Inkjet Printing with (Semi)conductive Conjugated Polymers: A Review
Abstract
:1. Introduction
2. Fundamentals of Inkjet Printing
2.1. Principles
2.2. Requirements for Inks
2.3. Patterning Parameters
2.4. Printing Equipment
2.5. Substrates
3. Materials for Printing
3.1. Synthetic Approaches
3.2. Polythiophenes
3.3. Polyanilines
3.4. Alkene-Based Polymers
3.5. Donor–Acceptor Polymers
3.6. Miscellaneous Polymers
4. Applications
4.1. Semiconductor Devices
4.2. Circuits
4.3. Displays and Indicating Devices
4.4. Photovoltaics
4.5. Sensors
4.6. Miscellaneous
5. Outlook and Challenges
Author Contributions
Funding
Conflicts of Interest
References
- Wang, X.; Zhang, M.; Zhang, L.; Xu, J.; Xiao, X.; Zhang, X. Inkjet-printed flexible sensors: From function materials, manufacture process, and applications perspective. Mater. Today Commun. 2022, 31, 103263. [Google Scholar] [CrossRef]
- Hussain, A.; Abbas, N.; Ali, A. Inkjet Printing: A Viable Technology for Biosensor Fabrication. Chemosensors 2022, 10, 103. [Google Scholar] [CrossRef]
- Sztymela, K.; Bienia, M.; Rossignol, F.; Mailley, S.; Ziesche, S.; Varghese, J.; Cerbelaud, M. Fabrication of modern lithium ion batteries by 3D inkjet printing: Opportunities and challenges. Heliyon 2022, 8, e12623. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Chen, J.; Tavakoli, M.M.; Gao, Y.; Zhu, Y.; Zhang, D.; Kam, M.; He, Z.; Fan, Z. Printable Fabrication of a Fully Integrated and Self-Powered Sensor System on Plastic Substrates. Adv. Mater. 2019, 31, e1804285. [Google Scholar] [CrossRef] [PubMed]
- Teichler, A.; Perelaer, J.; Schubert, U.S. Inkjet printing of organic electronics—Comparison of deposition techniques and state-of-the-art developments. J. Mater. Chem. C 2013, 1, 1910–1925. [Google Scholar] [CrossRef]
- Yin, Y.; Zeng, Y.; Chen, X.; Fan, Y. The internet of things in healthcare: An overview. J. Ind. Inf. Integr. 2016, 1, 3–13. [Google Scholar] [CrossRef]
- Chung, S.; Cho, K.; Lee, T. Recent Progress in Inkjet-Printed Thin-Film Transistors. Adv. Sci. 2019, 6, 1801445. [Google Scholar] [CrossRef] [PubMed]
- Swager, T.M. 50th Anniversary Perspective: Conducting/Semiconducting Conjugated Polymers. A Personal Perspective on the Past and the Future. Macromolecules 2017, 50, 4867–4886. [Google Scholar] [CrossRef]
- Weng, B.; Shepherd, R.L.; Crowley, K.; Killard, A.J.; Wallace, G.G. Printing conducting polymers. Analyst 2010, 135, 2779–2789. [Google Scholar] [CrossRef]
- Zub, K.; Hoeppener, S.; Schubert, U.S. Inkjet Printing and 3D Printing Strategies for Biosensing, Analytical, and Diagnostic Applications. Adv. Mater. 2022, 34, e2105015. [Google Scholar] [CrossRef]
- Du, X.; Wankhede, S.P.; Prasad, S.; Shehri, A.; Morse, J.; Lakal, N. A review of inkjet printing technology for personalized-healthcare wearable devices. J. Mater. Chem. C 2022, 10, 14091–14115. [Google Scholar] [CrossRef]
- Mattana, G.; Loi, A.; Woytasik, M.; Barbaro, M.; Noël, V.; Piro, B. Inkjet-Printing: A New Fabrication Technology for Organic Transistors. Adv. Mater. Technol. 2017, 2, 1700063. [Google Scholar] [CrossRef]
- Sumaiya, S.; Kardel, K.; El-Shahat, A. Organic Solar Cell by Inkjet Printing—An Overview. Technologies 2017, 5, 53. [Google Scholar] [CrossRef]
- Deiner, L.J.; Reitz, T.L. Inkjet and Aerosol Jet Printing of Electrochemical Devices for Energy Conversion and Storage. Adv. Eng. Mater. 2017, 19, 1600878. [Google Scholar] [CrossRef]
- Li, C.; Bu, F.; Wang, Q.; Liu, X. Recent Developments of Inkjet-Printed Flexible Energy Storage Devices. Adv. Mater. Interfaces 2022, 9, 2201051. [Google Scholar] [CrossRef]
- Rosario, T.N. Concepts and Strategies to Adapt Inkjet Printing to Industrial Application Requirements. In Handbook of Industrial Inkjet Printing; Wiley: Hoboken, NJ, USA, 2017; pp. 239–252. [Google Scholar] [CrossRef]
- Zapka, W. Pros and Cons of Inkjet Technology in Industrial Inkjet Printing. In Handbook of Industrial Inkjet Printing; Wiley: Hoboken, NJ, USA, 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Uddin, M.J.; Hassan, J.; Douroumis, D. Thermal Inkjet Printing: Prospects and Applications in the Development of Medicine. Technologies 2022, 10, 108. [Google Scholar] [CrossRef]
- Shah, M.A.; Lee, D.-G.; Lee, B.-Y.; Hur, S. Classifications and Applications of Inkjet Printing Technology: A Review. IEEE Access 2021, 9, 140079–140102. [Google Scholar] [CrossRef]
- Paul, K.E.; Wong, W.S.; Ready, S.E.; Street, R.A. Additive jet printing of polymer thin-film transistors. Appl. Phys. Lett. 2003, 83, 2070–2072. [Google Scholar] [CrossRef]
- Driessen, T.; Jeurissen, R. Drop Formation in Inkjet Printing. In Fundamentals of Inkjet Printing; Wiley: Hoboken, NJ, USA, 2016; pp. 93–116. [Google Scholar] [CrossRef]
- Yoo, H.; Kim, C. Generation of inkjet droplet of non-Newtonian fluid. Rheol. Acta 2013, 52, 313–325. [Google Scholar] [CrossRef]
- Tuladhar, T. Measurement of Complex Rheology and Jettability of Inkjet Inks. In Handbook of Industrial Inkjet Printing; Wiley: Hoboken, NJ, USA, 2017; pp. 409–430. [Google Scholar] [CrossRef]
- Derby, B.; Reis, N. Inkjet Printing of Highly Loaded Particulate Suspensions. MRS Bull. 2011, 28, 815–818. [Google Scholar] [CrossRef]
- Wijshoff, H. The dynamics of the piezo inkjet printhead operation. Phys. Rep. 2010, 491, 77–177. [Google Scholar] [CrossRef]
- Rembe, C.; aus der Wiesche, S.; Hofer, E.P. Thermal ink jet dynamics: Modeling, simulation, and testing. Microelectron. Reliab. 2000, 40, 525–532. [Google Scholar] [CrossRef]
- Abd El-Rahman Elsayed Saad, A.; Aydemir, C.; Ayhan Özsoy, S.; Yenidoğan, S. Drying methods of the printing inks. J. Graph. Eng. Des. 2021, 12, 29–37. [Google Scholar] [CrossRef]
- Kaçar, R.; Serin, R.B.; Uçar, E.; Ülkü, A. A review of high-end display technologies focusing on inkjet printed manufacturing. Mater. Today Commun. 2023, 35, 105534. [Google Scholar] [CrossRef]
- Deegan, R.D.; Bakajin, O.; Dupont, T.F.; Huber, G.; Nagel, S.R.; Witten, T.A. Capillary flow as the cause of ring stains from dried liquid drops. Nature 1997, 389, 827–829. [Google Scholar] [CrossRef]
- Mampallil, D.; Eral, H.B. A review on suppression and utilization of the coffee-ring effect. Adv. Colloid Interface Sci. 2018, 252, 38–54. [Google Scholar] [CrossRef]
- Song, O.; Rhee, D.; Kim, J.; Jeon, Y.; Mazánek, V.; Söll, A.; Kwon, Y.A.; Cho, J.H.; Kim, Y.-H.; Sofer, Z.; et al. All inkjet-printed electronics based on electrochemically exfoliated two-dimensional metal, semiconductor, and dielectric. Npj 2d Mater. Appl. 2022, 6, 64. [Google Scholar] [CrossRef]
- Kim, J.; Kumar, R.; Bandodkar, A.J.; Wang, J. Advanced Materials for Printed Wearable Electrochemical Devices: A Review. Adv. Electron. Mater. 2016, 3, 1600260. [Google Scholar] [CrossRef]
- Wilson, M.C.; Castrejón-Pita, J.R.; Castrejón-Pita, A.A. Reactive Inkjet Printing: A Chemical Synthesis Tool; The Royal Society of Chemistry: London, UK, 2017. [Google Scholar] [CrossRef]
- Cho, J.; Shin, K.-H.; Jang, J. Polyaniline micropattern onto flexible substrate by vapor deposition polymerization-mediated inkjet printing. Thin Solid Film. 2010, 518, 5066–5070. [Google Scholar] [CrossRef]
- Cho, J.; Shin, K.-H.; Jang, J. Micropatterning of conducting polymer tracks on plasma treated flexible substrate using vapor phase polymerization-mediated inkjet printing. Synth. Met. 2010, 160, 1119–1125. [Google Scholar] [CrossRef]
- Calvert, P. Inkjet Printing for Materials and Devices. Chem. Mater. 2001, 13, 3299–3305. [Google Scholar] [CrossRef]
- Morita, N.; Khalate, A.A.; Buul, A.M.v.; Wijshoff, H. Inkjet Printheads. In Fundamentals of Inkjet Printing; Wiley: Hoboken, NJ, USA, 2016; pp. 57–92. [Google Scholar]
- Magdassi, S. The Chemistry of Inkjet Inks; World Scientific Pub Co Pte Ltd.: Singapore, 2009. [Google Scholar]
- Parthier, L.; Wiegel, T.; Ottermann, C.; Prince, F. Glass Substrates for Industrial Inkjet Printing Applications. In Handbook of Industrial Inkjet Printing; Wiley: Hoboken, NJ, USA, 2017; pp. 391–408. [Google Scholar] [CrossRef]
- Sílvia Manuela Ferreira, C.; Luís, A.R.; Júlio, C.V. Printing Technologies on Flexible Substrates for Printed Electronics. In Flexible Electronics; Simas, R., Ed.; IntechOpen: Rijeka, Croatia, 2018; Chapter 3. [Google Scholar]
- Wang, Y.; Guo, H.; Chen, J.J.; Sowade, E.; Wang, Y.; Liang, K.; Marcus, K.; Baumann, R.R.; Feng, Z.S. Paper-Based Inkjet-Printed Flexible Electronic Circuits. ACS Appl. Mater. Interfaces 2016, 8, 26112–26118. [Google Scholar] [CrossRef]
- Biswas, T.; Yu, J.; Nierstrasz, V. Effective Pretreatment Routes of Polyethylene Terephthalate Fabric for Digital Inkjet Printing of Enzyme. Adv. Mater. Interfaces 2021, 8, 2001882. [Google Scholar] [CrossRef]
- Mahajan, A.; Hyun, W.J.; Walker, S.B.; Rojas, G.A.; Choi, J.-H.; Lewis, J.A.; Francis, L.F.; Frisbie, C.D. A Self-Aligned Strategy for Printed Electronics: Exploiting Capillary Flow on Microstructured Plastic Surfaces. Adv. Electron. Mater. 2015, 1, 1500137. [Google Scholar] [CrossRef]
- Cao, M.; Hyun, W.J.; Francis, L.F.; Frisbie, C.D. Inkjet-printed, self-aligned organic Schottky diodes on imprinted plastic substrates. Flex. Print. Electron. 2020, 5, 015006. [Google Scholar] [CrossRef]
- Namsheer, K.; Rout, C.S. Conducting polymers: A comprehensive review on recent advances in synthesis, properties and applications. RSC Adv. 2021, 11, 5659–5697. [Google Scholar] [CrossRef]
- Yamamoto, T.; Koizumi, T.-a. Synthesis of π-conjugated polymers bearing electronic and optical functionalities by organometallic polycondensations and their chemical properties. Polymer 2007, 48, 5449–5472. [Google Scholar] [CrossRef]
- Wu, P.-T.; Xin, H.; Kim, F.S.; Ren, G.; Jenekhe, S.A. Regioregular Poly(3-pentylthiophene): Synthesis, Self-Assembly of Nanowires, High-Mobility Field-Effect Transistors, and Efficient Photovoltaic Cells. Macromolecules 2009, 42, 8817–8826. [Google Scholar] [CrossRef]
- Masuda, T. Substituted Polyacetylenes: Synthesis, Properties, and Functions. Polym. Rev. 2016, 57, 1–14. [Google Scholar] [CrossRef]
- Saxman, A.M.; Liepins, R.; Aldissi, M. Polyacetylene: Its synthesis, doping and structure. Prog. Polym. Sci. 1985, 11, 57–89. [Google Scholar] [CrossRef]
- Scheunemann, D.; Järsvall, E.; Liu, J.; Beretta, D.; Fabiano, S.; Caironi, M.; Kemerink, M.; Müller, C. Charge transport in doped conjugated polymers for organic thermoelectrics. Chem. Phys. Rev. 2022, 3, 021309. [Google Scholar] [CrossRef]
- Gueye, M.N.; Carella, A.; Faure-Vincent, J.; Demadrille, R.; Simonato, J.-P. Progress in understanding structure and transport properties of PEDOT-based materials: A critical review. Prog. Mater. Sci. 2020, 108, 100616. [Google Scholar] [CrossRef]
- Singh, A.; Katiyar, M.; Garg, A. Understanding the formation of PEDOT:PSS films by ink-jet printing for organic solar cell applications. RSC Adv. 2015, 5, 78677–78685. [Google Scholar] [CrossRef]
