Immobilization of Sustine® 131 onto Spent Coffee Grounds for Efficient Biosynthesis of Ethyl Hydrocinnamate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Support Preparation
2.3. Extraction Yield and Total Polyphenol Content in the Obtained Extracts
2.4. Elemental Compositions of Spent Coffee Grounds
2.5. Lipase Immobilization
2.6. Protein Content Determination
2.7. Hydrolytic Activity Determination
2.8. Synthetic Activity Determination
2.9. Synthesis of Ethyl Hydrocinnamate, Solvent Selection, and Reusability of Preparation
2.10. Box–Behnken Design for the Optimization of Reaction Conditions
2.11. Statistical Analysis
3. Results and Discussion
3.1. Preparing the Carrier for Lipase Immobilization
3.2. Monitoring the Activity of the Obtained Preparation over Time
3.3. Optimizing the Enzymatic Synthesis of Ethyl Hydrocinnamate
4. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zieniuk, B.; Fabiszewska, A.; Wołoszynowska, M.; Białecka-Florjańczyk, E. Synthesis of Flavor Compound Ethyl Hydrocinnamate by Yarrowia lipolytica Lipases. Biocatal. Biotransform. 2021, 39, 455–464. [Google Scholar] [CrossRef]
- Implementing Regulation—872/2012—EN—EUR-Lex. Available online: http://data.europa.eu/eli/reg_impl/2012/872/oj (accessed on 22 August 2024).
- Nikolaou, A.; Santarmaki, V.; Mitropoulou, G.; Sgouros, G.; Kourkoutas, Y. Novel Low-Alcohol Sangria-Type Wine Products with Immobilized Kefir Cultures and Essential Oils. Microbiol. Res. 2023, 14, 543–558. [Google Scholar] [CrossRef]
- Qian, X.; Ling, M.; Sun, Y.; Han, F.; Shi, Y.; Duan, C.; Lan, Y. Decoding the Aroma Characteristics of Icewine by Partial Least-Squares Regression, Aroma Reconstitution, and Omission Studies. Food Chem. 2024, 440, 138226. [Google Scholar] [CrossRef]
- Yang, Z.; Li, W.; Yuan, Y.; Liang, Z.; Yan, Y.; Chen, Y.; Ni, L.; Lv, X. Metagenomic Insights into the Regulatory Effects of Microbial Community on the Formation of Biogenic Amines and Volatile Flavor Components during the Brewing of Hongqu Rice Wine. Foods 2023, 12, 3075. [Google Scholar] [CrossRef]
- Korneev, S. Hydrocinnamic Acids: Application and Strategy of Synthesis. Synthesis 2013, 45, 1000–1015. [Google Scholar] [CrossRef]
- Buller, R.; Lutz, S.; Kazlauskas, R.J.; Snajdrova, R.; Moore, J.C.; Bornscheuer, U.T. From Nature to Industry: Harnessing Enzymes for Biocatalysis. Science 2023, 382, eadh8615. [Google Scholar] [CrossRef]
- Bandara, R.R.; Louis-Gavet, C.; Bryś, J.; Mańko-Jurkowska, D.; Górska, A.; Brzezińska, R.; Siol, M.; Makouie, S.; Palani, B.K.; Obranović, M.; et al. Enzymatic Interesterification of Coconut and Hemp Oil Mixtures to Obtain Modified Structured Lipids. Foods 2024, 13, 2722. [Google Scholar] [CrossRef]
- Tsai, M.-F.; Huang, S.-M.; Huang, H.-Y.; Tsai, S.-W.; Kuo, C.-H.; Shieh, C.-J. Ultrasound Plus Vacuum-System-Assisted Biocatalytic Synthesis of Octyl Cinnamate and Response Surface Methodology Optimization. Molecules 2022, 27, 7148. [Google Scholar] [CrossRef]
- De Regil, R.; Sandoval, G. Biocatalysis for Biobased Chemicals. Biomolecules 2013, 3, 812–847. [Google Scholar] [CrossRef]
- Priya, K.; Venugopal, T.; Chadha, A. Pseudomonas cepacia Lipase—Mediated Transesterification Reactions of Hydrocinnamates. Indian J. Biochem. Biophys. 2002, 39, 259–263. [Google Scholar]
