The Re-Modeling of a Polymeric Drug Delivery System Using Smart Response Surface Designs: A Sustainable Approach for the Consumption of Fewer Resources
Abstract
1. Introduction
2. Methodology
2.1. Software
2.2. The Published Results of the Original Article
2.3. The Use of Central Composite and D-Optimal Designs to Re-Optimize the Results
2.4. Introduction of an Outlier
2.5. Analysis of Results
2.6. Percentage Relative Error (% Relative Error)
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hathout, R.M.; Metwally, A.A.; El-Ahmady, S.H.; Metwally, E.S.; Ghonim, N.A.; Bayoumy, S.A.; Erfan, T.; Ashraf, R.; Fadel, M.; El-Kholy, A.I.; et al. Dual stimuli-responsive polypyrrole nanoparticles for anticancer therapy. J. Drug Deliv. Sci. Technol. 2018, 47, 176–180. [Google Scholar] [CrossRef]
- Hathout, R.M.; Metwally, A.A.; Woodman, T.J.; Hardy, J.G. Prediction of Drug Loading in the Gelatin Matrix Using Computational Methods. ACS Omega 2020, 5, 1549–1556. [Google Scholar] [CrossRef]
- Vanaja, K.; Shobha Rani, R.H. Design of Experiments: Concept and Applications of Plackett Burman Design. Clin. Res. Regul. Aff. 2007, 24, 1–23. [Google Scholar] [CrossRef]
- Gabr, S.; Nikles, S.; Pferschy Wenzig, E.M.; Ardjomand-Woelkart, K.; Hathout, R.M.; El-Ahmady, S.; Motaal, A.A.; Singab, A.; Bauer, R. Characterization and optimization of phenolics extracts from Acacia species in relevance to their anti-inflammatory activity. Biochem. Syst. Ecol. 2018, 78, 21–30. [Google Scholar] [CrossRef]
- Danhier, F.; Ansorena, E.; Silva, J.M.; Coco, R.; Le Breton, A.; Préat, V. PLGA-based nanoparticles: An overview of biomedical applications. J. Control. Release 2012, 161, 505–522. [Google Scholar] [CrossRef] [PubMed]
- Jankovic, A.; Chaudhary, G.; Goia, F. Designing the design of experiments (DOE)—An investigation on the influence of different factorial designs on the characterization of complex systems. Energy Build. 2021, 250, 111298. [Google Scholar] [CrossRef]
- Beg, S.; Swain, S.; Rahman, M.; Hasnain, M.S.; Imam, S.S. Chapter 3—Application of Design of Experiments (DoE) in Pharmaceutical Product and Process Optimization. In Pharmaceutical Quality by Design; Beg, S., Hasnain, M.S., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 43–64. [Google Scholar]
- Atkinson, A.C.; Donev, A.N.; Tobias, R.D. Optimum Experimental Designs, with SAS; Oxford University Press: Oxford, UK, 2007. [Google Scholar]
- Beg, S. Screening Experimental Designs and Their Applications in Pharmaceutical Development. In Design of Experiments for Pharmaceutical Product Development: Volume I: Basics and Fundamental Principles; Beg, S., Ed.; Springer: Singapore, 2021; pp. 15–26. [Google Scholar]
- Singh, R.; Lillard, J.W. Nanoparticle-based targeted drug delivery. Exp. Mol. Pathol. 2009, 86, 215–223. [Google Scholar] [CrossRef]
- Beg, S.; Rahman, Z. Central Composite Designs and Their Applications in Pharmaceutical Product Development. In Design of Experiments for Pharmaceutical Product Development: Volume I: Basics and Fundamental Principles; Beg, S., Ed.; Springer: Singapore, 2021; pp. 63–76. [Google Scholar]
- Mohamad Zen, N.I.; Abd Gani, S.S.; Shamsudin, R.; Fard Masoumi, H.R. The Use of D-Optimal Mixture Design in Optimizing Development of Okara Tablet Formulation as a Dietary Supplement. Sci. World J. 2015, 2015, 684319. [Google Scholar] [CrossRef]
- Nahata, T.; Saini, T.R. Formulation optimization of long-acting depot injection of aripiprazole by using D-optimal mixture design. PDA J. Pharm. Sci. Technol. 2009, 63, 113–122. [Google Scholar]
- Jana, S.; Manna, S.; Nayak, A.K.; Sen, K.K.; Basu, S.K. Carbopol gel containing chitosan-egg albumin nanoparticles for transdermal aceclofenac delivery. Colloids Surf. B Biointerfaces 2014, 114, 36–44. [Google Scholar] [CrossRef]