- Kleinschmidt, A.T.; Root, S.E.; Lipomi, D.J. Poly(3-hexylthiophene) (P3HT): Fruit fly or outlier in organic solar cell research? J. Mater. Chem. A 2017, 5, 11396–11400. [Google Scholar] [CrossRef]
- Chen, T.-A.; Wu, X.; Rieke, R.D. Regiocontrolled Synthesis of Poly(3-alkylthiophenes) Mediated by Rieke Zinc: Their Characterization and Solid-State Properties. J. Am. Chem. Soc. 2002, 117, 233–244. [Google Scholar] [CrossRef]
- Roesing, M.; Howell, J.; Boucher, D. Solubility characteristics of poly(3-hexylthiophene). J. Polym. Sci. Part B Polym. Phys. 2017, 55, 1075–1087. [Google Scholar] [CrossRef]
- Dang, M.T.; Hirsch, L.; Wantz, G. P3HT:PCBM, best seller in polymer photovoltaic research. Adv. Mater. 2011, 23, 3597–3602. [Google Scholar] [CrossRef] [PubMed]
- Teichler, A.; Perelaer, J.; Schubert, U.S. Screening of Film-Formation Qualities of Various Solvent Systems for π-Conjugated Polymers Via Combinatorial Inkjet Printing. Macromol. Chem. Phys. 2013, 214, 547–555. [Google Scholar] [CrossRef]
- Pede, D.; Serra, G.; De Rossi, D. Microfabrication of conducting polymer devices by ink-jet stereolithography. Mater. Sci. Eng. C 1998, 5, 289–291. [Google Scholar] [CrossRef]
- Hsieh, G.-W.; Li, F.M.; Beecher, P.; Nathan, A.; Wu, Y.; Ong, B.S.; Milne, W.I. High performance nanocomposite thin film transistors with bilayer carbon nanotube-polythiophene active channel by ink-jet printing. J. Appl. Phys. 2009, 106, 123706. [Google Scholar] [CrossRef]
- Österholm, A.M.; Shen, D.E.; Gottfried, D.S.; Reynolds, J.R. Full Color Control and High-Resolution Patterning from Inkjet Printable Cyan/Magenta/Yellow Colored-to-Colorless Electrochromic Polymer Inks. Adv. Mater. Technol. 2016, 1, 1600063. [Google Scholar] [CrossRef]
- Baklar, M.; Wöbkenberg, P.H.; Sparrowe, D.; Gonçalves, M.; McCulloch, I.; Heeney, M.; Anthopoulos, T.; Stingelin, N. Ink-jet printed p-type polymer electronics based on liquid-crystalline polymer semiconductors. J. Mater. Chem. 2010, 20, 1927–1931. [Google Scholar] [CrossRef]
- Khim, D.; Lee, W.-H.; Baeg, K.-J.; Kim, D.-Y.; Kang, I.-N.; Noh, Y.-Y. Highly stable printed polymer field-effect transistors and inverters via polyselenophene conjugated polymers. J. Mater. Chem. 2012, 22, 12774–12783. [Google Scholar] [CrossRef]
- Lenhart, N.; Crowley, K.; Killard, A.J.; Smyth, M.R.; Morrin, A. Inkjet printable polyaniline-gold dispersions. Thin Solid Film. 2011, 519, 4351–4356. [Google Scholar] [CrossRef]
- Cao, G.; Xu, J.; Cai, S.; Chen, Y.; Zhou, D.; Zhang, H.; Jiang, C.; Zhang, G.; Tian, Y. Highly Conductive and Dispersible Polyaniline Microtubes Controlled by Methyl Orange. ACS Appl. Polym. Mater. 2022, 5, 593–601. [Google Scholar] [CrossRef]
- Gomes, T.C.; Constantino, C.J.L.; Lopes, E.M.; Job, A.E.; Alves, N. Thermal inkjet printing of polyaniline on paper. Thin Solid Film. 2012, 520, 7200–7204. [Google Scholar] [CrossRef]
- do Nascimento, G.M.; de Souza, M.A. Spectroscopy of Nanostructured Conducting Polymers. In Nanostructured Conductive Polymers; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2010; pp. 341–373. [Google Scholar]
- Ngamna, O.; Morrin, A.; Killard, A.J.; Moulton, S.E.; Smyth, M.R.; Wallace, G.G. Inkjet printable polyaniline nanoformulations. Langmuir 2007, 23, 8569–8574. [Google Scholar] [CrossRef] [PubMed]
- Jang, J.; Ha, J.; Cho, J. Fabrication of Water-Dispersible Polyaniline-Poly(4-styrenesulfonate) Nanoparticles For Inkjet-Printed Chemical-Sensor Applications. Adv. Mater. 2007, 19, 1772–1775. [Google Scholar] [CrossRef]
- Bilbao, E.; Kapadia, S.; Riechert, V.; Amalvy, J.; Molinari, F.N.; Escobar, M.M.; Baumann, R.R.; Monsalve, L.N. Functional aqueous-based polyaniline inkjet inks for fully printed high-performance pH-sensitive electrodes. Sens. Actuators B Chem. 2021, 346, 130558. [Google Scholar] [CrossRef]
- Ihalainen, P.; Määttänen, A.; Mattinen, U.; Stępień, M.; Bollström, R.; Toivakka, M.; Bobacka, J.; Peltonen, J. Electrodeposition of PEDOT-Cl film on a fully printed Ag/polyaniline electrode. Thin Solid Film. 2011, 519, 2172–2175. [Google Scholar] [CrossRef]
- Pfeiffer, S.; Hörhold, H.H. Synthesis of soluble MEH-PPV and MEH-PPB by horner condensation polymerization. Synth. Met. 1999, 101, 109–110. [Google Scholar] [CrossRef]
- Tekin, E.; Holder, E.; Kozodaev, D.; Schubert, U.S. Controlled Pattern Formation of Poly [2-methoxy-5-(2′-ethylhexyloxyl)–1,4-phenylenevinylene] (MEH–PPV) by Ink-Jet Printing. Adv. Funct. Mater. 2007, 17, 277–284. [Google Scholar] [CrossRef]
- Mauthner, G.; Landfester, K.; Köck, A.; Brückl, H.; Kast, M.; Stepper, C.; List, E.J.W. Inkjet printed surface cell light-emitting devices from a water-based polymer dispersion. Org. Electron. 2008, 9, 164–170. [Google Scholar] [CrossRef]
- Chang, S.-C.; Bharathan, J.; Yang, Y.; Helgeson, R.; Wudl, F.; Ramey, M.B.; Reynolds, J.R. Dual-color polymer light-emitting pixels processed by hybrid inkjet printing. Appl. Phys. Lett. 1998, 73, 2561–2563. [Google Scholar] [CrossRef]
- Schlisske, S.; Rosenauer, C.; Rödlmeier, T.; Giringer, K.; Michels, J.J.; Kremer, K.; Lemmer, U.; Morsbach, S.; Daoulas, K.C.; Hernandez-Sosa, G. Ink Formulation for Printed Organic Electronics: Investigating Effects of Aggregation on Structure and Rheology of Functional Inks Based on Conjugated Polymers in Mixed Solvents. Adv. Mater. Technol. 2020, 6, 2000335. [Google Scholar] [CrossRef]
- Kawase, T.; Shimoda, T.; Newsome, C.; Sirringhaus, H.; Friend, R.H. Inkjet printing of polymer thin film transistors. Thin Solid Film. 2003, 438–439, 279–287. [Google Scholar] [CrossRef]
- Egbe, D.A.M.; Bader, C.; Klemm, E.; Ding, L.; Karasz, F.E.; Grummt, U.-W.; Birckner, E. Influence of the Conjugation Pattern on the Photophysical Properties of Alkoxy-Substituted PE/PV Hybrid Polymers. Macromolecules 2003, 36, 9303–9312. [Google Scholar] [CrossRef]
- Tekin, E.; Wijlaars, H.; Holder, E.; Egbe, D.A.M.; Schubert, U.S. Film thickness dependency of the emission colors of PPE–PPVs in inkjet printed libraries. J. Mater. Chem. 2006, 16, 4294–4298. [Google Scholar] [CrossRef]
- Szindler, M.M.; Szindler, M.; Dobrzański, L.A. The structure and conductivity of polyelectrolyte based on MEH-PPV and potassium iodide (KI) for dye-sensitized solar cells. Open Phys. 2017, 15, 1022–1027. [Google Scholar] [CrossRef]
- Holliday, S.; Li, Y.; Luscombe, C.K. Recent advances in high performance donor-acceptor polymers for organic photovoltaics. Prog. Polym. Sci. 2017, 70, 34–51. [Google Scholar] [CrossRef]
- Gross, Y.M.; Ludwigs, S. P(NDI2OD-T2) revisited—Aggregation control as key for high performance n-type applications. Synth. Met. 2019, 253, 73–87. [Google Scholar] [CrossRef]
- Liang, Y.; Chen, Z.; Jing, Y.; Rong, Y.; Facchetti, A.; Yao, Y. Heavily n-Dopable π-Conjugated Redox Polymers with Ultrafast Energy Storage Capability. J. Am. Chem. Soc. 2015, 137, 4956–4959. [Google Scholar] [CrossRef] [PubMed]
- Gross, Y.M.; Trefz, D.; Dingler, C.; Bauer, D.; Vijayakumar, V.; Untilova, V.; Biniek, L.; Brinkmann, M.; Ludwigs, S. From Isotropic to Anisotropic Conductivities in P(NDI2OD-T2) by (Electro-)Chemical Doping Strategies. Chem. Mater. 2019, 31, 3542–3555. [Google Scholar] [CrossRef]
- Baeg, K.-J.; Khim, D.; Kim, J.; Yang, B.-D.; Kang, M.; Jung, S.-W.; You, I.-K.; Kim, D.-Y.; Noh, Y.-Y. High-Performance Top-Gated Organic Field-Effect Transistor Memory using Electrets for Monolithic Printed Flexible NAND Flash Memory. Adv. Funct. Mater. 2012, 22, 2915–2926. [Google Scholar] [CrossRef]
- Lee, J.; Chung, J.W.; Kim, D.H.; Lee, B.L.; Park, J.I.; Lee, S.; Hausermann, R.; Batlogg, B.; Lee, S.S.; Choi, I.; et al. Thin Films of Highly Planar Semiconductor Polymers Exhibiting Band-like Transport at Room Temperature. J. Am. Chem. Soc. 2015, 137, 7990–7993. [Google Scholar] [CrossRef]
- Lee, J.; Chung, J.W.; Jang, J.; Kim, D.H.; Park, J.-I.; Lee, E.; Lee, B.-L.; Kim, J.-Y.; Jung, J.Y.; Park, J.S.; et al. Influence of Alkyl Side Chain on the Crystallinity and Trap Density of States in Thiophene and Thiazole Semiconducting Copolymer Based Inkjet-Printed Field-Effect Transistors. Chem. Mater. 2013, 25, 1927–1934. [Google Scholar] [CrossRef]
- Fang, Y.; Wu, X.; Lan, S.; Zhong, J.; Sun, D.; Chen, H.; Guo, T. Inkjet-Printed Vertical Organic Field-Effect Transistor Arrays and Their Image Sensors. ACS Appl. Mater. Interfaces 2018, 10, 30587–30595. [Google Scholar] [CrossRef] [PubMed]
- Teichler, A.; Holzer, S.; Nowotny, J.; Kretschmer, F.; Bader, C.; Perelaer, J.; Hager, M.D.; Hoeppener, S.; Schubert, U.S. Combinatorial screening of inkjet printed ternary blends for organic photovoltaics: Absorption behavior and morphology. ACS Comb. Sci. 2013, 15, 410–418. [Google Scholar] [CrossRef]
- Ni, Z.; Wang, H.; Zhao, Q.; Zhang, J.; Wei, Z.; Dong, H.; Hu, W. Ambipolar Conjugated Polymers with Ultrahigh Balanced Hole and Electron Mobility for Printed Organic Complementary Logic via a Two-Step C–H Activation Strategy. Adv. Mater. 2019, 31, e1806010. [Google Scholar] [CrossRef]
- Park, W.-T.; Kang, S.-J.; Noh, Y.-Y. High-Performance Printed Organic Ambipolar Complementary Inverters with Polyazine Containing Diketopyrrolopyrrole. Mol. Cryst. Liq. Cryst. 2014, 600, 123–128. [Google Scholar] [CrossRef]
- Xia, Y.; Friend, R.H. Controlled Phase Separation of Polyfluorene Blends via Inkjet Printing. Macromolecules 2005, 38, 6466–6471. [Google Scholar] [CrossRef]
- Scuratti, F.; Salazar-Rios, J.M.; Luzio, A.; Kowalski, S.; Allard, S.; Jung, S.; Scherf, U.; Loi, M.A.; Caironi, M. Charge Transport in High-Mobility Field-Effect Transistors Based on Inkjet Printed Random Networks of Polymer Wrapped Single-Walled Carbon Nanotubes. Adv. Funct. Mater. 2020, 31, 2006895. [Google Scholar] [CrossRef]
- Zheng, H.; Zheng, Y.; Wang, J.; Wang, J.; Zhang, G.; Zhang, S.; Liu, M.; Hu, J.; Li, Y.; Hu, Y.; et al. Polymer light-emitting displays with printed cathodes. Surf. Coat. Technol. 2019, 358, 228–234. [Google Scholar] [CrossRef]
- Hermerschmidt, F.; Papagiorgis, P.; Savva, A.; Christodoulou, C.; Itskos, G.; Choulis, S.A. Inkjet printing processing conditions for bulk-heterojunction solar cells using two high-performing conjugated polymer donors. Sol. Energy Mater. Sol. Cells 2014, 130, 474–480. [Google Scholar] [CrossRef]
- Shin, E.-Y.; Choi, E.-Y.; Noh, Y.-Y. Parylene based bilayer flexible gate dielectric layer for top-gated organic field-effect transistors. Org. Electron. 2017, 46, 14–21. [Google Scholar] [CrossRef]
- Kaloni, T.P.; Schreckenbach, G.; Freund, M.S. Band gap modulation in polythiophene and polypyrrole-based systems. Sci. Rep. 2016, 6, 36554. [Google Scholar] [CrossRef]
- Qi, G.; Huang, L.; Wang, H. Highly conductive free standing polypyrrole films prepared by freezing interfacial polymerization. Chem. Commun. 2012, 48, 8246–8248. [Google Scholar] [CrossRef] [PubMed]
- Weng, B.; Shepherd, R.; Chen, J.; Wallace, G.G. Gemini surfactant doped polypyrrole nanodispersions: An inkjet printable formulation. J. Mater. Chem. 2011, 21, 1918–1924. [Google Scholar] [CrossRef]
