An Assessment of Uncertainties in Flood Frequency Estimation Using Bootstrapping and Monte Carlo Simulation
Abstract
:1. Introduction
2. Study Area and Data
3. Methodology
4. Results and Discussion
4.1. Uncertainty Estimates for LP3 Distribution
4.2. Uncertainty Estimates for GEV Distribution
4.3. Uncertainty Estimates for EV1 Distribution
4.4. Uncertainty Estimates for LN Distribution
4.5. Uncertainty Estimates for GPD Distribution
4.6. Uncertainty Estimates for Large Floods (1% AEP)
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Charalambous, J.; Rahman, A.; Carroll, D. Application of Monte Carlo Simulation Technique to Design Flood Estimation: A Case Study for North Johnstone River in Queensland, Australia. Water Resour. Manag. 2013, 27, 4099–4111. [Google Scholar] [CrossRef]
- Petherick, A. Calculated Risks. Nat. Clim. Chang. 2011, 1, 188–189. [Google Scholar] [CrossRef]
- Burgan, H.I.; Vaheddoost, B.; Aksoy, H. Frequency Analysis of Monthly Runoff in Intermittent Rivers. In Proceedings of the World Environmental and Water Resources Congress 2017, Sacramento, CA, USA, 21–25 May 2017; pp. 327–334. [Google Scholar] [CrossRef]
- Bobée, B.; Cavadias, G.; Ashkar, F.; Bernier, J.; Rasmussen, P. Towards a Systematic Approach to Comparing Distributions Used in Flood Frequency Analysis. J. Hydrol. 1993, 142, 121–136. [Google Scholar] [CrossRef]
- Cunnane, C. Statistical Distributions for Flood Frequency Analysis; Secretariat of the World Meteorological Organization: Geneva, Switzerland, 1989. [Google Scholar]
- Kuriqi, A.; Ardiçlioǧlu, M. Investigation of Hydraulic Regime at Middle Part of the Loire River in Context of Floods and Low Flow Events. Pollack Period. Pollack Period. 2018, 13, 145–156. [Google Scholar] [CrossRef]
- Leščešen, I.; Dolinaj, D. Regional Flood Frequency Analysis of the Pannonian Basin. Water 2019, 11, 193. [Google Scholar] [CrossRef] [Green Version]
- Hosking, J.R.M. L-Moments: Analysis and Estimation of Distributions Using Linear Combinations of Order Statistics. J. R. Stat. Soc. Ser. B 1990, 52, 105–124. [Google Scholar] [CrossRef]
- Wang, Q.J. LH Moments for Statistical Analysis of Extreme Events. Water Resour. Res. 1997, 33, 2841–2848. [Google Scholar] [CrossRef]
- Martins, E.S.; Stedinger, J.R. Generalized Maximum-Likelihood Generalized Extreme-Value Quantile Estimators for Hydrologic Data. Water Resour. Res. 2000, 36, 737–744. [Google Scholar] [CrossRef]
- Haddad, K.; Rahman, A. Selection of the Best Fit Flood Frequency Distribution and Parameter Estimation Procedure: A Case Study for Tasmania in Australia. Stoch. Environ. Res. Risk Assess. 2011, 25, 415–428. [Google Scholar] [CrossRef]
- Chebana, F.; Ouarda, T.B.M.J. Multivariate Non-Stationary Hydrological Frequency Analysis. J. Hydrol. 2021, 593, 125907. [Google Scholar] [CrossRef]
- Conway, K.M. Flood Frequency Analysis of Some NSW Coastal Rivers; The University of New South Wales: Kensington, Australia, 1970. [Google Scholar]
- Kopittke, R.A.; Stewart, B.J.; Tickle, K.S. Frequency analysis of flood data in queensland. In Proceedings of the Hydrological Symposium, Institution of Engineers Australia, National Conference, Sydney, NSW, Australia, 28–30 June 1976; pp. 20–24. [Google Scholar]
- Institution of Engineers Australia. Australian Rainfall and Runoff: A Guide to Flood Estimation; Pilgrim, D.H., Ed.; Institution of Engineers Australia: Barton, Australia, 1987. [Google Scholar]
- Vogel, R.M.; McMahon, T.A.; Chiew, F.H.S. Floodflow Frequency Model Selection in Australia. J. Hydrol. 1993, 146, 421–449. [Google Scholar] [CrossRef]