- Priya, K.; Chadha, A. Synthesis of Hydrocinnamic Esters by Pseudomonas cepacia Lipase. Enzyme Microb. Technol. 2003, 32, 485–490. [Google Scholar] [CrossRef]
- Salgado, C.A.; dos Santos, C.I.A.; Vanetti, M.C.D. Microbial Lipases: Propitious Biocatalysts for the Food Industry. Food Biosci. 2022, 45, 101509. [Google Scholar] [CrossRef]
- Remonatto, D.; Miotti, R.H., Jr.; Monti, R.; Bassan, J.C.; de Paula, A.V. Applications of Immobilized Lipases in Enzymatic Reactors: A Review. Process Biochem. 2022, 114, 1–20. [Google Scholar] [CrossRef]
- Hernández-Varela, J.D.; Medina, D.I. Revalorization of Coffee Residues: Advances in the Development of Eco-Friendly Biobased Potential Food Packaging. Polymers 2023, 15, 2823. [Google Scholar] [CrossRef]
- Dattatraya Saratale, G.; Bhosale, R.; Shobana, S.; Banu, J.R.; Pugazhendhi, A.; Mahmoud, E.; Sirohi, R.; Kant Bhatia, S.; Atabani, A.E.; Mulone, V.; et al. A Review on Valorization of Spent Coffee Grounds (SCG) towards Biopolymers and Biocatalysts Production. Bioresour. Technol. 2020, 314, 123800. [Google Scholar] [CrossRef]
- Brekalo, M.; Rajs, B.B.; Aladić, K.; Jakobek, L.; Šereš, Z.; Krstović, S.; Jokić, S.; Budžaki, S.; Strelec, I. Multistep Extraction Transformation of Spent Coffee Grounds to the Cellulose-Based Enzyme Immobilization Carrier. Sustainability 2023, 15, 13142. [Google Scholar] [CrossRef]
- Budžaki, S.; Velić, N.; Ostojčić, M.; Stjepanović, M.; Rajs, B.B.; Šereš, Z.; Maravić, N.; Stanojev, J.; Hessel, V.; Strelec, I. Waste Management in the Agri-Food Industry: The Conversion of Eggshells, Spent Coffee Grounds, and Brown Onion Skins into Carriers for Lipase Immobilization. Foods 2022, 11, 409. [Google Scholar] [CrossRef]
- Girelli, A.M.; Chiappini, V.; Amadoro, P. Immobilization of Lipase on Spent Coffee Grounds by Physical and Covalent Methods: A Comparison Study. Biochem. Eng. J. 2023, 192, 108827. [Google Scholar] [CrossRef]
- Jasińska, K.; Zieniuk, B.; Piasek, A.M.; Wysocki, Ł.; Sobiepanek, A.; Fabiszewska, A. Obtaining a Biodegradable Biocatalyst—Study on Lipase Immobilization on Spent Coffee Grounds as Potential Carriers. Biocatal. Agric. Biotechnol. 2024, 59, 103255. [Google Scholar] [CrossRef]
- Rybak, K.; Wiktor, A.; Witrowa-Rajchert, D.; Parniakov, O.; Nowacka, M. The Quality of Red Bell Pepper Subjected to Freeze-Drying Preceded by Traditional and Novel Pretreatment. Foods 2021, 10, 226. [Google Scholar] [CrossRef]
- K. de S. Lira, R.; T. Zardini, R.; C. C. de Carvalho, M.; Wojcieszak, R.; G. F. Leite, S.; Itabaiana, I., Jr. Agroindustrial Wastes as a Support for the Immobilization of Lipase from Thermomyces lanuginosus: Synthesis of Hexyl Laurate. Biomolecules 2021, 11, 445. [Google Scholar] [CrossRef]
- Jasińska, K.; Zieniuk, B.; Jankiewicz, U.; Fabiszewska, A. Bio-Based Materials versus Synthetic Polymers as a Support in Lipase Immobilization: Impact on Versatile Enzyme Activity. Catalysts 2023, 13, 395. [Google Scholar] [CrossRef]
- Zheng, J.; Fu, X.; Ying, X.; Zhang, Y.; Wang, Z. A sensitive colorimetric high-throughput screening method for lipase synthetic activity assay. Anal. Biochem. 2014, 452, 13–15. [Google Scholar] [CrossRef]
- Zuorro, A.; Lavecchia, R. Spent Coffee Grounds as a Valuable Source of Phenolic Compounds and Bioenergy. J. Clean. Prod. 2012, 34, 49–56. [Google Scholar] [CrossRef]