- Omastová, M.; Bober, P.; Morávková, Z.; Peřinka, N.; Kaplanová, M.; Syrový, T.; Hromádková, J.; Trchová, M.; Stejskal, J. Towards conducting inks: Polypyrrole–silver colloids. Electrochim. Acta 2014, 122, 296–302. [Google Scholar] [CrossRef]
- Xing, R.; Ye, T.; Ding, Y.; Ding, Z.; Ma, D.; Han, Y. Thickness Uniformity Adjustment of Inkjet Printed Light-emitting Polymer Films by Solvent Mixture. Chin. J. Chem. 2013, 31, 1449–1454. [Google Scholar] [CrossRef]
- Xing, R.; Ye, T.; Ding, Y.; Ma, D.; Han, Y. Formation of low surface energy separators with undercut structures via a full-solution process and its application in inkjet printed matrix of polymer light-emitting diodes. Org. Electron. 2009, 10, 313–319. [Google Scholar] [CrossRef]
- Teichler, A.; Shu, Z.; Wild, A.; Bader, C.; Nowotny, J.; Kirchner, G.; Harkema, S.; Perelaer, J.; Schubert, U.S. Inkjet printing of chemically tailored light-emitting polymers. Eur. Polym. J. 2013, 49, 2186–2195. [Google Scholar] [CrossRef]
- Yu, X.; Xing, R.; Peng, Z.; Lin, Y.; Du, Z.; Ding, J.; Wang, L.; Han, Y. To inhibit coffee ring effect in inkjet printing of light-emitting polymer films by decreasing capillary force. Chin. Chem. Lett. 2019, 30, 135–138. [Google Scholar] [CrossRef]
- Liu, L.; Pei, Y.; Ma, S.; Sun, X.; Singler, T.J. Inkjet Printing Controllable Polydopamine Nanoparticle Line Array for Transparent and Flexible Touch-Sensing Application. Adv. Eng. Mater. 2020, 22, 1901351. [Google Scholar] [CrossRef]
- Mitra, K.Y.; Polomoshnov, M.; Martínez-Domingo, C.; Mitra, D.; Ramon, E.; Baumann, R.R. Fully Inkjet-Printed Thin-Film Transistor Array Manufactured on Paper Substrate for Cheap Electronic Applications. Adv. Electron. Mater. 2017, 3, 1700275. [Google Scholar] [CrossRef]
- Le, T.H.; Kim, Y.; Yoon, H. Electrical and Electrochemical Properties of Conducting Polymers. Polymers 2017, 9, 150. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Li, X.; Lei, Q. Conjugated Conductive Polymer Materials and its Applications: A Mini-Review. Front. Chem. 2021, 9, 732132. [Google Scholar] [CrossRef] [PubMed]
- Speakman, S.P.; Rozenberg, G.G.; Clay, K.J.; Milne, W.I.; Ille, A.; Gardner, I.A.; Bresler, E.; Steinke, J.H.G. High performance organic semiconducting thin films: Ink jet printed polythiophene [rr-P3HT]. Org. Electron. 2001, 2, 65–73. [Google Scholar] [CrossRef]
- Liu, Y.; Cui, T. Polymer-Based Rectifying Diodes on a Glass Substrate Fabricated by Ink-Jet Printing. Macromol. Rapid Commun. 2005, 26, 289–292. [Google Scholar] [CrossRef]
- Kwon, J.; Seol, Y.G.; Lee, N.-E.; Chung, I. Study on Ohmic contact improvement of organic Schottky diode utilizing self-assembled monolayer and PEDOT:PSS layers. J. Vac. Sci. Technol. A Vac. Surf. Film. 2010, 28, 879–885. [Google Scholar] [CrossRef]
- Cadilha Marques, G.; Tahoori, M.; Aghassi-Hagmann, J.; Sukuramsyah, A.M.; Arnal Rus, A.; Bolat, S.; Aribia, A.; Feng, X.; Singaraju, S.A.; Ramon, E.; et al. Fabrication and Modeling of pn-Diodes Based on Inkjet Printed Oxide Semiconductors. IEEE Electron Device Lett. 2020, 41, 187–190. [Google Scholar] [CrossRef]
- Mitra, K.Y.; Sternkiker, C.; Martínez-Domingo, C.; Sowade, E.; Ramon, E.; Carrabina, J.; Gomes, H.L.; Baumann, R.R. Inkjet printed metal insulator semiconductor (MIS) diodes for organic and flexible electronic application. Flex. Print. Electron. 2017, 2, 015003. [Google Scholar] [CrossRef]
- Põldsalu, I.; Rohtlaid, K.; Nguyen, T.M.G.; Plesse, C.; Vidal, F.; Khorram, M.S.; Peikolainen, A.-L.; Tamm, T.; Kiefer, R. Thin ink-jet printed trilayer actuators composed of PEDOT:PSS on interpenetrating polymer networks. Sens. Actuators B Chem. 2018, 258, 1072–1079. [Google Scholar] [CrossRef]
- Põldsalu, I.; Johanson, U.; Tamm, T.; Punning, A.; Greco, F.; Peikolainen, A.-L.; Kiefer, R.; Aabloo, A. Mechanical and electro-mechanical properties of EAP actuators with inkjet printed electrodes. Synth. Met. 2018, 246, 122–127. [Google Scholar] [CrossRef]
- Põldsalu, I.; Harjo, M.; Tamm, T.; Uibu, M.; Peikolainen, A.-L.; Kiefer, R. Inkjet-printed hybrid conducting polymer-activated carbon aerogel linear actuators driven in an organic electrolyte. Sens. Actuators B Chem. 2017, 250, 44–51. [Google Scholar] [CrossRef]
- Simaite, A.; Mesnilgrente, F.; Tondu, B.; Souères, P.; Bergaud, C. Towards inkjet printable conducting polymer artificial muscles. Sens. Actuators B Chem. 2016, 229, 425–433. [Google Scholar] [CrossRef]
- Lim, J.A.; Kim, J.-H.; Qiu, L.; Lee, W.H.; Lee, H.S.; Kwak, D.; Cho, K. Inkjet-Printed Single-Droplet Organic Transistors Based on Semiconductor Nanowires Embedded in Insulating Polymers. Adv. Funct. Mater. 2010, 20, 3292–3297. [Google Scholar] [CrossRef]
- Passarella, B.; Scaccabarozzi, A.D.; Giorgio, M.; Perinot, A.; Marina Barbier, S.; Martìn, J.; Caironi, M. Direct-writing of organic field-effect transistors on plastic achieving 22 MHz transition frequency. Flex. Print. Electron. 2020, 5, 034001. [Google Scholar] [CrossRef]
- Hyun, W.J.; Bidoky, F.Z.; Walker, S.B.; Lewis, J.A.; Francis, L.F.; Frisbie, C.D. Printed, Self-Aligned Side-Gate Organic Transistors with a Sub-5 µm Gate–Channel Distance on Imprinted Plastic Substrates. Adv. Electron. Mater. 2016, 2, 1600293. [Google Scholar] [CrossRef]
- Kim, M.; Ha, H.-J.; Yun, H.-J.; You, I.-K.; Baeg, K.-J.; Kim, Y.-H.; Ju, B.-K. Flexible organic phototransistors based on a combination of printing methods. Org. Electron. 2014, 15, 2677–2684. [Google Scholar] [CrossRef]
- Wang, H.; Cheng, C.; Zhang, L.; Liu, H.; Zhao, Y.; Guo, Y.; Hu, W.; Yu, G.; Liu, Y. Inkjet printing short-channel polymer transistors with high-performance and ultrahigh photoresponsivity. Adv. Mater. 2014, 26, 4683–4689. [Google Scholar] [CrossRef] [PubMed]
- Plötner, M.; Wegener, T.; Richter, S.; Howitz, S.; Fischer, W.-J. Investigation of ink-jet printing of poly-3-octylthiophene for organic field-effect transistors from different solutions. Synth. Met. 2004, 147, 299–303. [Google Scholar] [CrossRef]
- Kawase, T.; Moriya, S.; Newsome, C.J.; Shimoda, T. Inkjet Printing of Polymeric Field-Effect Transistors and Its Applications. Jpn. J. Appl. Phys. 2005, 44, 3649. [Google Scholar] [CrossRef]
- Liu, Y.; Varahramyan, K.; Cui, T. Low-Voltage All-Polymer Field-Effect Transistor Fabricated Using an Inkjet Printing Technique. Macromol. Rapid Commun. 2005, 26, 1955–1959. [Google Scholar] [CrossRef]
- Wang, J.Z.; Gu, J.; Zenhausern, F.; Sirringhaus, H. Low-cost fabrication of submicron all polymer field effect transistors. Appl. Phys. Lett. 2006, 88, 133502. [Google Scholar] [CrossRef]
- Tobjörk, D.; Kaihovirta, N.J.; Mäkelä, T.; Pettersson, F.S.; Österbacka, R. All-printed low-voltage organic transistors. Org. Electron. 2008, 9, 931–935. [Google Scholar] [CrossRef]
- Zhang, X.H.; Lee, S.M.; Domercq, B.; Kippelen, B. Transparent organic field-effect transistors with polymeric source and drain electrodes fabricated by inkjet printing. Appl. Phys. Lett. 2008, 92, 243307. [Google Scholar] [CrossRef]
- Lin, C.-T.; Hsu, C.-H.; Lee, C.-H.; Wu, W.-J. Inkjet-Printed Organic Field-Effect Transistor by Using Composite Semiconductor Material of Carbon Nanoparticles and Poly(3-Hexylthiophene). J. Nanotechnol. 2011, 2011, 142890. [Google Scholar] [CrossRef]
- Baeg, K.-J. Polymer Dielectrics and Orthogonal Solvent Effects for High-Performance Inkjet-Printed Top-Gated P-Channel Polymer Field-Effect Transistors. ETRI J. 2011, 33, 887–896. [Google Scholar] [CrossRef]
- Grimaldi, I.A.; Del Mauro Ade, G.; Loffredo, F.; Morvillo, P.; Villani, F. Modelling of organic field effect transistors with inkjet printed poly(3,4-ethylenedioxythiophene): Poly(styrene sulfonate) electrodes: Study of the annealing effects. J. Nanosci. Nanotechnol. 2013, 13, 5175–5181. [Google Scholar] [CrossRef]
- Schmidt, G.C.; Höft, D.; Bhuie, M.; Haase, K.; Bellmann, M.; Haidu, F.; Lehmann, D.; Zahn, D.R.T.; Hübler, A.C. Modified poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) source/drain electrodes for fully printed organic field-effect transistors consisting of a semiconductor blend. Appl. Phys. Lett. 2013, 103, 113302. [Google Scholar] [CrossRef]
- Khim, D.; Xu, Y.; Baeg, K.J.; Kang, M.; Park, W.T.; Lee, S.H.; Kim, I.B.; Kim, J.; Kim, D.Y.; Liu, C.; et al. Large Enhancement of Carrier Transport in Solution-Processed Field-Effect Transistors by Fluorinated Dielectric Engineering. Adv. Mater. 2016, 28, 518–526. [Google Scholar] [CrossRef] [PubMed]
- Bucella, S.G.; Luzio, A.; Gann, E.; Thomsen, L.; McNeill, C.R.; Pace, G.; Perinot, A.; Chen, Z.; Facchetti, A.; Caironi, M. Macroscopic and high-throughput printing of aligned nanostructured polymer semiconductors for MHz large-area electronics. Nat. Commun. 2015, 6, 8394. [Google Scholar] [CrossRef] [PubMed]
- Kwak, D.; Choi, H.H.; Kang, B.; Kim, D.H.; Lee, W.H.; Cho, K. Tailoring Morphology and Structure of Inkjet-Printed Liquid-Crystalline Semiconductor/Insulating Polymer Blends for High-Stability Organic Transistors. Adv. Funct. Mater. 2016, 26, 3003–3011. [Google Scholar] [CrossRef]
- Yang, H.; Zhang, G.; Zhu, J.; He, W.; Lan, S.; Liao, L.; Chen, H.; Guo, T. Improving Charge Mobility of Polymer Transistors by Judicious Choice of the Molecular Weight of Insulating Polymer Additive. J. Phys. Chem. C 2016, 120, 17282–17289. [Google Scholar] [CrossRef]
- Higgins, S.G.; Muir, B.V.O.; Dell’Erba, G.; Perinot, A.; Caironi, M.; Campbell, A.J. Self-aligned organic field-effect transistors on plastic with picofarad overlap capacitances and megahertz operating frequencies. Appl. Phys. Lett. 2016, 108, 023302. [Google Scholar] [CrossRef]
- Zhang, G.; Yang, H.; He, L.; Hu, L.; Lan, S.; Li, F.; Chen, H.; Guo, T. Importance of domain purity in semi-conducting polymer/insulating polymer blends transistors. J. Polym. Sci. Part B Polym. Phys. 2016, 54, 1760–1766. [Google Scholar] [CrossRef]
- Perinot, A.; Kshirsagar, P.; Malvindi, M.A.; Pompa, P.P.; Fiammengo, R.; Caironi, M. Direct-written polymer field-effect transistors operating at 20 MHz. Sci. Rep. 2016, 6, 38941. [Google Scholar] [CrossRef] [PubMed]
- Conti, S.; Lai, S.; Cosseddu, P.; Bonfiglio, A. An Inkjet-Printed, Ultralow Voltage, Flexible Organic Field Effect Transistor. Adv. Mater. Technol. 2017, 2, 1600212. [Google Scholar] [CrossRef]
- Bucella, S.G.; Salazar-Rios, J.M.; Derenskyi, V.; Fritsch, M.; Scherf, U.; Loi, M.A.; Caironi, M. Inkjet Printed Single-Walled Carbon Nanotube Based Ambipolar and Unipolar Transistors for High-Performance Complementary Logic Circuits. Adv. Electron. Mater. 2016, 2, 1600094. [Google Scholar] [CrossRef]
- Lai, S.; Cosseddu, P.; Zucca, A.; Loi, A.; Bonfiglio, A. Combining inkjet printing and chemical vapor deposition for fabricating low voltage, organic field-effect transistors on flexible substrates. Thin Solid Film. 2017, 631, 124–131. [Google Scholar] [CrossRef]
