Recovery of Light Rare Earth Elements from Coal Ash via Tartaric Acid and Magnesium Sulfate Leaching
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Leaching Experiments
2.3. Analytical Techniques
3. Results and Discussion
3.1. Coal Ash Characterization
3.2. Effect of Salt Additives on REE Leaching Efficiency
3.3. Effect of Operational Parameters on REE Leaching Using MgSO4
3.4. Leaching Kinetics and Shrinking Core Model Analysis
3.5. Surface Morphology Before and After REE Leaching
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sager, M.; Wiche, O. Rare earth elements (REE): Origins, dispersion, and environmental implications—A comprehensive review. Environments 2024, 11, 24. [Google Scholar] [CrossRef]
- Liu, S.-L.; Fan, H.-R.; Liu, X.; Meng, J.; Butcher, A.R.; Yann, L.; Yang, K.-F.; Li, X.-C. Global rare earth elements projects: New developments and supply chains. Ore Geol. Rev. 2023, 157, 105428. [Google Scholar] [CrossRef]
- Filho, W.L.; Kotter, R.; Özuyar, P.G.; Abubakar, I.R.; Eustachio, J.H.P.P.; Matandirotya, N.R. Understanding rare earth elements as critical raw materials. Sustainability 2023, 15, 1919. [Google Scholar] [CrossRef]
- Pawar, G.; Ewing, R.C. Recent advances in the global rare-earth supply chain. MRS Bull. 2022, 47, 244–249. [Google Scholar] [CrossRef]
- Gaustad, G.; Williams, E.; Leader, A. Rare earth metals from secondary sources: Review of potential supply from waste and byproducts. Resour. Conserv. Recycl. 2021, 167, 105213. [Google Scholar] [CrossRef]
- Balaram, V. Potential future alternative resources for rare earth elements: Opportunities and challenges. Minerals 2023, 13, 425. [Google Scholar] [CrossRef]
- Costis, S.; Mueller, K.K.; Coudert, L.; Neculita, C.M.; Reynier, N.; Blais, J.-F. Recovery potential of rare earth elements from mining and industrial residues: A review and cases studies. J. Geochem. Explor. 2021, 221, 106699. [Google Scholar] [CrossRef]
- Kuźnia, M. A review of coal fly Ash utilization: Environmental, energy, and material assessment. Energies 2024, 18, 52. [Google Scholar] [CrossRef]
- Banda, M.F.; Matabane, D.L.; Munyengabe, A. A phytoremediation approach for the restoration of coal fly ash polluted sites: A review. Heliyon 2024, 10, e40741. [Google Scholar] [CrossRef]
- Franus, W.; Wiatros-Motyka, M.M.; Wdowin, M. Coal fly ash as a resource for rare earth elements. Environ. Sci. Pollut. Res. 2015, 22, 9464–9474. [Google Scholar] [CrossRef]
- Nadirov, R.; Kamunur, K.; Mussapyrova, L.; Batkal, A.; Tyumentseva, O.; Karagulanova, A. Integrated Compositional Modeling and Machine Learning Analysis of REE-Bearing Coal Ash from a Weathered Dumpsite. Minerals 2025, 15, 734. [Google Scholar] [CrossRef]
- Palozzi, J.; Bailey, J.; Tran, Q.; Stanger, R. A characterization of rare earth elements in coal ash generated during the utilization of Australian coals. Int. J. Coal Prep. Util. 2023, 43, 2106–2135. [Google Scholar] [CrossRef]
- Rerani, V.P.; Mabowa, H.M.; Wagner, N.J. Characterisation of rare earth element-bearing mineral phases present in South African coal ash using Mineral Liberation analysis. Fuel 2024, 368, 131661. [Google Scholar] [CrossRef]
- Marinina, O.; Nevskaya, M.; Jonek-Kowalska, I.; Wolniak, R.; Marinin, M. Recycling of coal fly ash as an example of an efficient circular economy: A stakeholder approach. Energies 2021, 14, 3597. [Google Scholar] [CrossRef]