- Solomakou, N.; Loukri, A.; Tsafrakidou, P.; Michaelidou, A.-M.; Mourtzinos, I.; Goula, A.M. Recovery of Phenolic Compounds from Spent Coffee Grounds through Optimized Extraction Processes. Sustain. Chem. Pharm. 2022, 25, 100592. [Google Scholar] [CrossRef]
- Ramón-Gonçalves, M.; Gómez-Mejía, E.; Rosales-Conrado, N.; León-González, M.E.; Madrid, Y. Extraction, Identification and Quantification of Polyphenols from Spent Coffee Grounds by Chromatographic Methods and Chemometric Analyses. Waste Manag. 2019, 96, 15–24. [Google Scholar] [CrossRef]
- Ismail, A.R.; Baek, K.-H. Lipase Immobilization with Support Materials, Preparation Techniques, and Applications: Present and Future Aspects. Int. J. Biol. Macromol. 2020, 163, 1624–1639. [Google Scholar] [CrossRef]
- Kowalczykiewicz, D.; Szymańska, K.; Gillner, D.; Jarzębski, A.B. Rotating Bed Reactor Packed with Heterofunctional Structured Silica-Supported Lipase. Developing an Effective System for the Organic Solvent and Aqueous Phase Reactions. Microporous Mesoporous Mater. 2021, 312, 110789. [Google Scholar] [CrossRef]
- Qian, J.; Huang, A.; Zhu, H.; Ding, J.; Zhang, W.; Chen, Y. Immobilization of Lipase on Silica Nanoparticles by Adsorption Followed by Glutaraldehyde Cross-Linking. Bioprocess Biosyst. Eng. 2023, 46, 25–38. [Google Scholar] [CrossRef]
- Ballesteros, L.F.; Teixeira, J.A.; Mussatto, S.I. Chemical, Functional, and Structural Properties of Spent Coffee Grounds and Coffee Silverskin. Food Bioprocess Technol. 2014, 7, 3493–3503. [Google Scholar] [CrossRef]
- Yang, J.; Zhao, Z.; Hu, Y.; Abbey, L.; Cesarino, I.; Goonetilleke, A.; He, Q. Exploring the Properties and Potential Uses of Biocarbon from Spent Coffee Grounds: A Comparative Look at Dry and Wet Processing Methods. Processes 2023, 11, 2099. [Google Scholar] [CrossRef]
- Ranjbakhsh, E.; Bordbar, A.K.; Abbasi, M.; Khosropour, A.R.; Shams, E. Enhancement of Stability and Catalytic Activity of Immobilized Lipase on Silica-Coated Modified Magnetite Nanoparticles. Chem. Eng. J. 2012, 179, 272–276. [Google Scholar] [CrossRef]
- Pourkhanali, K.; Khayati, G.; Mizani, F.; Raouf, F. Characterization of Free and Immobilized Lipase from Penicillium sp. onto Three Modified Bentonites: A Comparative Study. J. Biotechnol. 2022, 344, 57–69. [Google Scholar] [CrossRef]
- Drago, G.A.; Gibson, T.D. Enzyme Stability and Stabilisation: Applications and Case Studies. In Focus on Biotechnology; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2006; pp. 361–376. ISBN 9780792369271. [Google Scholar]
- Silva, C.; Martins, M.; Jing, S.; Fu, J.; Cavaco-Paulo, A. Practical Insights on Enzyme Stabilization. Crit. Rev. Biotechnol. 2018, 38, 335–350. [Google Scholar] [CrossRef]
- Costa-Silva, T.A.; Carvalho, A.K.F.; Souza, C.R.F.; De Castro, H.F.; Bachmann, L.; Said, S.; Oliveira, W.P. Immobilized Enzyme-Driven Value Enhancement of Lignocellulosic-Based Agricultural Byproducts: Application in Aroma Synthesis. J. Clean. Prod. 2021, 284, 124728. [Google Scholar] [CrossRef]
- Costa-Silva, T.A.; Carvalho, A.K.F.; Souza, C.R.F.; De Castro, H.F.; Bachmann, L.; Said, S.; Oliveira, W.P. Enhancement Lipase Activity via Immobilization onto Chitosan Beads Used as Seed Particles during Fluidized Bed Drying: Application in Butyl Butyrate Production. Appl. Catal. A Gen. 2021, 622, 118217. [Google Scholar] [CrossRef]
- Zieniuk, B.; Fabiszewska, A.; Białecka-Florjańczyk, E. Screening of Solvents for Favoring Hydrolytic Activity of Candida antarctica Lipase B. Bioprocess Biosyst. Eng. 2020, 43, 605–613. [Google Scholar] [CrossRef]
- Matte, C.R.; Bordinhão, C.; Poppe, J.K.; Rodrigues, R.C.; Hertz, P.F.; Ayub, M.A.Z. Synthesis of Butyl Butyrate in Batch and Continuous Enzymatic Reactors Using Thermomyces Lanuginosus Lipase Immobilized in Immobead 150. J. Mol. Catal. B Enzym. 2016, 127, 67–75. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, D.-H.; Zhang, J.-Y.; Chen, N.; Zhi, G.-Y. High-Yield Synthesis of Bioactive Ethyl Cinnamate by Enzymatic Esterification of Cinnamic Acid. Food Chem. 2016, 190, 629–633. [Google Scholar] [CrossRef]
- Da S. Pereira, A.; L. Fraga, J.; M. Diniz, M.; C. Fontes-Sant’Ana, G.; F. F. Amaral, P. High Catalytic Activity of Lipase from Yarrowia lipolytica Immobilized by Microencapsulation. Int. J. Mol. Sci. 2018, 19, 3393. [Google Scholar] [CrossRef]
- Kharrat, N.; Aissa, I.; Dgachi, Y.; Aloui, F.; Chabchoub, F.; Bouaziz, M.; Gargouri, Y. Enzymatic Synthesis of 1,3-Dihydroxyphenylacetoyl-sn-Glycerol: Optimization by Response Surface Methodology and Evaluation of Its Antioxidant and Antibacterial Activities. Bioorg. Chem. 2017, 75, 347–356. [Google Scholar] [CrossRef]
- Ijaz, H.; Sun, S. Enzymatic Synthesis of Novel Structured Lipids with Tiger Nut Oil: Optimized by Response Surface Methodology. Biomass Convers. Biorefinery 2024, 1–10. [Google Scholar] [CrossRef]
Exp. No. | Enzyme Concentration (%) | Temperature (°C) | Time (h) | Yield (%) | Predicted Yield (%) |
---|---|---|---|---|---|
1 | 5 | 30 | 96 | 66.81 | 63.41 |
2 | 25 | 30 | 96 | 86.85 | 84.49 |
3 | 5 | 50 | 96 | 74.51 | 78.79 |
4 | 25 | 50 | 96 | 92.02 | 93.50 |
5 | 5 | 40 | 48 | 73.84 | 73.40 |
6 | 25 | 40 | 48 | 86.18 | 86.62 |
7 | 5 | 40 | 144 | 71.29 | 70.85 |
8 | 25 | 40 | 144 | 92.99 | 93.43 |
9 | 15 | 30 | 48 | 67.93 | 71.58 |
10 | 15 | 50 | 48 | 88.50 | 84.85 |
11 | 15 | 30 | 144 | 77.13 | 79.24 |
12 | 15 | 50 | 144 | 94.61 | 92.50 |
13 | 15 | 40 | 96 | 73.84 | 74.21 |
14 | 15 | 40 | 96 | 74.66 | 74.21 |
15 | 15 | 40 | 96 | 74.12 | 74.21 |
Support | Percentage Content (%) | ||
---|---|---|---|
C | N | S | |
Spent coffee grounds | 53.28 ± 0.04 | 2.48 ± 0.01 | 0.12 ± 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zieniuk, B. Immobilization of Sustine® 131 onto Spent Coffee Grounds for Efficient Biosynthesis of Ethyl Hydrocinnamate. ChemEngineering 2024, 8, 107. https://doi.org/10.3390/chemengineering8050107
Zieniuk B. Immobilization of Sustine® 131 onto Spent Coffee Grounds for Efficient Biosynthesis of Ethyl Hydrocinnamate. ChemEngineering. 2024; 8(5):107. https://doi.org/10.3390/chemengineering8050107
Chicago/Turabian StyleZieniuk, Bartłomiej. 2024. "Immobilization of Sustine® 131 onto Spent Coffee Grounds for Efficient Biosynthesis of Ethyl Hydrocinnamate" ChemEngineering 8, no. 5: 107. https://doi.org/10.3390/chemengineering8050107
APA StyleZieniuk, B. (2024). Immobilization of Sustine® 131 onto Spent Coffee Grounds for Efficient Biosynthesis of Ethyl Hydrocinnamate. ChemEngineering, 8(5), 107. https://doi.org/10.3390/chemengineering8050107