- Bucella, S.G.; Perinot, A.; Caironi, M. All Polymer FETs Direct-Written on Flexible Substrates Achieving MHz Operation Regime. IEEE Trans. Electron Devices 2017, 64, 1960–1967. [Google Scholar] [CrossRef]
- Lee, J.; Jang, J.; Chung, J.W.; Yoon, M.; Kim, D.H. Temperature and gate-bias-dependent charge transport in inkjet-printed polymer field-effect transistor. J. Korean Phys. Soc. 2021, 79, 1063–1068. [Google Scholar] [CrossRef]
- Stucchi, E.; Maksimovic, K.; Bertolacci, L.; Viola, F.A.; Athanassiou, A.; Caironi, M. Biodegradable all-polymer field-effect transistors printed on Mater-Bi. J. Inf. Disp. 2021, 22, 247–256. [Google Scholar] [CrossRef]
- Xia, Y.; Zhang, W.; Ha, M.; Cho, J.H.; Renn, M.J.; Kim, C.H.; Frisbie, C.D. Printed Sub-2 V Gel-Electrolyte-Gated Polymer Transistors and Circuits. Adv. Funct. Mater. 2010, 20, 587–594. [Google Scholar] [CrossRef]
- Xue, F.; Su, Y.; Varahramyan, K. Modified PEDOT-PSS Conducting Polymer as S/D Electrodes for Device Performance Enhancement of P3HT TFTs. IEEE Trans. Electron Devices 2005, 52, 1982–1987. [Google Scholar] [CrossRef]
- Lim, J.A.; Cho, J.H.; Park, Y.D.; Kim, D.H.; Hwang, M.; Cho, K. Solvent effect of inkjet printed source/drain electrodes on electrical properties of polymer thin-film transistors. Appl. Phys. Lett. 2006, 88, 082102. [Google Scholar] [CrossRef]
- Li, S.P.; Newsome, C.J.; Kugler, T.; Ishida, M.; Inoue, S. Polymer thin film transistors with self-aligned gates fabricated using ink-jet printing. Appl. Phys. Lett. 2007, 90, 172103. [Google Scholar] [CrossRef]
- Chou, W.-Y.; Lin, S.-T.; Cheng, H.-L.; Tang, F.-C.; Lin, Y.-J.; You, C.-F.; Wang, Y.-W. Excimer laser irradiation induced suppression of off-state leakage current in organic transistors. Appl. Phys. Lett. 2007, 90, 222103. [Google Scholar] [CrossRef]
- Sholin, V.; Carter, S.A.; Street, R.A.; Arias, A.C. High work function materials for source/drain contacts in printed polymer thin film transistors. Appl. Phys. Lett. 2008, 92, 063307. [Google Scholar] [CrossRef]
- Yan, H.; Chen, Z.; Zheng, Y.; Newman, C.; Quinn, J.R.; Dotz, F.; Kastler, M.; Facchetti, A. A high-mobility electron-transporting polymer for printed transistors. Nature 2009, 457, 679–686. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.-W.; Lee, M.-Y.; Choi, J.-C.; Park, J.-S.; Song, C.-K. Fine patterning of glycerol-doped PEDOT:PSS on hydrophobic PVP dielectric with ink jet for source and drain electrode of OTFTs. Org. Electron. 2010, 11, 854–859. [Google Scholar] [CrossRef]
- Basiricò, L.; Cosseddu, P.; Fraboni, B.; Bonfiglio, A. Inkjet printing of transparent, flexible, organic transistors. Thin Solid Film. 2011, 520, 1291–1294. [Google Scholar] [CrossRef]
- Kawase, T.; Sirringhaus, H.; Friend, R.H.; Shimoda, T. 6.1: Invited Paper: All-Polymer Thin Film Transistors Fabricated by High-Resolution Ink-jet Printing. SID Symp. Dig. Tech. Pap. 2001, 32, 40–43. [Google Scholar] [CrossRef]
- Chen, M.; Peng, R.; Xiong, X.; Chen, S.; Zhang, G.; Lu, H.; Wang, X.; Qiu, L. Inkjet Printed Poly(3-hexylthiophene) Thin-Film Transistors: Effect of Self-Assembled Monolayer. Mol. Cryst. Liq. Cryst. 2014, 593, 201–213. [Google Scholar] [CrossRef]
- Grau, G.; Kitsomboonloha, R.; Swisher, S.L.; Kang, H.; Subramanian, V. Printed Transistors on Paper: Towards Smart Consumer Product Packaging. Adv. Funct. Mater. 2014, 24, 5067–5074. [Google Scholar] [CrossRef]
- Gomes, H.L.; Medeiros, M.C.R.; Villani, F.; Canudo, J.; Loffredo, F.; Miscioscia, R.; Martinez-Domingo, C.; Ramon, E.; Sowade, E.; Mitra, K.Y.; et al. All-inkjet printed organic transistors: Dielectric surface passivation techniques for improved operational stability and lifetime. Microelectron. Reliab. 2015, 55, 1192–1195. [Google Scholar] [CrossRef]
- Lin, Y.; Liu, C.-F.; Song, Y.-J.; Yang, L.; Zeng, W.-J.; Lai, W.-Y.; Huang, W. Improved performances of inkjet-printed poly(3-hexylthiophene) organic thin-film transistors by inserting an ionic self-assembled monolayer. RSC Adv. 2016, 6, 40970–40974. [Google Scholar] [CrossRef]
- Ha, J.; Yoo, H.; Seo, J.; Yoon, J.; Hong, Y. Photoresponse Analysis of All-Inkjet-Printed Single-Walled Carbon Nanotube Thin-Film Transistors for Flexible Light-Insensitive Transparent Circuit Applications. ACS Appl. Mater. Interfaces 2023, 15, 3192–3201. [Google Scholar] [CrossRef]
- Takasu, I.; Sugi, K.; Nomura, Y.; Nakao, H.; Mori, K.; Amemiya, I.; Uchikoga, S. All-Solution-Processed Organic Thin Film Transistors Fabricated by Non-Piezoelectric Inkjet Printing. ECS Trans. 2006, 3, 307–312. [Google Scholar] [CrossRef]
- Doggart, J.; Wu, Y.; Zhu, S. Inkjet printing narrow electrodes with <50 μm line width and channel length for organic thin-film transistors. Appl. Phys. Lett. 2009, 94, 163503. [Google Scholar] [CrossRef]
- Lin, C.-T.; Hsu, C.-H.; Chen, I.-R.; Lee, C.-H.; Wu, W.-J. Enhancement of carrier mobility in all-inkjet-printed organic thin-film transistors using a blend of poly(3-hexylthiophene) and carbon nanoparticles. Thin Solid Film. 2011, 519, 8008–8012. [Google Scholar] [CrossRef]
- Wu, W.-J.; Lee, C.-H.; Hsu, C.-H.; Yang, S.-H.; Lin, C.-T. Adjustable threshold-voltage in all-inkjet-printed organic thin film transistor using double-layer dielectric structures. Thin Solid Film. 2013, 548, 576–580. [Google Scholar] [CrossRef]
- Kim, S.H.; Kang, I.; Kim, Y.G.; Hwang, H.R.; Kim, Y.-H.; Kwon, S.-K.; Jang, J. High performance ink-jet printed diketopyrrolopyrrole-based copolymer thin-film transistors using a solution-processed aluminium oxide dielectric on a flexible substrate. J. Mater. Chem. C 2013, 1, 2408–2411. [Google Scholar] [CrossRef]
- Zhang, G.; Zhang, P.; Chen, H.; Guo, T. Modification of polymer gate dielectrics for organic thin-film transistor from inkjet printing. Appl. Phys. A 2018, 124, 481. [Google Scholar] [CrossRef]
- Lee, J.; Jang, J.T.; Jang, J.; Kim, J.; Chung, J.W.; Choi, S.-J.; Kim, D.M.; Kim, K.R.; Kim, D.H. Density-of-States-Based Physical Model for Ink-Jet Printed Thiophene Polymeric TFTs. IEEE Trans. Electron Devices 2020, 67, 283–288. [Google Scholar] [CrossRef]
- Zhou, Y.; Fuentes-Hernandez, C.; Shim, J.; Meyer, J.; Giordano, A.J.; Li, H.; Winget, P.; Papadopoulos, T.; Cheun, H.; Kim, J.; et al. A universal method to produce low-work function electrodes for organic electronics. Science 2012, 336, 327–332. [Google Scholar] [CrossRef] [PubMed]
- Sinno, H.; Nguyen, H.T.; Hägerström, A.; Fahlman, M.; Lindell, L.; Coulembier, O.; Dubois, P.; Crispin, X.; Engquist, I.; Berggren, M. Amphiphilic semiconducting copolymer as compatibility layer for printing polyelectrolyte-gated OFETs. Org. Electron. 2013, 14, 790–796. [Google Scholar] [CrossRef]
- Singaraju, S.A.; Baby, T.T.; Neuper, F.; Kruk, R.; Hagmann, J.A.; Hahn, H.; Breitung, B. Development of Fully Printed Electrolyte-Gated Oxide Transistors Using Graphene Passive Structures. ACS Appl. Electron. Mater. 2019, 1, 1538–1544. [Google Scholar] [CrossRef]
- Mannerbro, R.; Ranlöf, M.; Robinson, N.; Forchheimer, R. Inkjet printed electrochemical organic electronics. Synth. Met. 2008, 158, 556–560. [Google Scholar] [CrossRef]
- Basiricò, L.; Cosseddu, P.; Scidà, A.; Fraboni, B.; Malliaras, G.G.; Bonfiglio, A. Electrical characteristics of ink-jet printed, all-polymer electrochemical transistors. Org. Electron. 2012, 13, 244–248. [Google Scholar] [CrossRef]
- He, Y.; Jiang, S.; Chen, C.; Wan, C.; Shi, Y.; Wan, Q. Electrolyte-gated neuromorphic transistors for brain-like dynamic computing. J. Appl. Phys. 2021, 130, 190904. [Google Scholar] [CrossRef]
- Liu, N.; Zhou, Y.; Ai, N.; Luo, C.; Peng, J.; Wang, J.; Pei, J.; Cao, Y. High-performance, all-solution-processed organic nanowire transistor arrays with inkjet-printing patterned electrodes. Langmuir 2011, 27, 14710–14715. [Google Scholar] [CrossRef]
- Burns, S.E.; Cain, P.; Mills, J.; Wang, J.; Sirringhaus, H. Inkjet Printing of Polymer Thin-Film Transistor Circuits. MRS Bull. 2011, 28, 829–834. [Google Scholar] [CrossRef]
- Molina-Lopez, F.; Gao, T.Z.; Kraft, U.; Zhu, C.; Ohlund, T.; Pfattner, R.; Feig, V.R.; Kim, Y.; Wang, S.; Yun, Y.; et al. Inkjet-printed stretchable and low voltage synaptic transistor array. Nat. Commun. 2019, 10, 2676. [Google Scholar] [CrossRef]
- Ryu, G.-S.; Lee, M.W.; Song, C.K. Printed flexible OTFT backplane for electrophoretic displays. J. Inf. Disp. 2011, 12, 213–217. [Google Scholar] [CrossRef]
- Daniel, J.; Arias, A.C.; Russo, B.; Krusor, B. 44.3: Flexible Electrophoretic Displays with Jet-Printed Backplanes. SID Symp. Dig. Tech. Pap. 2009, 40, 660–663. [Google Scholar] [CrossRef]
- Daniel, J.; Arias, A.C.; Ready, S.; Krusor, B.; Street, R. P-21: Jet-Printed All-Additive Active-Matrix Pixel Circuits on Low-Temperature Flexible Substrates. SID Symp. Dig. Tech. Pap. 2007, 38, 249–251. [Google Scholar] [CrossRef]
- Lee, J.; Kim, D.H.; Kim, J.Y.; Yoo, B.; Chung, J.W.; Park, J.I.; Lee, B.L.; Jung, J.Y.; Park, J.S.; Koo, B.; et al. Reliable and uniform thin-film transistor arrays based on inkjet-printed polymer semiconductors for full color reflective displays. Adv. Mater. 2013, 25, 5886–5892. [Google Scholar] [CrossRef]
- Kawahara, J.; Andersson Ersman, P.; Nilsson, D.; Katoh, K.; Nakata, Y.; Sandberg, M.; Nilsson, M.; Gustafsson, G.; Berggren, M. Flexible active matrix addressed displays manufactured by printing and coating techniques. J. Polym. Sci. Part B Polym. Phys. 2013, 51, 265–271. [Google Scholar] [CrossRef]
- Sirringhaus, H.; Kawase, T.; Friend, R.H.; Shimoda, T.; Inbasekaran, M.; Wu, W.; Woo, E.P. High-resolution inkjet printing of all-polymer transistor circuits. Science 2000, 290, 2123–2126. [Google Scholar] [CrossRef]
- Guo, Y.; Otley, M.T.; Li, M.; Zhang, X.; Sinha, S.K.; Treich, G.M.; Sotzing, G.A. PEDOT:PSS “Wires” Printed on Textile for Wearable Electronics. ACS Appl. Mater Interfaces 2016, 8, 26998–27005. [Google Scholar] [CrossRef]
- Kraft, U.; Molina-Lopez, F.; Son, D.; Bao, Z.; Murmann, B. Ink Development and Printing of Conducting Polymers for Intrinsically Stretchable Interconnects and Circuits. Adv. Electron. Mater. 2019, 6, 1900681. [Google Scholar] [CrossRef]
- Sivaramakrishnan, S.; Chia, P.J.; Yeo, Y.C.; Chua, L.L.; Ho, P.K. Controlled insulator-to-metal transformation in printable polymer composites with nanometal clusters. Nat. Mater. 2007, 6, 149–155. [Google Scholar] [CrossRef] [PubMed]
- Mustonen, T.; Kordás, K.; Saukko, S.; Tóth, G.; Penttilä, J.S.; Helistö, P.; Seppä, H.; Jantunen, H. Inkjet printing of transparent and conductive patterns of single-walled carbon nanotubes and PEDOT-PSS composites. Phys. Status Solidi B 2007, 244, 4336–4340. [Google Scholar] [CrossRef]
- Li, D.; Tao, Y.; Yao, S.; Tian, W.; Wang, G.; Li, B.; Wang, W.; Li, S.; Yang, J.; Yu, Q.; et al. Conductive Inks with 3D Conductive Networks of Polyaniline Crystals Nanofibers. Mater. Highlights 2021, 2, 41–45. [Google Scholar] [CrossRef]