- Vilakazi, A.Q.; Ndlovu, S.; Chipise, L.; Shemi, A. The recycling of coal fly ash: A review on sustainable developments and economic considerations. Sustainability 2022, 14, 1958. [Google Scholar] [CrossRef]
- Rybak, A.; Rybak, A. Characteristics of some selected methods of rare earth elements recovery from coal fly ashes. Metals 2021, 11, 142. [Google Scholar] [CrossRef]
- Liu, P.; Huang, R.; Tang, Y. Comprehensive understandings of rare earth element (REE) speciation in coal fly ashes and implication for REE extractability. Environ. Sci. Technol. 2019, 53, 5369–5377. [Google Scholar] [CrossRef]
- Okeme, I.C.; Martin, P.G.; Jones, C.; Crane, R.A.; Ojonimi, T.I.; Ignatyev, K.; Megson-Smith, D.; Scott, T.B. An advanced analytical assessment of rare earth element concentration, distribution, speciation, crystallography and solid-state chemistry in fly ash. Spectrochim. Acta Part B At. Spectrosc. 2021, 177, 105950. [Google Scholar] [CrossRef]
- Anand Rao, K.; Md, S.; Rama Devi, G.; Thakurta, S.G.; Sreenivas, T. On the characterization and leaching of rare earths from a coal fly ash of Indian origin. Sep. Sci. Technol. 2020, 56, 541–557. [Google Scholar] [CrossRef]
- Miroshnichenko, D.V.; Golovko, M.B. Predicting ash basicity from its density. Coke Chem. 2010, 53, 397–399. [Google Scholar] [CrossRef]
- Tang, M.; Zhou, C.; Pan, J.; Zhang, N.; Liu, C.; Cao, S.; Hu, T.; Ji, W. Study on extraction of rare earth elements from coal fly ash through alkali fusion–Acid leaching. Miner. Eng. 2019, 136, 36–42. [Google Scholar] [CrossRef]
- Ketegenov, T.; Kamunur, K.; Mussapyrova, L.; Batkal, A.; Nadirov, R. Enhancing Rare Earth Element Recovery from Coal Ash Using High-Voltage Electrical Pulses and Citric Acid Leaching. Minerals 2024, 14, 693. [Google Scholar] [CrossRef]
- Mokoena, K.; Mokhahlane, L.; Clarke, S. Effects of acid concentration on the recovery of rare earth elements from coal fly ash. Int. J. Coal Geol. 2022, 259, 104037. [Google Scholar] [CrossRef]
- van Wyk, P.; Bradshaw, S.; Dorfling, C.; Ghosh, T.; Akdogan, G. Characterisation and hydrochloric acid leaching of rare earth elements in discard coal and coal fly ash. Minerals 2024, 14, 1070. [Google Scholar] [CrossRef]
- Trinh, H.B.; Kim, S.; Lee, J. Recovery of rare earth elements from coal fly ash using enrichment by sodium hydroxide leaching and dissolution by hydrochloric acid. Geosystem Eng. 2022, 25, 53–62. [Google Scholar] [CrossRef]
- Cao, S.; Zhou, C.; Pan, J.-H.; Liu, C.; Tang, M.; Ji, W.; Hu, T.; Zhang, N. Study on influence factors of leaching of rare earth elements from coal fly ash. Energy Fuels 2018, 32, 8000–8005. [Google Scholar] [CrossRef]
- Peiravi, M.; Ackah, L.; Guru, R.; Mohanty, M.; Liu, J.; Xu, B.; Zhu, X.; Chen, L. Chemical extraction of rare earth elements from coal ash. Miner. Metall. Process. 2017, 34, 170–177. [Google Scholar] [CrossRef]
- Kuppusamy, V.K.; Holuszko, M. Sulfuric acid baking and water leaching of rare earth elements from coal tailings. Fuel 2022, 319, 123738. [Google Scholar] [CrossRef]