- Karim, S.; Akhter, M.H.; Burzangi, A.S.; Alkreathy, H.; Alharthy, B.; Kotta, S.; Md, S.; Rashid, M.A.; Afzal, O.; Altamimi, A.S.A.; et al. Phytosterol-Loaded Surface-Tailored Bioactive-Polymer Nanoparticles for Cancer Treatment: Optimization, In Vitro Cell Viability, Antioxidant Activity, and Stability Studies. Gels 2022, 8, 219. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Zhao, X.; Li, J.; Shen, Q. The comparison of different daidzein-PLGA nanoparticles in increasing its oral bioavailability. Int. J. Nanomed. 2012, 7, 559–570. [Google Scholar]
- Bhavsar, M.D.; Tiwari, S.B.; Amiji, M.M. Formulation optimization for the nanoparticles-in-microsphere hybrid oral delivery system using factorial design. J. Control. Release 2006, 110, 422–430. [Google Scholar] [CrossRef]
- Khanvilkar, K.H.; Huang, Y.; Moore, A.D. Influence of Hydroxypropyl Methylcellulose Mixture, Apparent Viscosity, and Tablet Hardness on Drug Release Using a 23 Full Factorial Design. Drug Dev. Ind. Pharm. 2002, 28, 601–608. [Google Scholar] [CrossRef] [PubMed]
- Badawi, M.A.; El-Khordagui, L.K. A quality by design approach to optimization of emulsions for electrospinning using factorial and D-optimal designs. Eur. J. Pharm. Sci. 2014, 58, 44–54. [Google Scholar] [CrossRef]
- Nematallah, K.A.; Ayoub, N.A.; Abdelsattar, E.; Meselhy, M.R.; Elmazar, M.M.; El-Khatib, A.H.; Linscheid, M.W.; Hathout, R.M.; Godugu, K.; Adel, A.; et al. Polyphenols LC-MS2 profile of Ajwa date fruit (Phoenix dactylifera L.) and their microemulsion: Potential impact on hepatic fibrosis. J. Funct. Foods 2018, 49, 401–411. [Google Scholar] [CrossRef]
- Kollipara, S.; Bende, G.; Movva, S.; Saha, R. Application of rotatable central composite design in the preparation and optimization of poly(lactic-co-glycolic acid) nanoparticles for controlled delivery of paclitaxel. Drug Dev. Ind. Pharm. 2010, 36, 1377–1387. [Google Scholar] [CrossRef]
- Hooda, A.; Nanda, A.; Jain, M.; Kumar, V.; Rathee, P. Optimization and evaluation of gastroretentive ranitidine HCl microspheres by using design expert software. Int. J. Biol. Macromol. 2012, 51, 691–700. [Google Scholar] [CrossRef]
- Box, G.E.P.; Wilson, K.B. On the Experimental Attainment of Optimum Conditions. In Breakthroughs in Statistics: Methodology and Distribution; Springer: New York, NY, USA, 1992; pp. 270–310. [Google Scholar]
- Sakia, R.M. The Box-Cox Transformation Technique: A Review. J. R. Stat. Soc. Ser. D 1992, 41, 169–178. [Google Scholar] [CrossRef]
- Box, G.E.P.; Cox, D.R. An Analysis of Transformations. J. R. Stat. Soc. Ser. B Methodol. 1964, 26, 211–243. [Google Scholar] [CrossRef]
- Yeo, I.; Johnson, R.A. A new family of power transformations to improve normality or symmetry. Biometrika 2000, 87, 954–959. [Google Scholar] [CrossRef]
- Bhattacharya, S. Central Composite Design for Response Surface Methodology and Its Application in Pharmacy. In Response Surface Methodology in Engineering Science; Kayaroganam, P., Ed.; IntechOpen: Rijeka, Croatia, 2021. [Google Scholar]
- Elsayed, T.; Hathout, R.M. Evaluating the prediction power and accuracy of two smart response surface experimental designs after revisiting repaglinide floating tablets. Future J. Pharm. Sci. 2024, 10, 34. [Google Scholar] [CrossRef]
- Dean, A.; Voss, D.; Draguljic, D. Response Surface Methodology. In Design and Analysis of Experiments; Dean, A., Voss, D., Dragulji-ç, D., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 565–614. [Google Scholar]
- Ojha, S.K.; Singh, P.K.; Mishra, S.; Pattnaik, R.; Dixit, S.; Verma, S.K. Response surface methodology based optimization and scale-up production of amylase from a novel bacterial strain, Bacillus aryabhattai KIIT BE-1. Biotechnol. Rep. 2020, 27, e00506. [Google Scholar] [CrossRef] [PubMed]