- Sternkiker, C.; Sowade, E.; Mitra, K.Y.; Zichner, R.; Baumann, R.R. Upscaling of the Inkjet Printing Process for the Manufacturing of Passive Electronic Devices. IEEE Trans. Electron Devices 2016, 63, 426–431. [Google Scholar] [CrossRef]
- Correia, V.; Mitra, K.Y.; Castro, H.; Rocha, J.G.; Sowade, E.; Baumann, R.R.; Lanceros-Mendez, S. Design and fabrication of multilayer inkjet-printed passive components for printed electronics circuit development. J. Manuf. Process. 2018, 31, 364–371. [Google Scholar] [CrossRef]
- Kang, B.J.; Lee, C.K.; Oh, J.H. All-inkjet-printed electrical components and circuit fabrication on a plastic substrate. Microelectron. Eng. 2012, 97, 251–254. [Google Scholar] [CrossRef]
- Chen, B.; Cui, T.; Liu, Y.; Varahramyan, K. All-polymer RC filter circuits fabricated with inkjet printing technology. Solid-State Electron. 2003, 47, 841–847. [Google Scholar] [CrossRef]
- Viola, F.A.; Brigante, B.; Colpani, P.; Dell’Erba, G.; Mattoli, V.; Natali, D.; Caironi, M. A 13.56 MHz Rectifier Based on Fully Inkjet Printed Organic Diodes. Adv. Mater. 2020, 32, e2002329. [Google Scholar] [CrossRef]
- Perinot, A.; Caironi, M. Accessing MHz Operation at 2 V with Field-Effect Transistors Based on Printed Polymers on Plastic. Adv. Sci. 2019, 6, 1801566. [Google Scholar] [CrossRef]
- Feng, X.; Scholz, A.; Tahoori, M.B.; Aghassi-Hagmann, J. An Inkjet-Printed Full-Wave Rectifier for Low-Voltage Operation Using Electrolyte-Gated Indium-Oxide Thin-Film Transistors. IEEE Trans. Electron Devices 2020, 67, 4918–4923. [Google Scholar] [CrossRef]
- Baeg, K.-J.; Jung, S.-W.; Khim, D.; Kim, J.; Kim, D.-Y.; Koo, J.B.; Quinn, J.R.; Facchetti, A.; You, I.-K.; Noh, Y.-Y. Low-voltage, high speed inkjet-printed flexible complementary polymer electronic circuits. Org. Electron. 2013, 14, 1407–1418. [Google Scholar] [CrossRef]
- Han, H.; Amegadze, P.S.K.; Park, J.; Baeg, K.-J.; Noh, Y.-Y. Effect of gate electrode conductivity on operation frequency of inkjet-printed complementary polymer ring oscillators. Thin Solid Film. 2013, 546, 141–146. [Google Scholar] [CrossRef]
- Cadilha Marques, G.; von Seggern, F.; Dehm, S.; Breitung, B.; Hahn, H.; Dasgupta, S.; Tahoori, M.B.; Aghassi-Hagmann, J. Influence of Humidity on the Performance of Composite Polymer Electrolyte-Gated Field-Effect Transistors and Circuits. IEEE Trans. Electron Devices 2019, 66, 2202–2207. [Google Scholar] [CrossRef]
- Cadilha Marques, G.; Garlapati, S.K.; Dehm, S.; Dasgupta, S.; Hahn, H.; Tahoori, M.; Aghassi-Hagmann, J. Digital power and performance analysis of inkjet printed ring oscillators based on electrolyte-gated oxide electronics. Appl. Phys. Lett. 2017, 111, 102103. [Google Scholar] [CrossRef]
- Weller, D.; Cadilha Marques, G.; Aghassi-Hagmann, J.; Tahoori, M.B. An Inkjet-Printed Low-Voltage Latch Based on Inorganic Electrolyte-Gated Transistors. IEEE Electron Device Lett. 2018, 39, 831–834. [Google Scholar] [CrossRef]
- Dell’Erba, G.; Perinot, A.; Grimoldi, A.; Natali, D.; Caironi, M. Fully-printed, all-polymer integrated twilight switch. Semicond. Sci. Technol. 2015, 30, 104005. [Google Scholar] [CrossRef]
- Kwon, J.; Takeda, Y.; Fukuda, K.; Cho, K.; Tokito, S.; Jung, S. Three-Dimensional, Inkjet-Printed Organic Transistors and Integrated Circuits with 100% Yield, High Uniformity, and Long-Term Stability. ACS Nano 2016, 10, 10324–10330. [Google Scholar] [CrossRef] [PubMed]
- Gardner, S.D.; Haider, M.R. An Inkjet-Printed Artificial Neuron for Physical Reservoir Computing. IEEE J. Flex. Electron. 2022, 1, 185–193. [Google Scholar] [CrossRef]
- Rasheed, F.; Rommel, M.; Marques, G.C.; Wenzel, W.; Tahoori, M.B.; Aghassi-Hagmann, J. Channel Geometry Scaling Effect in Printed Inorganic Electrolyte-Gated Transistors. IEEE Trans. Electron Devices 2021, 68, 1866–1871. [Google Scholar] [CrossRef]
- Erozan, A.T.; Weller, D.D.; Rasheed, F.; Bishnoi, R.; Aghassi-Hagmann, J.; Tahoori, M.B. A Novel Printed-Lookup-Table-Based Programmable Printed Digital Circuit. IEEE Trans. Very Large Scale Integr. VLSI Syst. 2020, 28, 1496–1504. [Google Scholar] [CrossRef]
- Marques, G.C.; Birla, A.; Arnal, A.; Dehm, S.; Ramon, E.; Tahoori, M.B.; Aghassi-Hagmann, J. Printed Logic Gates Based on Enhancement- and Depletion-Mode Electrolyte-Gated Transistors. IEEE Trans. Electron Devices 2020, 67, 3146–3151. [Google Scholar] [CrossRef]
- Higgins, S.G.; Muir, B.V.O.; Dell’Erba, G.; Perinot, A.; Caironi, M.; Campbell, A.J. Complementary Organic Logic Gates on Plastic Formed by Self-Aligned Transistors with Gravure and Inkjet Printed Dielectric and Semiconductors. Adv. Electron. Mater. 2016, 2, 1500272. [Google Scholar] [CrossRef]
- Kwon, J.; Takeda, Y.; Fukuda, K.; Cho, K.; Tokito, S.; Jung, S. Vertically Stacked Complementary Organic Field-Effect Transistors and Logic Circuits Fabricated by Inkjet Printing. Adv. Electron. Mater. 2016, 2, 1600046. [Google Scholar] [CrossRef]
- Mandal, S.; Dell’Erba, G.; Luzio, A.; Bucella, S.G.; Perinot, A.; Calloni, A.; Berti, G.; Bussetti, G.; Duò, L.; Facchetti, A.; et al. Fully-printed, all-polymer, bendable and highly transparent complementary logic circuits. Org. Electron. 2015, 20, 132–141. [Google Scholar] [CrossRef]
- Baeg, K.-J.; Khim, D.; Kim, J.; Kim, D.-Y.; Sung, S.-W.; Yang, B.-D.; Noh, Y.-Y. Flexible Complementary Logic Gates Using Inkjet-Printed Polymer Field-Effect Transistors. IEEE Electron Device Lett. 2013, 34, 126–128. [Google Scholar] [CrossRef]
- Baeg, K.-J.; Khim, D.; Kim, D.-Y.; Jung, S.-W.; Koo, J.B.; You, I.-K.; Yan, H.; Facchetti, A.; Noh, Y.-Y. High speeds complementary integrated circuits fabricated with all-printed polymeric semiconductors. J. Polym. Sci. Part B Polym. Phys. 2011, 49, 62–67. [Google Scholar] [CrossRef]
- Tan, H.S.; Wang, B.C.; Kamath, S.; Chua, J.; Shojaei-Baghini, M.; Rao, V.R.; Mathews, N.; Mhaisalkar, S.G. Complementary Organic Circuits Using Evaporated F16CuPc and Inkjet Printing of PQT. IEEE Electron Device Lett. 2010, 31, 1311–1313. [Google Scholar] [CrossRef]
- Chen, W.N.; Chu, D.P.; Li, S.P. Air stable complementary polymer circuits fabricated in ambient condition by inkjet printing. Org. Electron. 2012, 13, 98–103. [Google Scholar] [CrossRef]
- Baeg, K.J.; Khim, D.; Kim, J.; Han, H.; Jung, S.W.; Kim, T.W.; Kang, M.; Facchetti, A.; Hong, S.K.; Kim, D.Y.; et al. Controlled charge transport by polymer blend dielectrics in top-gate organic field-effect transistors for low-voltage-operating complementary circuits. ACS Appl. Mater. Interfaces 2012, 4, 6176–6184. [Google Scholar] [CrossRef]
- Chung, J.W.; Ko, Y.H.; Hong, Y.K.; Song, W.; Jung, C.; Tang, H.; Lee, J.; Lee, M.h.; Lee, B.-l.; Park, J.-i.; et al. Flexible nano-hybrid inverter based on inkjet-printed organic and 2D multilayer MoS2 thin film transistor. Org. Electron. 2014, 15, 3038–3042. [Google Scholar] [CrossRef]
- Ha, J.; Chung, S.; Pei, M.; Cho, K.; Yang, H.; Hong, Y. One-Step Interface Engineering for All-Inkjet-Printed, All-Organic Components in Transparent, Flexible Transistors and Inverters: Polymer Binding. ACS Appl. Mater. Interfaces 2017, 9, 8819–8829. [Google Scholar] [CrossRef] [PubMed]
- Stucchi, E.; Dell’Erba, G.; Colpani, P.; Kim, Y.H.; Caironi, M. Low-Voltage, Printed, All-Polymer Integrated Circuits Employing a Low-Leakage and High-Yield Polymer Dielectric. Adv. Electron. Mater. 2018, 4, 1800340. [Google Scholar] [CrossRef]
- Stucchi, E.; Scaccabarozzi, A.D.; Viola, F.A.; Caironi, M. Ultraflexible all-organic complementary transistors and inverters based on printed polymers. J. Mater. Chem. C 2020, 8, 15331–15338. [Google Scholar] [CrossRef]
- Singaraju, S.A.; Marques, G.C.; Gruber, P.; Kruk, R.; Hahn, H.; Breitung, B.; Aghassi-Hagmann, J. Fully Printed Inverters using Metal-Oxide Semiconductor and Graphene Passives on Flexible Substrates. Phys. Status Solidi RRL—Rapid Res. Lett. 2020, 14, 2000252. [Google Scholar] [CrossRef]
- Luczak, A.; Mitra, K.Y.; Baumann, R.R.; Zichner, R.; Luszczynska, B.; Jung, J. Fully inkjet-printed flexible organic voltage inverters as a basic component in digital NOT gates. Sci. Rep. 2022, 12, 10887. [Google Scholar] [CrossRef] [PubMed]
- Pradhan, J.R.; Singh, M.; Dasgupta, S. Inkjet-Printed, Deep Subthreshold Operated Pseudo-CMOS Inverters with High Voltage Gain and Low Power Consumption. Adv. Electron. Mater. 2022, 8, 2200528. [Google Scholar] [CrossRef]
- Kwon, J.; Kyung, S.; Yoon, S.; Kim, J.J.; Jung, S. Solution-Processed Vertically Stacked Complementary Organic Circuits with Inkjet-Printed Routing. Adv. Sci. 2016, 3, 1500439. [Google Scholar] [CrossRef]
- Casula, G.; Lai, S.; Matino, L.; Santoro, F.; Bonfiglio, A.; Cosseddu, P. Printed, Low-Voltage, All-Organic Transistors and Complementary Circuits on Paper Substrate. Adv. Electron. Mater. 2020, 6, 1901027. [Google Scholar] [CrossRef]
- Jung, S.; Sou, A.; Gili, E.; Sirringhaus, H. Inkjet-printed resistors with a wide resistance range for printed read-only memory applications. Org. Electron. 2013, 14, 699–702. [Google Scholar] [CrossRef]
- Ramon, E.; Sowade, E.; Martínez-Domingo, C.; Mitra, K.Y.; Alcalde, A.; Baumann, R.R.; Carrabina, J. Large-scale fabrication of all-inkjet-printed resistors and WORM memories on flexible polymer films with high yield and stability. Flex. Print. Electron. 2021, 6, 015003. [Google Scholar] [CrossRef]
- Salaoru, I.; Maswoud, S.; Paul, S. Inkjet Printing of Functional Electronic Memory Cells: A Step Forward to Green Electronics. Micromachines 2019, 10, 417. [Google Scholar] [CrossRef]
- Delfag, M.; Rachovitis, G.; González, Y.; Jehn, J.; Youssef, A.H.; Schindler, C.; Ruediger, A. Fully printed ZnO-based valency-change memories for flexible and transparent applications. Flex. Print. Electron. 2022, 7, 045001. [Google Scholar] [CrossRef]
- Huber, B.; Schober, J.; Kreuzer, A.; Kaiser, M.; Ruediger, A.; Schindler, C. Inkjet-printed resistive memory cells for transparent electronics. Microelectron. Eng. 2018, 194, 85–88. [Google Scholar] [CrossRef]
- Huber, B.; Popp, P.B.; Kaiser, M.; Ruediger, A.; Schindler, C. Fully inkjet printed flexible resistive memory. Appl. Phys. Lett. 2017, 110, 143503. [Google Scholar] [CrossRef]
- Jung, S.-W. Nonvolatile Ferroelectric P(VDF-TrFE) Memory Transistors Based on Inkjet-Printed Organic Semiconductor. ETRI J. 2013, 35, 734–737. [Google Scholar] [CrossRef]
- Bhansali, U.S.; Khan, M.A.; Alshareef, H.N. Organic ferroelectric memory devices with inkjet-printed polymer electrodes on flexible substrates. Microelectron. Eng. 2013, 105, 68–73. [Google Scholar] [CrossRef]
- Kang, M.; Baeg, K.-J.; Khim, D.; Noh, Y.-Y.; Kim, D.-Y. Printed, Flexible, Organic Nano-Floating-Gate Memory: Effects of Metal Nanoparticles and Blocking Dielectrics on Memory Characteristics. Adv. Funct. Mater. 2013, 23, 3503–3512. [Google Scholar] [CrossRef]
- Kim, C.; Song, J.M.; Lee, J.S.; Lee, M.J. All-solution-processed nonvolatile flexible nano-floating gate memory devices. Nanotechnology 2014, 25, 014016. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.-D. Printed Organic One-Time Programmable ROM Array Using Anti-fuse Capacitor. ETRI J. 2013, 35, 594–602. [Google Scholar] [CrossRef]
