (Ethiopian Rift): A multi-proxy approach. Hydrogeol. J. 2017, 25, 519–538. [Google Scholar] [CrossRef] [Green Version]
Land Use/Cover | Area (km2) | Area (%) |
---|---|---|
Agricultural | 796.04 | 49.57 |
Rangeland | 237.34 | 14.78 |
Brushland | 297 | 18.49 |
Plantation Forest | 19.9 | 1.24 |
Bare Land/Barren | 160.31 | 9.98 |
Natural Forest | 0.17 | 0.01 |
Deciduous Forest/Wood | 0.01 | 0 |
Wetlands | 95.23 | 5.93 |
Total | 1606 | 100 |
Value | SOIL_ID | Area (km2) | Area (%) |
---|---|---|---|
1 | Lithic Leptosols | 886.67 | 55.21 |
2 | Eutric Vertisols | 302.09 | 18.81 |
3 | Eutric Leptosols | 262.26 | 16.33 |
4 | Vertic Vertisol | 154.98 | 9.65 |
Total | 1606 | 100 |
Parameter Name | Description | Range | Fitted Values | t-Stat | p-Value |
---|---|---|---|---|---|
SOL_AWC | Soil available water capacity (mm H2O) | ±25% | 0.07 | 0.02 | 0.98 |
CN2 | Curve number for moisture condition II | ±25% | 33.82 | 0.54 | 0.61 |
GWQMN | Threshold depth of water in the shallow aquifer (mm H2O) | 0–5000 | −29.24 | −0.55 | 0.61 |
GW_DELAY | Groundwater delay (days) | 0–500 | 28.85 | −0.65 | 0.55 |
ESCO | Soil evaporation compensation factor | 0.5–0.1 | 13.56 | 0.88 | 0.42 |
ALPHA_BF | Baseflow alpha factor (1/days) | 0–1 | 0.60 | −1.24 | 0.27 |
REVAPMN | Threshold depth of water in the shallow aquifer for “revap” or “percolation” to the deep aquifer to occur (mm H2O) | 0–500 | 62.29 | 1.65 | 0.16 |
GW_REVAP | Groundwater “revap” coefficient | 0.02–0.2 | −0.057 | −1.82 | 0.13 |
RCHRG_DP | Deep aquifer percolation fraction | 0–500 | 0.206 | −2.35 | 0.07 |
Parameter | Default Value | Calibrated (2000–2007) | Validated (2008–2014) |
---|---|---|---|
R2 | 0.33 | 0.68 | 0.64 |
NSE | 0.33 | 0.66 | 0.63 |
PBIAS | −3.90% | −2.70% | 2.48% |
Parameter | Values (mm) | % of Annual Rainfall |
---|---|---|
Precipitation | 1017.5 | |
Surface Runoff Discharge out of the Total Flow | 241.54 | 23 |
Lateral flow Soil Discharge out of the Total Flow | 67.31 | 6.6 |
Groundwater (Shallow Aquifer) Contribution to Stream Flow | 79.42 | 7.8 |
Groundwater (Deep Aquifer) Flow | 5.71 | 0.56 |
REVAP (Shallow Aquifer = Soil/Plants) | 29.99 | |
Deep Aquifer Recharge | 5.74 | 12 |
Total Aquifer Recharge | 114.75 | |
Total Water Yield | 393.99 | 38.7 |
Percolation out of Soil | 114.76 | 11.2 |
Actual Evapotranspiration | 594.5 | 58.4 |
Potential Evapotranspiration | 1621 |
MONTH | PREC (mm) | SURQ (mm) | LATQ (mm) | GWQ (mm) | PERCOLATE (mm) | SW (mm) | ET (mm) | PET (mm) | WATER YIELD (mm) |
---|---|---|---|---|---|---|---|---|---|
Jan. | 14.00 | 0.37 | 0.77 | 0.00 | 0.00 | 29.25 | 14.77 | 174.82 | 2.00 |
Feb. | 0.30 | 0.00 | 0.09 | 0.00 | 0.00 | 27.56 | 10.99 | 105.07 | 0.67 |
Mar. | 5.40 | 0.00 | 0.06 | 0.00 | 0.00 | 24.43 | 20.98 | 160.87 | 0.55 |