- Haddad, K.; Rahman, A. Investigation on At-Site Flood Frequency Analysis in South-East Australia. J. Inst. Eng. Malays. 2008, 69, 59–64. [Google Scholar]
- Kuczera, G. Comprehensive At-Site Flood Frequency Analysis Using Monte Carlo Bayesian Inference. Water Resour. Res. 1999, 35, 1551–1557. [Google Scholar] [CrossRef]
- Ball, J.E. Flood Estimation under Changing Climates. In Proceedings of the 19th IAHR-APD Congress, Hanoi, Veitnam, 24 September 2014. [Google Scholar]
- Caballero, W.L.; Rahman, A. Application of Monte Carlo Simulation Technique for Flood Estimation for Two Catchments in New South Wales, Australia. Nat. Hazards 2014, 74, 1475–1488. [Google Scholar] [CrossRef]
- Rahman, A.; Weinmann, E.; Mein, R.G. The Use of Probability-Distributed Initial Losses in Design Flood Estimation. Australas. J. Water Resour. 2002, 6, 17–29. [Google Scholar] [CrossRef]
- Burn, D.H. The Use of Resampling for Estimating Confidence Intervals for Single Site and Pooled Frequency Analysis/Utilisation d’un Rééchantillonnage Pour l’estimation Des Intervalles de Confiance Lors d’analyses Fréquentielles Mono et Multi-Site. Hydrol. Sci. J. 2003, 48, 25–38. [Google Scholar] [CrossRef] [Green Version]
- Davison, A.C.; Hinkley, D.V. Bootstrap Methods and Their Application; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar] [CrossRef]
- Kharin, V.V.; Zwiers, F.W. Estimating Extremes in Transient Climate Change Simulations. J. Clim. 2005, 18, 1156–1173. [Google Scholar] [CrossRef]
- Paeth, H.; Hense, A. Mean versus Extreme Climate in the Mediterranean Region and Its Sensitivity to Future Global Warming Conditions. Meteorol. Z. 2005, 14, 329–347. [Google Scholar] [CrossRef]
- Rust, H.W.; Kallache, M.; Schellnhuber, H.J.; Kropp, J.P. Confidence Intervals for Flood Return Level Estimates Assuming Long-Range Dependence BT—In Extremis: Disruptive Events and Trends in Climate and Hydrology; Kropp, J., Schellnhuber, H.-J., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 60–88. [Google Scholar] [CrossRef]
- Semmler, T.; Jacob, D. Modeling Extreme Precipitation Events—A Climate Change Simulation for Europe. Glob. Planet. Chang. 2004, 44, 119–127. [Google Scholar] [CrossRef]
- Trichakis, I.; Nikolos, I.; Karatzas, G.P. Comparison of Bootstrap Confidence Intervals for an ANN Model of a Karstic Aquifer Response. Hydrol. Process. 2011, 25, 2827–2836. [Google Scholar] [CrossRef]
- Schendel, T.; Thongwichian, R. Flood Frequency Analysis: Confidence Interval Estimation by Test Inversion Bootstrapping. Adv. Water Resour. 2015, 83, 1–9. [Google Scholar] [CrossRef]
- Subramanya, K. Engineering Hydrology; Tata McGraw-Hill Education: New York, NY, USA, 2013. [Google Scholar]
- Rahman, A.; Haddad, K.; Haque, M.; Kuczera, G.; Weinmann, P. Australian Rainfall and Runoff Project 5: Regional Flood Methods: Stage 3 Report; Commonwealth of Australia (Geoscience Australia): Canberra, Australia, 2015.
- Nagy, B.K.; Mohssen, M.; Hughey, K.F.D. Flood Frequency Analysis for a Braided River Catchment in New Zealand: Comparing Annual Maximum and Partial Duration Series with Varying Record Lengths. J. Hydrol. 2017, 547, 365–374. [Google Scholar] [CrossRef]
- Climate Change in Australia. Available online: https://www.climatechangeinaustralia.gov.au/en/ (accessed on 4 November 2021).
- Matic, V.; Bende-Michl, U.; Hope, P.; Srikanthan, S.; Oke, A.; Khan, Z.; Thomas, S.; Sharples, W.; Kociuba, G.; Peter, J.; et al. East Coast—National Hydrological Projections Assessment Report. Available online: https://awo.bom.gov.au/assets/notes/publications/East_Coast_National_Hydrological_Projections_Assessment_Report.pdf (accessed on 1 December 2022).
- Hu, L.; Nikolopoulos, E.I.; Marra, F.; Anagnostou, E.N. Sensitivity of Flood Frequency Analysis to Data Record, Statistical Model, and Parameter Estimation Methods: An Evaluation over the Contiguous United States. J. Flood Risk Manag. 2020, 13, e12580. [Google Scholar] [CrossRef] [Green Version]
- Gaume, E. Flood Frequency Analysis: The Bayesian Choice. WIREs Water 2018, 5, e1290. [Google Scholar] [CrossRef] [Green Version]
- St. George, S.; Mudelsee, M. The Weight of the Flood-of-Record in Flood Frequency Analysis. J. Flood Risk Manag. 2018, 12, e12512. [Google Scholar] [CrossRef] [Green Version]
- Rahman, A.; Haddad, K.; Kuczera, G.; Weinmann, P.E. Regional Flood Methods. In Australian Rainfall & Runoff; Ball, J., Kuczera, G., Lambert, M., Nathan, R., Bill, W., Sharma, A., Bates, B., Finlay, S., Eds.; Institution of Engineers: Barton, Australia, 2019. [Google Scholar]
- Jain, S.; Lall, U. Floods in a Changing Climate: Does the Past Represent the Future? Water Resour. Res. 2001, 37, 3193–3205. [Google Scholar] [CrossRef]
- Wang, X.; Huang, G.; Liu, J. Projected Increases in Intensity and Frequency of Rainfall Extremes through a Regional Climate Modeling Approach. J. Geophys. Res. Atmos. 2014, 119, 213–271, 286. [Google Scholar] [CrossRef]
Station No. | Station ID | Station Name | River Name | Gauge Lat | Gauge Lon | Catchment Area (km2) | Data Length (Year) | Skewness | CV * | Mean | Min | Max | Median |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 204017 | Dorrigo no.2 & no.3 | BielsdownCk | −30.3067 | 152.7133 | 82 | 40 | 1.45 | 0.82 | 202.50 | 16.11 | 749.31 | 161.10 |
2 | 206014 | Coninside | Wollomombi | −30.4783 | 152.0267 | 376 | 57 | 1.67 | 0.84 | 148.94 | 2.00 | 620.18 | 91.43 |
3 | 208006 | Forbesdale (Causeway) | Barrington | −32.0383 | 151.8700 | 630 | 39 | 2.14 | 0.81 | 460.85 | 43.98 | 2047.85 | 375.57 |
4 | 209002 | Crossing | Mammy Johnsons | −32.2500 | 151.9800 | 156 | 36 | 0.75 | 0.75 | 219.58 | 12.66 | 696.04 | 203.81 |
5 | 210011 | Tillegra | Williams | −32.3200 | 151.6867 | 194 | 80 | 1.75 | 0.87 | 322.63 | 15.82 | 1349.65 | 243.11 |
6 | 210022 | Halton | Allyn | −32.3100 | 151.5100 | 205 | 71 | 1.30 | 0.80 | 194.00 | 14.63 | 695.56 | 171.09 |
7 | 212008 | Bathurst Rd | Coxs | −33.4300 | 150.0800 | 199 | 60 | 2.71 | 1.22 | 75.22 | 0.40 | 594.01 | 36.93 |
8 | 212011 | Lithgow | Coxs | −33.5367 | 150.0933 | 404 | 50 | 1.93 | 1.07 | 103.54 | 0.22 | 594.24 | 48.31 |
9 | 212018 | Glen Davis | Capertee | −33.1200 | 150.2800 | 1010 | 40 | 1.59 | 1.22 | 88.77 | 0.58 | 447.18 | 40.75 |
10 | 212320 | Mulgoa Rd | South Ck | −33.8783 | 150.7683 | 88 | 40 | 3.57 | 1.49 | 52.09 | 0.03 | 448.90 | 25.66 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, Z.; Rahman, A.; Karim, F. An Assessment of Uncertainties in Flood Frequency Estimation Using Bootstrapping and Monte Carlo Simulation. Hydrology 2023, 10, 18. https://doi.org/10.3390/hydrology10010018
Khan Z, Rahman A, Karim F. An Assessment of Uncertainties in Flood Frequency Estimation Using Bootstrapping and Monte Carlo Simulation. Hydrology. 2023; 10(1):18. https://doi.org/10.3390/hydrology10010018
Chicago/Turabian StyleKhan, Zaved, Ataur Rahman, and Fazlul Karim. 2023. "An Assessment of Uncertainties in Flood Frequency Estimation Using Bootstrapping and Monte Carlo Simulation" Hydrology 10, no. 1: 18. https://doi.org/10.3390/hydrology10010018
APA StyleKhan, Z., Rahman, A., & Karim, F. (2023). An Assessment of Uncertainties in Flood Frequency Estimation Using Bootstrapping and Monte Carlo Simulation. Hydrology, 10(1), 18. https://doi.org/10.3390/hydrology10010018