- Jung, S.-W.; Na, B.S.; You, I.-K.; Koo, J.B.; Yang, B.-D.; Oh, J.-M. Inkjet-printed organic thin-film transistor and antifuse capacitor for flexible one-time programmable memory applications. J. Korean Phys. Soc. 2014, 64, 74–78. [Google Scholar] [CrossRef]
- Jung, S.W.; Na, B.S.; Park, C.W.; Koo, J.B. Low-voltage-operated organic one-time programmable memory using printed organic thin-film transistors and antifuse capacitors. J. Nanosci. Nanotechnol. 2014, 14, 8167–8170. [Google Scholar] [CrossRef]
- Shim, G.H.; Han, M.G.; Sharp-Norton, J.C.; Creager, S.E.; Foulger, S.H. Inkjet-printed electrochromic devices utilizing polyaniline–silica and poly(3,4-ethylenedioxythiophene)–silica colloidal composite particles. J. Mater. Chem. 2008, 18, 594–601. [Google Scholar] [CrossRef]
- Huang, X.; Chen, J.; Xie, H.; Zhao, F.; Fan, S.; Zhang, Y. Inkjet printing of 2D polyaniline for fabricating flexible and patterned electrochromic devices. Sci. China Mater. 2022, 65, 2217–2226. [Google Scholar] [CrossRef]
- Nguyen, T.-T.-N.; Chan, C.-Y.; He, J.-L. One-step inkjet printing of tungsten oxide-poly(3,4-ethylenedioxythiophene):polystyrene sulphonate hybrid film and its applications in electrochromic devices. Thin Solid Film. 2016, 603, 276–282. [Google Scholar] [CrossRef]
- Pietsch, M.; Schlisske, S.; Held, M.; Strobel, N.; Wieczorek, A.; Hernandez-Sosa, G. Biodegradable inkjet-printed electrochromic display for sustainable short-lifecycle electronics. J. Mater. Chem. C 2020, 8, 16716–16724. [Google Scholar] [CrossRef]
- Coenen, M.J.J.; Slaats, T.M.W.L.; Eggenhuisen, T.M.; Groen, P. Inkjet printing the three organic functional layers of two-colored organic light emitting diodes. Thin Solid Film. 2015, 583, 194–200. [Google Scholar] [CrossRef]
- Hu, Y.-X.; Lin, T.; Xia, X.; Mu, W.-Y.; Sun, Y.-L.; He, W.-Z.; Wei, C.-T.; Zhang, D.-Y.; Li, X.; Cui, Z. Novel phosphorescent iridium(iii) emitters for both vacuum-deposition and inkjet-printing of OLEDs with exceptionally high efficiency. J. Mater. Chem. C 2019, 7, 4178–4184. [Google Scholar] [CrossRef]
- Zhao, J.; Lo, L.W.; Wan, H.; Mao, P.; Yu, Z.; Wang, C. High-Speed Fabrication of All-Inkjet-Printed Organometallic Halide Perovskite Light-Emitting Diodes on Elastic Substrates. Adv. Mater. 2021, 33, e2102095. [Google Scholar] [CrossRef] [PubMed]
- Hu, B.; Li, D.; Manandharm, P.; Fan, Q.; Kasilingam, D.; Calvert, P. CNT/conducting polymer composite conductors impart high flexibility to textile electroluminescent devices. J. Mater. Chem. 2012, 22, 1598–1605. [Google Scholar] [CrossRef]
- Ohmori, M.; Ueno, S.; Kurachi, N.; Sawamura, M.; Hattori, M.; Inoue, T.; Miyabayashi, T.; Takao, Y.; Hibino, S.; Tsuchiya, I.; et al. Light-Emitting Seal Using Self-Aligned Organic Light-Emitting Structure. Jpn. J. Appl. Phys. 2008, 47, 472–475. [Google Scholar] [CrossRef]
- Koizumi, H.; Ooshiro, K.; Soeda, K.; Homma, T. Effect of Drying Condition of Emitting Layer Formed by Ink-Jet Coating on Optical Property and Film Morphology of Polymer-Based Organic Light-Emitting Diodes. ECS J. Solid State Sci. Technol. 2019, 8, R36–R41. [Google Scholar] [CrossRef]
- Villani, F.; Vacca, P.; Miscioscia, R.; Nenna, G.; Burrasca, G.; Fasolino, T.; Minarini, C.; Sala, D.d. OLED with Hole-Transporting Layer Fabricated by Ink-Jet Printing. Macromol. Symp. 2009, 286, 101–106. [Google Scholar] [CrossRef]
- Villani, F.; Vacca, P.; Nenna, G.; Valentino, O.; Burrasca, G.; Fasolino, T.; Minarini, C.; della Sala, D. Inkjet Printed Polymer Layer on Flexible Substrate for OLED Applications. J. Phys. Chem. C 2009, 113, 13398–13402. [Google Scholar] [CrossRef]
- Fisslthaler, E.; Sax, S.; Scherf, U.; Mauthner, G.; Moderegger, E.; Landfester, K.; List, E.J.W. Inkjet printed polymer light-emitting devices fabricated by thermal embedding of semiconducting polymer nanospheres in an inert matrix. Appl. Phys. Lett. 2008, 92, 183305. [Google Scholar] [CrossRef]
- Kwon, J.-T.; Eom, S.-H.; Moon, B.-S.; Shin, J.-K.; Kim, K.-S.; Lee, S.-H.; Lee, Y.-S. Studies on Printing Inks Containing Poly[2-methoxy-5-(2-ethylhexyl-oxyl)-1,4-phenylenevinylene] as an Emissive Material for the Fabrication of Polymer Light-Emitting Diodes by Inkjet Printing. Bull. Korean Chem. Soc. 2012, 33, 464–468. [Google Scholar] [CrossRef]
- Wang, M.; Yang, G.-Z.; Wang, M.; Liu, T. Effect of film thickness controlled by ink-jet printing method on the optical properties of an electroluminescent polymer. Polym. Adv. Technol. 2010, 21, 381–385. [Google Scholar] [CrossRef]
- Wei, C.; Zhuang, J.; Zhang, D.; Guo, W.; Yang, D.; Xie, Z.; Tang, J.; Su, W.; Zeng, H.; Cui, Z. Pyridine-Based Electron-Transport Materials with High Solubility, Excellent Film-Forming Ability, and Wettability for Inkjet-Printed OLEDs. ACS Appl. Mater. Interfaces 2017, 9, 38716–38727. [Google Scholar] [CrossRef]
- Liu, L.; Chen, D.; Xie, J.; Piao, J.; Liu, Y.; Wang, W.; Cao, K.; Chen, S. Universally applicable small-molecule co-host ink formulation for inkjet printing red, green, and blue phosphorescent organic light-emitting diodes. Org. Electron. 2021, 96, 106247. [Google Scholar] [CrossRef]
- Gohda, T.; Kobayashi, Y.; Okano, K.; Inoue, S.; Okamoto, K.; Hashimoto, S.; Yamamoto, E.; Morita, H.; Mitsui, S.; Koden, M. 58.3: A 3.6-In. 202-ppi Full-Color AMPLED Display Fabricated by Ink-Jet Method. SID Symp. Dig. Tech. Pap. 2006, 37, 1767–1770. [Google Scholar] [CrossRef]
- Cao, X.; Ye, Y.; Liu, X.; Guo, T.; Tang, Q. 54.3: Realization of Uniform OLED Pixels based on Multi-nozzle by Inkjet printing. SID Symp. Dig. Tech. Pap. 2021, 52, 395–397. [Google Scholar] [CrossRef]
- Shimoda, T.; Kanbe, S.; Kobayashi, H.; Seki, S.; Kiguchi, H.; Yudasaka, I.; Kimura, M.; Miyashita, S.; Friend, R.H.; Burroughes, J.H.; et al. 26.3: Multicolor Pixel Patterning of Light-Emitting Polymers by Ink-Jet Printing. SID Symp. Dig. Tech. Pap. 1999, 30, 376–379. [Google Scholar] [CrossRef]
- Bharathan, J.; Yang, Y. Polymer electroluminescent devices processed by inkjet printing: I. Polymer light-emitting logo. Appl. Phys. Lett. 1998, 72, 2660–2662. [Google Scholar] [CrossRef]
- Kobayashi, H.; Kanbe, S.; Seki, S.; Kigchi, H.; Kimura, M.; Yudasaka, I.; Miyashita, S.; Shimoda, T.; Towns, C.R.; Burroughes, J.H.; et al. A novel RGB multicolor light-emitting polymer display. Synth. Met. 2000, 111–112, 125–128. [Google Scholar] [CrossRef]
- Shimoda, T. 39.1: Invited Paper: Ink-jet Technology for Fabrication Processes of Flat Panel Displays. SID Symp. Dig. Tech. Pap. 2003, 34, 1178–1181. [Google Scholar] [CrossRef]
- Wang, J.; Song, C.; Zhong, Z.; Hu, Z.; Han, S.; Xu, W.; Peng, J.; Ying, L.; Wang, J.; Cao, Y. In situ patterning of microgrooves via inkjet etching for a solution-processed OLED display. J. Mater. Chem. C 2017, 5, 5005–5009. [Google Scholar] [CrossRef]
- Gereanu, A.-G.; Sartorio, C.; Bonasera, A.; Giuliano, G.; Cataldo, S.; Scopelliti, M.; Arrabito, G.; Pignataro, B. Pseudo-Planar Organic Heterojunctions by Sequential Printing of Quasi-Miscible Inks. Coatings 2021, 11, 586. [Google Scholar] [CrossRef]
- Lee, S.H.; Lee, U.J.; Yu, J.H.; Yun, G.-Y.; Kang, K.-T.; Lee, J.K. Characterization of inkjet-printed P3TH:PCBM bulk heterojunction films for ITO-free polymer solar cells. Macromol. Res. 2013, 22, 219–222. [Google Scholar] [CrossRef]
- Eom, S.H.; Park, H.; Mujawar, S.H.; Yoon, S.C.; Kim, S.-S.; Na, S.-I.; Kang, S.-J.; Khim, D.; Kim, D.-Y.; Lee, S.-H. High efficiency polymer solar cells via sequential inkjet-printing of PEDOT:PSS and P3HT:PCBM inks with additives. Org. Electron. 2010, 11, 1516–1522. [Google Scholar] [CrossRef]
- Park, E.K.; Kim, J.H.; Lee, D.H.; Kim, K.S.; Kal, J.H.; Hahn, J.S.; Kim, Y.S. All Ink-Jet Printed P3HT:PCBM Organic Solar Cells on ITO-Coated Glass Substrate. J. Nanosci. Nanotechnol. 2015, 15, 8790–8796. [Google Scholar] [CrossRef] [PubMed]
- Eggenhuisen, T.M.; Galagan, Y.; Coenen, E.W.C.; Voorthuijzen, W.P.; Slaats, M.W.L.; Kommeren, S.A.; Shanmuganam, S.; Coenen, M.J.J.; Andriessen, R.; Groen, W.A. Digital fabrication of organic solar cells by Inkjet printing using non-halogenated solvents. Sol. Energy Mater. Sol. Cells 2015, 134, 364–372. [Google Scholar] [CrossRef]
- Mitra, K.Y.; Alalawe, A.; Voigt, S.; Boeffel, C.; Baumann, R.R. Manufacturing of All Inkjet-Printed Organic Photovoltaic Cell Arrays and Evaluating their Suitability for Flexible Electronics. Micromachines 2018, 9, 642. [Google Scholar] [CrossRef] [PubMed]
- Azzellino, G.; Grimoldi, A.; Binda, M.; Caironi, M.; Natali, D.; Sampietro, M. Fully inkjet-printed organic photodetectors with high quantum yield. Adv. Mater. 2013, 25, 6829–6833. [Google Scholar] [CrossRef] [PubMed]
- Cesarini, M.; Brigante, B.; Caironi, M.; Natali, D. Reproducible, High Performance Fully Printed Photodiodes on Flexible Substrates through the Use of a Polyethylenimine Interlayer. ACS Appl. Mater. Interfaces 2018, 10, 32380–32386. [Google Scholar] [CrossRef] [PubMed]
- Hoth, C.N.; Choulis, S.A.; Schilinsky, P.; Brabec, C.J. High Photovoltaic Performance of Inkjet Printed Polymer:Fullerene Blends. Adv. Mater. 2007, 19, 3973–3978. [Google Scholar] [CrossRef]
- Aernouts, T.; Aleksandrov, T.; Girotto, C.; Genoe, J.; Poortmans, J. Polymer based organic solar cells using ink-jet printed active layers. Appl. Phys. Lett. 2008, 92, 033306. [Google Scholar] [CrossRef]
- Hoth, C.N.; Schilinsky, P.; Choulis, S.A.; Brabec, C.J. Printing highly efficient organic solar cells. Nano Lett. 2008, 8, 2806–2813. [Google Scholar] [CrossRef]
- Hoth, C.N.; Choulis, S.A.; Schilinsky, P.; Brabec, C.J. On the effect of poly(3-hexylthiophene) regioregularity on inkjet printed organic solar cells. J. Mater. Chem. 2009, 19, 5398–5404. [Google Scholar] [CrossRef]
- Jung, J.; Kim, D.; Lim, J.; Lee, C.; Yoon, S.C. Highly Efficient Inkjet-Printed Organic Photovoltaic Cells. Jpn. J. Appl. Phys. 2010, 49, 05EB03. [Google Scholar] [CrossRef]
- Lange, A.; Wegener, M.; Boeffel, C.; Fischer, B.; Wedel, A.; Neher, D. A new approach to the solvent system for inkjet-printed P3HT:PCBM solar cells and its use in devices with printed passive and active layers. Sol. Energy Mater. Sol. Cells 2010, 94, 1816–1821. [Google Scholar] [CrossRef]
- Hoth, C.N.; Schilinsky, P.; Choulis, S.A.; Brabec, C.J. Photovoltaic Loss Analysis of Inkjet-Printed Polymer Solar Cells Using Pristine Solvent Formulations. Macromol. Symp. 2010, 291–292, 287–292. [Google Scholar] [CrossRef]
- Lee, J.K.; Lee, U.J.; Kim, M.-K.; Lee, S.H.; Kang, K.-T. Direct writing of semiconducting polythiophene and fullerene derivatives composite from bulk heterojunction solar cell by inkjet printing. Thin Solid Film. 2011, 519, 5649–5653. [Google Scholar] [CrossRef]
- Haldar, A.; Liao, K.-S.; Curran, S.A. Effect of printing parameters and annealing on organic photovoltaics performance. J. Mater. Res. 2012, 27, 2079–2087. [Google Scholar] [CrossRef]