Apr. | 149.80 | 10.02 | 6.75 | 0.00 | 2.18 | 77.87 | 73.72 | 141.26 | 16.91 |
May | 4.40 | 0.00 | 3.58 | 0.04 | 0.49 | 55.05 | 26.59 | 107.84 | 4.12 |
Jun. | 111.70 | 18.35 | 6.81 | 0.64 | 4.90 | 82.59 | 52.97 | 139.37 | 26.02 |
Jul. | 236.15 | 89.76 | 13.31 | 4.36 | 47.93 | 123.79 | 109.86 | 161.39 | 106.94 |
Aug. | 287.00 | 92.29 | 16.73 | 17.85 | 79.41 | 123.12 | 95.17 | 125.16 | 116.23 |
Sept. | 103.40 | 13.77 | 11.53 | 38.59 | 29.97 | 106.11 | 68.79 | 118.37 | 54.62 |
Oct. | 54.40 | 8.00 | 3.88 | 35.72 | 1.07 | 97.20 | 51.20 | 123.07 | 34.03 |
Nov. | 51.20 | 8.98 | 3.03 | 16.35 | 0.38 | 92.95 | 44.28 | 134.00 | 28.67 |
Dec. | 0.00 | 0.00 | 0.77 | 1.44 | 0.00 | 67.76 | 25.18 | 129.78 | 3.23 |
No. | Parameter | Well ID | ||
---|---|---|---|---|
KCTVW-01-19 (GERADO) | KCTVW-02-19 (COMBOLCHA) | KCTVW-03-19 (KEMISSE) | ||
1 | Hydraulic Conductivity (Hk, m/d) | 9.09 | 9.32 | 9.41 |
2 | Transmissivity (T, m2/d) | 955 | 978 | 1030 |
3 | Static Water Level (m) | 0 (artesian) | 10.24 | 0 (artesian) |
4 | Discharge (Q, l/s) | 80 | 75.5 | 75 |
5 | Depth (m) | 500 | 600 | 512 |
6 | Surface Elevation (m) | 2282 | 1850 | 1444 |
7 | Aquifers | Alluvial Deposit; Weathered and Fractured Basalt and Rhyolite | Alluvial Deposit; Moderately Weathered and Fractured Basalt | Alluvial Deposit with Highly fractured Basalt |
8 | Casing Designed | 0–230 m cased with blind steel casing and grouted with cement to isolate alluvial aquifer from the basaltic aquifer | 0–251 m cased with blind and grouted with cement to isolate the alluvial aquifer from the basaltic aquifer | Cased with screen and blind casing from top to bottom both the alluvial and basaltic aquifers |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gobezie, W.J.; Teferi, E.; Dile, Y.T.; Bayabil, H.K.; Ayele, G.T.; Ebrahim, G.Y. Modeling Surface Water–Groundwater Interactions: Evidence from Borkena Catchment, Awash River Basin, Ethiopia. Hydrology 2023, 10, 42. https://doi.org/10.3390/hydrology10020042
Gobezie WJ, Teferi E, Dile YT, Bayabil HK, Ayele GT, Ebrahim GY. Modeling Surface Water–Groundwater Interactions: Evidence from Borkena Catchment, Awash River Basin, Ethiopia. Hydrology. 2023; 10(2):42. https://doi.org/10.3390/hydrology10020042
Chicago/Turabian StyleGobezie, Wallelegn Jene, Ermias Teferi, Yihun T. Dile, Haimanote K. Bayabil, Gebiaw T. Ayele, and Girma Y. Ebrahim. 2023. "Modeling Surface Water–Groundwater Interactions: Evidence from Borkena Catchment, Awash River Basin, Ethiopia" Hydrology 10, no. 2: 42. https://doi.org/10.3390/hydrology10020042
APA StyleGobezie, W. J., Teferi, E., Dile, Y. T., Bayabil, H. K., Ayele, G. T., & Ebrahim, G. Y. (2023). Modeling Surface Water–Groundwater Interactions: Evidence from Borkena Catchment, Awash River Basin, Ethiopia. Hydrology, 10(2), 42. https://doi.org/10.3390/hydrology10020042