- Jones, B.; Allen, M.; Goos, P. A-optimal versus D-optimal design of screening experiments. J. Qual. Technol. 2021, 53, 369–382. [Google Scholar] [CrossRef]
- Namdar, A.; Borhanzadeh, T.; Salahinejad, E. A new evidence-based design-of-experiments approach for optimizing drug delivery systems with exemplification by emulsion-derived Vancomycin-loaded PLGA capsules. Sci. Rep. 2024, 14, 31164. [Google Scholar] [CrossRef]
CPP | Range of Values | ||
---|---|---|---|
Low (−1) | Medium (0) | High (+1) | |
Polymer concentration (X1, % w/v) | 1 | 5 | 10 |
Nanoparticle amount (X2, mg) | 10 | 30 | 60 |
Stirring speed (X3, rpm) | 5000 | 7000 | 9000 |
The Central Composite Generated Design | ||||
---|---|---|---|---|
Experiment Number | Polymer Concentration (X1, % w/v) | Nanoparticle Amount (X2, mg) | Stirring Speed (X3, rpm) | PS (µm) |
1 | 0 | 0 | 0 | 17 |
2 | 1 | −1 | −1 | 30.569 |
3 | 0 | −1.68179 | 0 | 19.89896 |
4 | 0 | 1.681793 | 0 | 17.71935 |
5 | 1 | 1 | 1 | 12.839 |
6 | 0 | 0 | 1.681793 | 8.339654 |
7 | 0 | 0 | 0 | 17 |
8 | 1 | 1 | −1 | 26.485 |
9 | 0 | 0 | 0 | 17 |
10 | −1 | 1 | −1 | 12.353 |
11 | 0 | 0 | 0 | 17 |
12 | −1 | 1 | 1 | 11.235 |
13 | 1 | −1 | 1 | 14.827 |
14 | −1.68179 | 0 | 0 | 5.299243 |
15 | 0 | 0 | 0 | 17 |
16 | −1 | −1 | −1 | 14.681 |
17 | 1.681793 | 0 | 0 | 21.45791 |
18 | −1 | −1 | 1 | 8.019 |
19 | 0 | 0 | 0 | 17 |
20 | 0 | 0 | −1.68179 | 23.96687 |
The D-Optimal Generated Design | ||||
---|---|---|---|---|
Experiment Number | Polymer Concentration (X1, % w/v) | Nanoparticle Amount (X2, mg) | Stirring Speed (X3, rpm) | PS (µm) |
1 | 0 | 0 | 0 | 17 |
2 | −1 | 1 | −1 | 12.353 |
3 | 0 | 0 | 0 | 17 |
4 | 0.5 | −0.5 | 0 | 15.4935 |
5 | 0 | 0 | 0 | 17 |
6 | 0 | 0 | 1 | 8.686 |
7 | 1 | 0 | −1 | 26.045 |
8 | −1 | 1 | 1 | 11.235 |
9 | −1 | −1 | 1 | 8.019 |
10 | 0.333333 | 1 | −1 | 21.27477778 |
11 | 0 | −1 | −1 | 22.063 |
12 | 0 | 0 | 0 | 17 |
13 | 1 | 1 | 1 | 12.839 |
14 | 1 | −1 | 1 | 14.827 |
15 | −1 | −0.33333 | −0.33333 | 8.722555556 |
16 | 0 | 1 | 0 | 13.623 |
17 | 0 | 0 | 0 | 17 |
Design Type | Central Composite | D-Optimal |
---|---|---|
Significance | Significant | Significant |
p-value < 0.05 | p-value < 0.05 | |
Model Type | Quadratic | Quadratic |
R-squared | 0.9964 | 0.8792 |
Adjusted R-squared | 0.9938 | 0.8435 |
Predicted R-squared | 0.9790 | 0.7858 |
Adequate precision | 78.748 | 19.072 |
Equation Generated | PS = +16.79937 +4.80400 × X1 −0.648000 × X2 −4.646000 × X3 −0.87000 × X1 × X2 −2.70100 × X1 × X3 +0.95500 × X2 × X3 −1.19056 × X12 +0.72944 × X22 | PS = +15.51814 +4.72381 × X1 −4.26030 × X3 −2.54981 × X1 × X3 |
Design | Relative Error (%) |
---|---|
Central Composite Design | 11.77 |
D-optimal Design | 0.68 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aly, M.M.; Ibrahim, S.S.; Hathout, R.M. The Re-Modeling of a Polymeric Drug Delivery System Using Smart Response Surface Designs: A Sustainable Approach for the Consumption of Fewer Resources. ChemEngineering 2025, 9, 60. https://doi.org/10.3390/chemengineering9030060
Aly MM, Ibrahim SS, Hathout RM. The Re-Modeling of a Polymeric Drug Delivery System Using Smart Response Surface Designs: A Sustainable Approach for the Consumption of Fewer Resources. ChemEngineering. 2025; 9(3):60. https://doi.org/10.3390/chemengineering9030060
Chicago/Turabian StyleAly, Magdy M., Shaimaa S. Ibrahim, and Rania M. Hathout. 2025. "The Re-Modeling of a Polymeric Drug Delivery System Using Smart Response Surface Designs: A Sustainable Approach for the Consumption of Fewer Resources" ChemEngineering 9, no. 3: 60. https://doi.org/10.3390/chemengineering9030060
APA StyleAly, M. M., Ibrahim, S. S., & Hathout, R. M. (2025). The Re-Modeling of a Polymeric Drug Delivery System Using Smart Response Surface Designs: A Sustainable Approach for the Consumption of Fewer Resources. ChemEngineering, 9(3), 60. https://doi.org/10.3390/chemengineering9030060