- Neophytou, M.; Cambarau, W.; Hermerschmidt, F.; Waldauf, C.; Christodoulou, C.; Pacios, R.; Choulis, S.A. Inkjet-printed polymer–fullerene blends for organic electronic applications. Microelectron. Eng. 2012, 95, 102–106. [Google Scholar] [CrossRef]
- Lange, A.; Hollaender, A.; Wegener, M. Modified processing conditions for optimized organic solar cells with inkjet printed P3HT:PC61BM active layers. Mater. Sci. Eng. B 2013, 178, 299–305. [Google Scholar] [CrossRef]
- Lim, G.-H.; Zhuo, J.-M.; Wong, L.-Y.; Chua, S.-J.; Chua, L.-L.; Ho, P.K.H. A transition solvent strategy to print polymer:fullerene films using halogen-free solvents for solar cell applications. Org. Electron. 2014, 15, 449–460. [Google Scholar] [CrossRef]
- Haldar, A.; Liao, K.-S.; Curran, S.A. Fabrication of inkjet printed organic photovoltaics on flexible Ag electrode with additives. Sol. Energy Mater. Sol. Cells 2014, 125, 283–290. [Google Scholar] [CrossRef]
- Bruno, A.; Villani, F.; Grimaldi, I.A.; Loffredo, F.; Morvillo, P.; Diana, R.; Haque, S.; Minarini, C. Morphological and spectroscopic characterizations of inkjet-printed poly(3-hexylthiophene-2,5-diyl): Phenyl-C61-butyric acid methyl ester blends for organic solar cell applications. Thin Solid Film. 2014, 560, 14–19. [Google Scholar] [CrossRef]
- Eom, S.H.; Senthilarasu, S.; Uthirakumar, P.; Yoon, S.C.; Lim, J.; Lee, C.; Lim, H.S.; Lee, J.; Lee, S.-H. Polymer solar cells based on inkjet-printed PEDOT:PSS layer. Org. Electron. 2009, 10, 536–542. [Google Scholar] [CrossRef]
- Steirer, K.X.; Berry, J.J.; Reese, M.O.; van Hest, M.F.A.M.; Miedaner, A.; Liberatore, M.W.; Collins, R.T.; Ginley, D.S. Ultrasonically sprayed and inkjet printed thin film electrodes for organic solar cells. Thin Solid Film. 2009, 517, 2781–2786. [Google Scholar] [CrossRef]
- De Girolamo Del Mauro, A.; Diana, R.; Grimaldi, I.A.; Loffredo, F.; Morvillo, P.; Villani, F.; Minarini, C. Polymer solar cells with inkjet-printed doped-PEDOT: PSS anode. Polym. Compos. 2013, 34, 1493–1499. [Google Scholar] [CrossRef]
- Murali, B.; Kim, D.-G.; Kang, J.-W.; Kim, J. Inkjet-printing of hybrid transparent conducting electrodes for organic solar cells. Phys. Status Solidi A 2014, 211, 1801–1806. [Google Scholar] [CrossRef]
- Kommeren, S.; Coenen, M.J.J.; Eggenhuisen, T.M.; Slaats, T.W.L.; Gorter, H.; Groen, P. Combining solvents and surfactants for inkjet printing PEDOT:PSS on P3HT/PCBM in organic solar cells. Org. Electron. 2018, 61, 282–288. [Google Scholar] [CrossRef]
- Yang, Y.; Nakamichi, T.; Yoshioka, H.; Omi, S.; Goto, R.; Watanabe, H.; Oki, Y. Intensity Sensitive Organic Photodiodes Patterned by Inkjet Method. Mol. Cryst. Liq. Cryst. 2011, 538, 136–142. [Google Scholar] [CrossRef]
- Singh, A.; Gupta, S.K.; Garg, A. Inverted polymer bulk heterojunction solar cells with ink-jet printed electron transport and active layers. Org. Electron. 2016, 35, 118–127. [Google Scholar] [CrossRef]
- Teichler, A.; Eckardt, R.; Hoeppener, S.; Friebe, C.; Perelaer, J.; Senes, A.; Morana, M.; Brabec, C.J.; Schubert, U.S. Combinatorial Screening of Polymer:Fullerene Blends for Organic Solar Cells by Inkjet Printing. Adv. Energy Mater. 2011, 1, 105–114. [Google Scholar] [CrossRef]
- Fauzia, V.; Umar, A.A.; Salleh, M.M.; Yahaya, M. The Effect of Donor:Acceptor Ratio on the Generated Photocurrent of Inkjet Printed Blended Poly (3-Octylthiophene-2.5-Diyl) and (6,6)-Phenyl C71 Butyric Acid Methyl Ester Bulk Heterojunction Organic Solar Cells. Mater. Sci. Forum 2010, 663–665, 823–827. [Google Scholar] [CrossRef]
- Fauzia, V.; Umar, A.A.; Salleh, M.M.; Yahaya, M. The effect of solvent on the morphology of an inkjet printed active layer of bulk heterojunction solar cells. Adv. Nat. Sci. Nanosci. Nanotechnol. 2011, 2, 015014. [Google Scholar] [CrossRef]
- Fauzia, V.; Umar, A.A.; Salleh, M.M.; Yahaya, M. Study Phase Separation of Donor: Acceptor in Inkjet Printed Thin Films of Bulk Heterojunction Organic Solar Cells Using AFM Phase Imaging. Adv. Mater. Res. 2011, 364, 465–469. [Google Scholar] [CrossRef]
- Morvillo, P.; Grimaldi, I.A.; Diana, R.; Loffredo, F.; Villani, F. Study of the microstructure of inkjet-printed P3HT:PCBM blend for photovoltaic applications. J. Mater. Sci. 2012, 48, 2920–2927. [Google Scholar] [CrossRef]
- Lange, A.; Wegener, M.; Fischer, B.; Janietz, S.; Wedel, A. Solar Cells with Inkjet Printed Polymer Layers. Energy Procedia 2012, 31, 150–158. [Google Scholar] [CrossRef]
- Nakamichi, T.; Yang, Y.; Ohta, T.; Yoshioka, H.; Yahiro, M.; Era, M.; Watanabe, H.; Cui, Y.; Oki, Y.; Qian, G. Stackable spectral-sensitive conductive films based on cyanine aggregates via an inkjet method. Dye. Pigment. 2013, 98, 333–338. [Google Scholar] [CrossRef]
- Lange, A.; Schindler, W.; Wegener, M.; Fostiropoulos, K.; Janietz, S. Inkjet printed solar cell active layers prepared from chlorine-free solvent systems. Sol. Energy Mater. Sol. Cells 2013, 109, 104–110. [Google Scholar] [CrossRef]
- Lange, A.; Schindler, W.; Wegener, M.; Fostiropoulos, K.; Janietz, S. Inkjet printed solar cell active layers based on a novel, amorphous polymer. J. Nanosci. Nanotechnol. 2013, 13, 5209–5214. [Google Scholar] [CrossRef]
- Jung, S.; Sou, A.; Banger, K.; Ko, D.-H.; Chow, P.C.Y.; McNeill, C.R.; Sirringhaus, H. All-Inkjet-Printed, All-Air-Processed Solar Cells. Adv. Energy Mater. 2014, 4, 1400432. [Google Scholar] [CrossRef]
- Eggenhuisen, T.M.; Galagan, Y.; Biezemans, A.F.K.V.; Slaats, T.M.W.L.; Voorthuijzen, W.P.; Kommeren, S.; Shanmugam, S.; Teunissen, J.P.; Hadipour, A.; Verhees, W.J.H.; et al. High efficiency, fully inkjet printed organic solar cells with freedom of design. J. Mater. Chem. A 2015, 3, 7255–7262. [Google Scholar] [CrossRef]
- Lamont, C.A.; Eggenhuisen, T.M.; Coenen, M.J.J.; Slaats, T.W.L.; Andriessen, R.; Groen, P. Tuning the viscosity of halogen free bulk heterojunction inks for inkjet printed organic solar cells. Org. Electron. 2015, 17, 107–114. [Google Scholar] [CrossRef]
- Sankaran, S.; Glaser, K.; Gärtner, S.; Rödlmeier, T.; Sudau, K.; Hernandez-Sosa, G.; Colsmann, A. Fabrication of polymer solar cells from organic nanoparticle dispersions by doctor blading or ink-jet printing. Org. Electron. 2016, 28, 118–122. [Google Scholar] [CrossRef]
- Grimoldi, A.; Colella, L.; La Monaca, L.; Azzellino, G.; Caironi, M.; Bertarelli, C.; Natali, D.; Sampietro, M. Inkjet printed polymeric electron blocking and surface energy modifying layer for low dark current organic photodetectors. Org. Electron. 2016, 36, 29–34. [Google Scholar] [CrossRef]
- Maisch, P.; Tam, K.C.; Schilinsky, P.; Egelhaaf, H.-J.; Brabec, C.J. Shy Organic Photovoltaics: Digitally Printed Organic Solar Modules With Hidden Interconnects. Sol. RRL 2018, 2, 1800005. [Google Scholar] [CrossRef]
- Gribkova, O.L.; Saf’yanova, L.V.; Tameev, A.R.; Lypenko, D.A.; Tverskoi, V.A.; Nekrasov, A.A. A Water-Soluble Polyaniline Complex for Ink-Jet Printing of Optoelectronic Devices. Tech. Phys. Lett. 2018, 44, 239–242. [Google Scholar] [CrossRef]
- Maisch, P.; Eisenhofer, L.M.; Tam, K.C.; Distler, A.; Voigt, M.M.; Brabec, C.J.; Egelhaaf, H.-J. A generic surfactant-free approach to overcome wetting limitations and its application to improve inkjet-printed P3HT:non-fullerene acceptor PV. J. Mater. Chem. A 2019, 7, 13215–13224. [Google Scholar] [CrossRef]
- Corzo, D.; Almasabi, K.; Bihar, E.; Macphee, S.; Rosas-Villalva, D.; Gasparini, N.; Inal, S.; Baran, D. Digital Inkjet Printing of High-Efficiency Large-Area Nonfullerene Organic Solar Cells. Adv. Mater. Technol. 2019, 4, 1900040. [Google Scholar] [CrossRef]
- Ganesan, S.; Gollu, S.R.; Alam khan, J.; Kushwaha, A.; Gupta, D. Inkjet printing of zinc oxide and P3HT:ICBA in ambient conditions for inverted bulk heterojunction solar cells. Opt. Mater. 2019, 94, 430–435. [Google Scholar] [CrossRef]
- Gribkova, O.L.; Kabanova, V.A.; Tameev, A.R.; Nekrasov, A.A. Ink-Jet Printing of Polyaniline Layers for Perovskite Solar Cells. Tech. Phys. Lett. 2019, 45, 858–861. [Google Scholar] [CrossRef]
- Corzo, D.; Bihar, E.; Alexandre, E.B.; Rosas-Villalva, D.; Baran, D. Ink Engineering of Transport Layers for 9.5% Efficient All-Printed Semitransparent Nonfullerene Solar Cells. Adv. Funct. Mater. 2020, 31, 2005763. [Google Scholar] [CrossRef]
- Bihar, E.; Corzo, D.; Hidalgo, T.C.; Rosas-Villalva, D.; Salama, K.N.; Inal, S.; Baran, D. Fully Inkjet-Printed, Ultrathin and Conformable Organic Photovoltaics as Power Source Based on Cross-Linked PEDOT:PSS Electrodes. Adv. Mater. Technol. 2020, 5, 2000226. [Google Scholar] [CrossRef]
- Perkhun, P.; Köntges, W.; Pourcin, F.; Esteoulle, D.; Barulina, E.; Yoshimoto, N.; Pierron, P.; Margeat, O.; Videlot-Ackermann, C.; Bharwal, A.K.; et al. High-Efficiency Digital Inkjet-Printed Non-Fullerene Polymer Blends Using Non-Halogenated Solvents. Adv. Energy Sustain. Res. 2021, 2, 2000086. [Google Scholar] [CrossRef]
- Gao, B.; Meng, J. Flexible CH3NH3PbI3 perovskite solar cells with high stability based on all inkjet printing. Sol. Energy 2021, 230, 598–604. [Google Scholar] [CrossRef]
- Chen, X.; Huang, R.; Han, Y.; Zha, W.; Fang, J.; Lin, J.; Luo, Q.; Chen, Z.; Ma, C.Q. Balancing the Molecular Aggregation and Vertical Phase Separation in the Polymer: Nonfullerene Blend Films Enables 13.09% Efficiency of Organic Solar Cells with Inkjet-Printed Active Layer. Adv. Energy Mater. 2022, 12, 2200044. [Google Scholar] [CrossRef]
- Chen, C.-T.; Yang, H.-H. Inkjet printing of composite hole transport layers and bulk heterojunction structure for organic solar cells. Thin Solid Film. 2022, 751, 139217. [Google Scholar] [CrossRef]
- Kit-Anan, W.; Olarnwanich, A.; Sriprachuabwong, C.; Karuwan, C.; Tuantranont, A.; Wisitsoraat, A.; Srituravanich, W.; Pimpin, A. Disposable paper-based electrochemical sensor utilizing inkjet-printed Polyaniline modified screen-printed carbon electrode for Ascorbic acid detection. J. Electroanal. Chem. 2012, 685, 72–78. [Google Scholar] [CrossRef]
- Setti, L.; Fraleonimorgera, A.; Mencarelli, I.; Filippini, A.; Ballarin, B.; Dibiase, M. An HRP-based amperometric biosensor fabricated by thermal inkjet printing. Sens. Actuators B Chem. 2007, 126, 252–257. [Google Scholar] [CrossRef]
- Chennit, K.; Delavari, N.; Mekhmoukhen, S.; Boukraa, R.; Fillaud, L.; Zrig, S.; Battaglini, N.; Piro, B.; Noël, V.; Zozoulenko, I.; et al. Inkjet-Printed, Coplanar Electrolyte-Gated Organic Field-Effect Transistors on Flexible Substrates: Fabrication, Modeling, and Applications in Biodetection. Adv. Mater. Technol. 2022, 8, 2200300. [Google Scholar] [CrossRef]
- Oh, W.K.; Kim, S.; Shin, K.H.; Jang, Y.; Choi, M.; Jang, J. Inkjet-printed polyaniline patterns for exocytosed molecule detection from live cells. Talanta 2013, 105, 333–339. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Pan, L.; Ma, Z.; Yan, K.; Cheng, W.; Shi, Y.; Yu, G. All Inkjet-Printed Amperometric Multiplexed Biosensors Based on Nanostructured Conductive Hydrogel Electrodes. Nano Lett. 2018, 18, 3322–3327. [Google Scholar] [CrossRef]
- Bardpho, C.; Rattanarat, P.; Siangproh, W.; Chailapakul, O. Ultra-high performance liquid chromatographic determination of antioxidants in teas using inkjet-printed graphene-polyaniline electrode. Talanta 2016, 148, 673–679. [Google Scholar] [CrossRef]
- Karuwan, C.; Sriprachuabwong, C.; Wisitsoraat, A.; Phokharatkul, D.; Sritongkham, P.; Tuantranont, A. Inkjet-printed graphene-poly(3,4-ethylenedioxythiophene):poly(styrene-sulfonate) modified on screen printed carbon electrode for electrochemical sensing of salbutamol. Sens. Actuators B Chem. 2012, 161, 549–555. [Google Scholar] [CrossRef]
- Tseng, C.-C.; Chou, Y.-H.; Hsieh, T.-W.; Wang, M.-W.; Shu, Y.-Y.; Ger, M.-D. Interdigitated electrode fabricated by integration of ink-jet printing with electroless plating and its application in gas sensor. Colloids Surf. A Physicochem. Eng. Asp. 2012, 402, 45–52. [Google Scholar] [CrossRef]
- Andò, B.; Baglio, S.; Di Pasquale, G.; Pollicino, A.; D’agata, S.; Gugliuzzo, C.; Lombardo, C.; Re, G. An Inkjet Printed CO2 Gas Sensor. Procedia Eng. 2015, 120, 628–631. [Google Scholar] [CrossRef]
- Bihar, E.; Wustoni, S.; Pappa, A.M.; Salama, K.N.; Baran, D.; Inal, S. A fully inkjet-printed disposable glucose sensor on paper. npj Flex. Electron. 2018, 2, 30. [Google Scholar] [CrossRef]
- Setti, L.; Fraleoni-Morgera, A.; Ballarin, B.; Filippini, A.; Frascaro, D.; Piana, C. An amperometric glucose biosensor prototype fabricated by thermal inkjet printing. Biosens. Bioelectron. 2005, 20, 2019–2026. [Google Scholar] [CrossRef] [PubMed]
- Yun, Y.H.; Lee, B.K.; Choi, J.S.; Kim, S.; Yoo, B.; Kim, Y.S.; Park, K.; Cho, Y.W. A glucose sensor fabricated by piezoelectric inkjet printing of conducting polymers and bienzymes. Anal. Sci. 2011, 27, 375. [Google Scholar] [CrossRef] [PubMed]
- Weng, B.; Morrin, A.; Shepherd, R.; Crowley, K.; Killard, A.J.; Innis, P.C.; Wallace, G.G. Wholly printed polypyrrole nanoparticle-based biosensors on flexible substrate. J. Mater. Chem. B 2014, 2, 793–799. [Google Scholar] [CrossRef] [PubMed]
- Song, E.; da Costa, T.H.; Choi, J.-W. A chemiresistive glucose sensor fabricated by inkjet printing. Microsyst. Technol. 2016, 23, 3505–3511. [Google Scholar] [CrossRef]
- Song, E.; Tortorich, R.P.; da Costa, T.H.; Choi, J.-W. Inkjet printing of conductive polymer nanowire network on flexible substrates and its application in chemical sensing. Microelectron. Eng. 2015, 145, 143–148. [Google Scholar] [CrossRef]
- Khan, S.; Ali, S.; Khan, A.; Wang, B.; Bermak, A. Printing Sensors on Biocompatible Substrates for Selective Detection of Glucose. IEEE Sens. J. 2021, 21, 4167–4175. [Google Scholar] [CrossRef]
- Sriprachuabwong, C.; Karuwan, C.; Wisitsorrat, A.; Phokharatkul, D.; Lomas, T.; Sritongkham, P.; Tuantranont, A. Inkjet-printed graphene-PEDOT:PSS modified screen printed carbon electrode for biochemical sensing. J. Mater. Chem. 2012, 22, 5478–5485. [Google Scholar] [CrossRef]
- Crowley, K.; Morrin, A.; Shepherd, R.L.; in het Panhuis, M.; Wallace, G.G.; Smyth, M.R.; Killard, A.J. Fabrication of Polyaniline-Based Gas Sensors Using Piezoelectric Inkjet and Screen Printing for the Detection of Hydrogen Sulfide. IEEE Sens. J. 2010, 10, 1419–1426. [Google Scholar] [CrossRef]
- Beduk, T.; Bihar, E.; Surya, S.G.; Castillo, A.N.; Inal, S.; Salama, K.N. A paper-based inkjet-printed PEDOT:PSS/ZnO sol-gel hydrazine sensor. Sens. Actuators B Chem. 2020, 306, 127539. [Google Scholar] [CrossRef]
- Crowley, K.; Morrin, A.; Hernandez, A.; Omalley, E.; Whitten, P.; Wallace, G.; Smyth, M.; Killard, A. Fabrication of an ammonia gas sensor using inkjet-printed polyaniline nanoparticles. Talanta 2008, 77, 710–717. [Google Scholar] [CrossRef]
- Crowley, K.; O’Malley, E.; Morrin, A.; Smyth, M.R.; Killard, A.J. An aqueous ammonia sensor based on an inkjet-printed polyaniline nanoparticle-modified electrode. Analyst 2008, 133, 391–399. [Google Scholar] [CrossRef]
- Lee, C.H.; Chuang, W.Y.; Cowan, M.A.; Wu, W.J.; Lin, C.T. A low-power integrated humidity CMOS sensor by printing-on-chip technology. Sensors 2014, 14, 9247–9255. [Google Scholar] [CrossRef] [PubMed]
- Hibbard, T.; Crowley, K.; Killard, A.J. Direct measurement of ammonia in simulated human breath using an inkjet-printed polyaniline nanoparticle sensor. Anal. Chim. Acta 2013, 779, 56–63. [Google Scholar] [CrossRef]
- Hibbard, T.; Crowley, K.; Kelly, F.; Ward, F.; Holian, J.; Watson, A.; Killard, A.J. Point of care monitoring of hemodialysis patients with a breath ammonia measurement device based on printed polyaniline nanoparticle sensors. Anal. Chem. 2013, 85, 12158–12165. [Google Scholar] [CrossRef] [PubMed]
- Peřinka, N.; Držková, M.; Randjelović, D.V.; Bondavalli, P.; Hajná, M.; Bober, P.; Syrový, T.; Bonnassieaux, Y.; Stejskal, J. Application of Ink-Jet Printing and Spray Coating for the Fabrication of Polyaniline/Poly(N-Vinylpyrrolidone)-Based Ammonia Gas Sensor. Key Eng. Mater. 2015, 644, 61–64. [Google Scholar] [CrossRef]
- Clark, N.B.; Maher, L.J. Non-contact, radio frequency detection of ammonia with a printed polyaniline sensor. React. Funct. Polym. 2009, 69, 594–600. [Google Scholar] [CrossRef]
- Peřinka, N.; Držková, M.; Randjelović, D.V.; Bondavalli, P.; Hajná, M.; Bober, P.; Syrový, T.; Bonnassieaux, Y.; Stejskal, J. Characterization of Polyaniline-Based Ammonia Gas Sensors Prepared by Means of Spray Coating and Ink-Jet Printing. Sens. Lett. 2014, 12, 1620–1627. [Google Scholar] [CrossRef]
- Ma, Z.; Chen, P.; Cheng, W.; Yan, K.; Pan, L.; Shi, Y.; Yu, G. Highly Sensitive, Printable Nanostructured Conductive Polymer Wireless Sensor for Food Spoilage Detection. Nano Lett. 2018, 18, 4570–4575. [Google Scholar] [CrossRef]
- Dipak, P.; Tiwari, D.C.; Samadhiya, A.; Kumar, N.; Biswajit, T.; Singh, P.A.; Tiwari, R.K. Synthesis of polyaniline (printable nanoink) gas sensor for the detection of ammonia gas. J. Mater. Sci. Mater. Electron. 2020, 31, 22512–22521. [Google Scholar] [CrossRef]
- Wongchoosuk, C.; Jangtawee, P.; Lokavee, P.; Udomrat, S.; Sudkeaw, P.; Kerdcharoen, T. Novel Flexible NH3 Gas Sensor Prepared by Ink-Jet Printing Technique. Adv. Mater. Res. 2012, 506, 39–42. [Google Scholar] [CrossRef]
- Seekaew, Y.; Lokavee, S.; Phokharatkul, D.; Wisitsoraat, A.; Kerdcharoen, T.; Wongchoosuk, C. Low-cost and flexible printed graphene–PEDOT:PSS gas sensor for ammonia detection. Org. Electron. 2014, 15, 2971–2981. [Google Scholar] [CrossRef]
- Li, S.; Li, Y.; Chen, S.; Tang, W.; Huang, Y.; Peng, S.; Qi, J.; Guo, X. Improved Sensitivity of Inkjet-Printed PEDOT:PSS Ammonia Sensor With “Nonideal” Morphology. IEEE Sens. Lett. 2018, 2, 2000204. [Google Scholar] [CrossRef]
- Lv, D.; Chen, W.; Shen, W.; Peng, M.; Zhang, X.; Wang, R.; Xu, L.; Xu, W.; Song, W.; Tan, R. Enhanced flexible room temperature ammonia sensor based on PEDOT: PSS thin film with FeCl3 additives prepared by inkjet printing. Sens. Actuators B Chem. 2019, 298, 126890. [Google Scholar] [CrossRef]
- Fujita, H.; Hao, M.; Takeoka, S.; Miyahara, Y.; Goda, T.; Fujie, T. Paper-Based Wearable Ammonia Gas Sensor Using Organic–Inorganic Composite PEDOT:PSS with Iron(III) Compounds. Adv. Mater. Technol. 2022, 7, 2101486. [Google Scholar] [CrossRef]
- Brannelly, N.T.; Killard, A.J. A Printed and Microfabricated Sensor Device for the Sensitive Low Volume Measurement of Aqueous Ammonia. Electroanalysis 2017, 29, 162–171. [Google Scholar] [CrossRef]
- Zea, M.; Texido, R.; Villa, R.; Borros, S.; Gabriel, G. Specially Designed Polyaniline/Polypyrrole Ink for a Fully Printed Highly Sensitive pH Microsensor. ACS Appl. Mater. Interfaces 2021, 13, 33524–33535. [Google Scholar] [CrossRef] [PubMed]
- Demuru, S.; Kunnel, B.P.; Briand, D. Real-Time Multi-Ion Detection in the Sweat Concentration Range Enabled by Flexible, Printed, and Microfluidics-Integrated Organic Transistor Arrays. Adv. Mater. Technol. 2020, 5, 2000328. [Google Scholar] [CrossRef]
- Demuru, S.; Kunnel, B.P.; Briand, D. Thin film organic electrochemical transistors based on hybrid PANI/PEDOT:PSS active layers for enhanced pH sensing. Biosens. Bioelectron. X 2021, 7, 100065. [Google Scholar] [CrossRef]
- Mabrook, M.F.; Pearson, C.; Petty, M.C. Inkjet-Printed Polymer Films for the Detection of Organic Vapors. IEEE Sens. J. 2006, 6, 1435–1444. [Google Scholar] [CrossRef]
- Yoon, B.; Park, I.S.; Shin, H.; Park, H.J.; Lee, C.W.; Kim, J.M. A litmus-type colorimetric and fluorometric volatile organic compound sensor based on inkjet-printed polydiacetylenes on paper substrates. Macromol. Rapid Commun. 2013, 34, 731–735. [Google Scholar] [CrossRef] [PubMed]
- Mabrook, M.F.; Pearson, C.; Petty, M.C. Inkjet-printed polypyrrole thin films for vapour sensing. Sens. Actuators B Chem. 2006, 115, 547–551. [Google Scholar] [CrossRef]
- Li, B.; Santhanam, S.; Schultz, L.; Jeffries-El, M.; Iovu, M.C.; Sauvé, G.; Cooper, J.; Zhang, R.; Revelli, J.C.; Kusne, A.G.; et al. Inkjet printed chemical sensor array based on polythiophene conductive polymers. Sens. Actuators B Chem. 2007, 123, 651–660. [Google Scholar] [CrossRef]
- Alshammari, A.S.; Alenezi, M.R.; Lai, K.T.; Silva, S.R.P. Inkjet printing of polymer functionalized CNT gas sensor with enhanced sensing properties. Mater. Lett. 2017, 189, 299–302. [Google Scholar] [CrossRef]
- Timsorn, K.; Wongchoosuk, C. Inkjet printing of room-temperature gas sensors for identification of formalin contamination in squids. J. Mater. Sci. Mater. Electron. 2019, 30, 4782–4791. [Google Scholar] [CrossRef]
- Vigna, L.; Verna, A.; Marasso, S.L.; Sangermano, M.; D’Angelo, P.; Pirri, F.C.; Cocuzza, M. The effects of secondary doping on ink-jet printed PEDOT:PSS gas sensors for VOCs and NO2 detection. Sens. Actuators B Chem. 2021, 345, 130381. [Google Scholar] [CrossRef]
- Hallil, H.; Zhang, Q.; Coquet, P.; Pichonat, E.; Happy, H.; Dejous, C.; Bahoumina, P.; Pieper, K.; Lachaud, J.L.; Rebiere, D.; et al. Differential Passive Microwave Planar Resonator- Based Sensor for Chemical Particle Detection in Polluted Environments. IEEE Sens. J. 2019, 19, 1346–1353. [Google Scholar] [CrossRef]
- Chang, J.B.; Liu, V.; Subramanian, V.; Sivula, K.; Luscombe, C.; Murphy, A.; Liu, J.; Fréchet, J.M.J. Printable polythiophene gas sensor array for low-cost electronic noses. J. Appl. Phys. 2006, 100, 014506. [Google Scholar] [CrossRef]
- Bihar, E.; Deng, Y.; Miyake, T.; Saadaoui, M.; Malliaras, G.G.; Rolandi, M. A Disposable paper breathalyzer with an alcohol sensing organic electrochemical transistor. Sci. Rep. 2016, 6, 27582. [Google Scholar] [CrossRef]
- Jung, M.; Kim, K.; Kim, B.; Cheong, H.; Shin, K.; Kwon, O.S.; Park, J.J.; Jeon, S. Paper-Based Bimodal Sensor for Electronic Skin Applications. ACS Appl. Mater. Interfaces 2017, 9, 26974–26982. [Google Scholar] [CrossRef] [PubMed]
- Correia, V.; Oliveira, J.; Perinka, N.; Costa, P.; Sowade, E.; