Industry 5.0 and Digital Twins in the Chemical Industry: An Approach to the Golden Batch Concept
Abstract
1. Introduction
Some Preliminary Findings
2. Conceptual Framework
A Case Study to Reach a Golden Batch Using Analytics
3. Conclusions and Future Research
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Walas, F.M. Nuevos Modelos de Negocio en el Paradigma Industria 5.0. Inteligencia Artificial y Aprendizaje Automático para Optimizar Procesos Industriales. Ph.D. Thesis, Universidad Nacional de Lomas de Zamora (UNLZ), Buenos Aires, Argentina, 2023. Available online: https://repositorio.unlz.edu.ar/handle/123456789/674 (accessed on 20 February 2025).
- Walas Mateo, F.; De Giusti, A. Industry 5.0. Digital Twins in the Process Industry. A Bibliometric Analysis. In Cloud Computing, Big Data and Emerging Topics. JCC-BD&ET 2024; Communications in Computer and Information Science; Naiouf, M., De Giusti, L., Chichizola, F., Libutti, L., Eds.; Springer: Cham, Switzerland, 2025; Volume 2189. [Google Scholar] [CrossRef]
- Shyam Varan, N.; Dunkin, A.; Chowdhary, N.; Patel, N. Industrial Digital Transformation: Accelerate digital transformation with business optimization, AI, and Industry 4.0; Packt Publishing Ltd.: London, UK, 2020; Available online: www.packt.com (accessed on 25 February 2025).
- American National Standards Institute (ANSI), ISA-95.00.01-2010, ISA-95.00.02-2010, ISA-95.00.03-2013, ISA-95.00.04-2012, ISA-95.00.05-2013. Available online: https://www.isa.org/standards-and-publications/isa-standards/isa-95-standard (accessed on 16 March 2025).
- RAMI4.0. Reference Architecture Model Industrie 4.0. Available online: https://www.beuth.de/en/technical-rule/din-spec-91345/250940128 (accessed on 1 April 2025).
- Park, Y.; Woo, J.; Choi, S. A Cloud-based Digital Twin Manufacturing System based on an Interoperable Data Schema for Smart Manufacturing. Int. J. Comput. Integr. Manuf. 2020, 33, 1259–1276. [Google Scholar] [CrossRef]
- Di Nardo, M.; Yu, H. Special Issue. Industry 5.0: The prelude to the sixth industrial revolution. Applied Systems. Innovation 2021, 4, 45. [Google Scholar]
- Doyle-Kent, M.; Kopacek, P. Industry 5.0: Is the Manufacturing Industry on the Cusp of a New Revolution? In Proceedings of the International Symposium for Production Research 2019; Durakbasa, N., Gençyılmaz, M., Eds.; Lecture Notes in Mechanical Engineering; Springer: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- McMillan, G.K.; Stuart, C.; Fazeem, R.; Sample, Z.; Schieffer, T. New Directions in Bioprocess Modeling and Control. In Maximizing Process Analytical Technology Benefits; ISA: Research Triangle Park, NC, USA, 2021; ISBN-13: 978-1-64331-104-3. [Google Scholar]
- Yuchen, J.; Shen, Y.; Kuan, L.; Hao, L.; Okyay, K. Industrial applications of digital twins. Phil. Trans. R. Soc. A 2021, 379, 20200360. [Google Scholar] [CrossRef]
- Aloqaily, M.; Ridhawi, I.A.; Kanhere, S. Reinforcing Industry 4.0 With Digital Twins and Blockchain-Assisted Federated. IEEE J. Sel. Areas Commun. 2023, 41, 3504–3516. [Google Scholar] [CrossRef]
- Kherbache, M.; Ahmed, A.; Maimour, M.; Rondeau, E. Constructing a Network Digital Twin through formal modeling: Tackling the virtual–real mapping challenge in IIoT networks. Internet Things 2023, 24, 101000. [Google Scholar] [CrossRef]
- Musungate, B.N.; Ercan, T. A simple Node-RED implementation for digital twins in the area of manufacturing. Trends Comput. Sci. Inf. Technol. 2023, 8, 50–54. [Google Scholar] [CrossRef]
- Cimino, C.; Negri, E.; Fumagalli, L. Review of digital twin applications in manufacturing. Comput. Ind. 2019, 113, 103130. [Google Scholar] [CrossRef]
- Asif, M.; Abrar, M.; Salam, A.; Amin, F.; Ullah, F.; Shah, S.; AlSalman, H. Intelligent two-phase dual authentication framework for Internet of Medical Things. Sci. Rep. 2025, 15, 1760. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Lei, B.; Mao, C. Digital twin in smart manufacturing. J. Ind. Inf. Integr. 2022, 26, 100289. [Google Scholar] [CrossRef]
- Grieves, M.W. Digital Twins: Past, Present, and Future. In The Digital Twin; Crespi, N., Drobot, A.T., Minerva, R., Eds.; Springer: Cham, Switzerland, 2023. [Google Scholar] [CrossRef]
- Stark, R.; Kind, S.; Neumeyer, S. Innovations in digital modelling for next generation manufacturing system design. CIRP Ann. 2017, 66, 169–172. [Google Scholar] [CrossRef]
- Stravoulakis, G.E.; Charalambidi, B.G.; Koutsianitism, P. Review of Computational Mechanics, Optimization, and machine Learning. Tools for digital twins applied to infrastructure. Appl. Sci. 2022, 12, 11997. [Google Scholar] [CrossRef]
- McMillan, G.K.; Stuart, C.; Cook, D.; Sample, Z. Advanced pH Measurement and Control. Digital Twin Synergy and Advances in Technology, 4th ed.; International Society of Automation (ISA): Research Triangle Park, NC, USA, 2024. [Google Scholar]
- Panoramix, M. OPC UA in the Reference Architecture Model RAMI 4.0. Available online: https://opcconnect.opcfoundation.org/2015/06/opc-ua-in-the-reference-architecture-model-rami-4-0/ (accessed on 1 February 2025).
- International Electrotechnical Commission. Available online: https://www.iec.ch/ (accessed on 12 January 2025).
- Salam, A.; Ullah, F.; Amin, F.; Abrar, M. Deep Learning Techniques for Web-Based Attack Detection in Industry 5.0: A Novel Approach. Technologies 2023, 11, 107. [Google Scholar] [CrossRef]
- Sharp, M.; Ak, R.; Hedberg, T., Jr. A survey of the advancing use and development of machine learning in smart manufacturing. J. Manuf. Syst. 2018, 48, 170–179. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Plumed, F.; Contreras-Ochando, L.; Ferri, C.; Hernandez Orallo, J.; Kull, M.; Lachiche, N.J.A.H.; Ramírez-Quintana, M.J.; Flach, P.A. CRISP-DM Twenty Years Later: From Data Mining Processes to Data Science Trajectories. IEEE Trans. Knowl. Data Eng. 2019, 33, 3048–3061, Advance online publication. [Google Scholar] [CrossRef]
- IBM. (n.d.). Autoencoder. Available online: https://www.ibm.com/topics/autoencoder (accessed on 2 February 2025).
- Salam, A.; Abrar, M.; Ullah, F.; Khan, I.A.; Amin, F.; Choi, G.S. Efficient Data Collaboration Using Multi-Party Privacy Preserving Machine Learning Framework. IEEE Access 2023, 11, 138151–138164. [Google Scholar] [CrossRef]
- UN General Assembly. Transforming Our World: The 2030 Agenda for Sustainable Development; United Nations (UN): New York, NY, USA, 2015. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Redchuk, A.; Walas Mateo, F. Industry 5.0 and Digital Twins in the Chemical Industry: An Approach to the Golden Batch Concept. ChemEngineering 2025, 9, 78. https://doi.org/10.3390/chemengineering9040078
Redchuk A, Walas Mateo F. Industry 5.0 and Digital Twins in the Chemical Industry: An Approach to the Golden Batch Concept. ChemEngineering. 2025; 9(4):78. https://doi.org/10.3390/chemengineering9040078
Chicago/Turabian StyleRedchuk, Andrés, and Federico Walas Mateo. 2025. "Industry 5.0 and Digital Twins in the Chemical Industry: An Approach to the Golden Batch Concept" ChemEngineering 9, no. 4: 78. https://doi.org/10.3390/chemengineering9040078
APA StyleRedchuk, A., & Walas Mateo, F. (2025). Industry 5.0 and Digital Twins in the Chemical Industry: An Approach to the Golden Batch Concept. ChemEngineering, 9(4), 78. https://doi.org/10.3390/chemengineering9040078