- Honaker, R.Q.; Zhang, W.; Werner, J. Acid leaching of rare earth elements from coal and coal ash: Implications for using fluidized bed combustion to assist in the recovery of critical materials. Energy Fuels 2019, 33, 5971–5980. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, H.; Pan, J.; Yang, F.; Long, X.; Yang, Y.; Zhou, C. Rare earth elements recovery and mechanisms from coal fly ash by column leaching using citric acid. Sep. Purif. Technol. 2025, 353, 128471. [Google Scholar] [CrossRef]
- Prihutami, P.; Prasetya, A.; Sediawan, W.B.; Petrus, H.T.B.M.; Anggara, F. Study on rare earth elements leaching from magnetic coal fly ash by citric acid. J. Sustain. Metall. 2021, 7, 1241–1253. [Google Scholar] [CrossRef]
- Banerjee, R.; Chakladar, S.; Chattopadhyay, S.K.; Chakravarty, S. Leaching of rare earth elements from coal ash using low molecular weight organocarboxylic acids: Complexation overview and kinetic evaluation. Int. J. Chem. Kinet. 2023, 55, 606–618. [Google Scholar] [CrossRef]
- Sakr, A.K.; Praneeth, S.; Dardona, M.; Porter, D.K.; Tummala, C.M.; Roy, P.K.; Dittrich, T.M. Potential for eco-friendly recovery of rare earth elements from fly ash using carboxylic acids: A comparative study with mineral acids and environmental risk assessment for sustainable fly ash reuse. Chem. Eng. J. 2025, 503, 158355. [Google Scholar] [CrossRef]
- Dodbiba, G.; Fujita, T. Trends in extraction of rare earth elements from coal ashes: A review. Recycling 2023, 8, 17. [Google Scholar] [CrossRef]
- Banerjee, R.; Mohanty, A.; Chakravarty, S.; Chakladar, S.; Biswas, P. A single-step process to leach out rare earth elements from coal ash using organic carboxylic acids. Hydrometallurgy 2021, 201, 105575. [Google Scholar] [CrossRef]
- Hu, M.; Shao, Y.; Chen, G. Kinetics of Ion Exchange in Magnesium Sulfate Leaching of Rare Earths and Aluminum from Ionic Rare Earth Ores. Minerals 2025, 15, 290. [Google Scholar] [CrossRef]
- Moldoveanu, G.A.; Papangelakis, V.G. Recovery of rare earth elements adsorbed on clay minerals: I. Desorption mechanism. Hydrometallurgy 2012, 117, 71–78. [Google Scholar] [CrossRef]
- Chen, K.; Pei, J.; Yin, S.; Li, S.; Peng, J.; Zhang, L. Leaching behaviour of rare earth elements from low-grade weathered crust elution-deposited rare earth ore using magnesium sulfate. Clay Miner. 2018, 53, 505–514. [Google Scholar] [CrossRef]
- Fuguo, L.; Guohua, G.; Li, H.; Yanfei, X.; Run, Y.; Kaizhong, L. Compound leaching of rare earth from the ion-adsorption type rare earth ore with magnesium sulfate and ascorbic acid. Hydrometallurgy 2018, 179, 25–35. [Google Scholar] [CrossRef]
- Yun, S.S.; Bear, J.L. The kinetics of lanthanide tartrate complex formation. J. Inorg. Nucl. Chem. 1976, 38, 1041–1044. [Google Scholar] [CrossRef]
- Zabiszak, M.; Nowak, M.; Hnatejko, Z.; Grajewski, J.; Ogawa, K.; Kaczmarek, M.T.; Jastrzab, R. Thermodynamic and spectroscopic studies of the complexes formed in tartaric acid and lanthanide (III) ions binary systems. Molecules 2020, 25, 1121. [Google Scholar] [CrossRef]
- Shalchian, H.; Hajizadeh Navakh, M.; Birloaga, I.; Babakhani, A.; Vegliò, F. A Comparison Study on the Recovery of REEs from Red Mud by Sulfation Roasting–Water Leaching and Citric Acid Leaching. Minerals 2024, 14, 1044. [Google Scholar] [CrossRef]
- Faraji, F.; Alizadeh, A.; Rashchi, F.; Mostoufi, N. Kinetics of leaching: A review. Rev. Chem. Eng. 2022, 38, 113–148. [Google Scholar] [CrossRef]
- Veglio, F.; Trifoni, M.; Pagnanelli, F.; Toro, L. Shrinking core model with variable activation energy: A kinetic model of manganiferous ore leaching with sulphuric acid and lactose. Hydrometallurgy 2001, 60, 167–179. [Google Scholar] [CrossRef]
- Gbor, P.K.; Jia, C.Q. Critical evaluation of coupling particle size distribution with the shrinking core model. Chem. Eng. Sci. 2004, 59, 1979–1987. [Google Scholar] [CrossRef]
- Nadirov, R.; Karamyrzayev, G. Selective ozone-assisted acid leaching of copper from copper smelter slag by using isopropanol as a solvent. Minerals 2022, 12, 1047. [Google Scholar] [CrossRef]
- Nadirov, R.; Karamyrzayev, G. Enhancing Synthetic Zinc Ferrite Hydrochloric Acid Leaching by Using Isopropanol as a Solvent. Min. Metall. Explor. 2022, 39, 1743–1751. [Google Scholar] [CrossRef]
- Yang, X.; Honaker, R.Q. Leaching kinetics of rare earth elements from fire clay seam coal. Minerals 2020, 10, 491. [Google Scholar] [CrossRef]
- Banerjee, R.; Chakladar, S.; Mohanty, A.; Chattopadhyay, S.K.; Chakravarty, S. Leaching characteristics of rare earth elements from coal ash using organosulphonic acids. Miner. Eng. 2022, 185, 107664. [Google Scholar] [CrossRef]
- Guo, Z.; Wang, Y.; Zhang, R.; Fan, R.; Guo, Z.; Zhang, B.; Duan, C.; Zhou, E. Ultrasound-assisted leaching of rare-earth elements from coal gangue by betaine hydrochloride. Int. J. Coal Prep. Util. 2025, 1–23. [Google Scholar] [CrossRef]
- Manurung, H.; Bendiayasa, I.; Anggara, F.; Wanta, K.; Astuti, W.; Petrus, H. Leaching characteristics of cerium and yttrium from non-magnetic coal fly ash after silicate digestion using acetic acid. J. S. Afr. Inst. Min. Metall. 2024, 124, 595–604. [Google Scholar] [CrossRef]
Component | Wt % | Component | ppm |
---|---|---|---|
SiO2 | 64.41 | La | 20.29 |
Al2O3 | 27.79 | Ce | 47.51 |
Fe2O3 | 7.71 | Nd | 17.64 |
P2O5 | 0.58 | ||
CaO | 4.25 | ||
MgO | 1.13 | ||
K2O + Na2O | 1.52 |
Equation | Temperature, °C | |||
---|---|---|---|---|
40 | 60 | 80 | 90 | |
5 | R2 = 0.6924 | R2 = 0.7314 | R2 = 0.7116 | R2 = 0.6732 |
6 | R2 = 0.9873 | R2 = 0.9691 | R2 = 0.9724 | R2 = 0.9683 |
7 | R2 = 0.7648 | R2 = 0.6152 | R2 = 0.7367 | R2 = 0.8354 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karagulanova, A.; Cetiner, B.N.; Kamunur, K.; Mussapyrova, L.; Batkal, A.; Myltykbayeva, Z.; Nadirov, R. Recovery of Light Rare Earth Elements from Coal Ash via Tartaric Acid and Magnesium Sulfate Leaching. ChemEngineering 2025, 9, 101. https://doi.org/10.3390/chemengineering9050101
Karagulanova A, Cetiner BN, Kamunur K, Mussapyrova L, Batkal A, Myltykbayeva Z, Nadirov R. Recovery of Light Rare Earth Elements from Coal Ash via Tartaric Acid and Magnesium Sulfate Leaching. ChemEngineering. 2025; 9(5):101. https://doi.org/10.3390/chemengineering9050101
Chicago/Turabian StyleKaragulanova, Ardak, Burcu Nilgun Cetiner, Kaster Kamunur, Lyazzat Mussapyrova, Aisulu Batkal, Zhannur Myltykbayeva, and Rashid Nadirov. 2025. "Recovery of Light Rare Earth Elements from Coal Ash via Tartaric Acid and Magnesium Sulfate Leaching" ChemEngineering 9, no. 5: 101. https://doi.org/10.3390/chemengineering9050101
APA StyleKaragulanova, A., Cetiner, B. N., Kamunur, K., Mussapyrova, L., Batkal, A., Myltykbayeva, Z., & Nadirov, R. (2025). Recovery of Light Rare Earth Elements from Coal Ash via Tartaric Acid and Magnesium Sulfate Leaching. ChemEngineering, 9(5), 101. https://doi.org/10.3390/chemengineering9050101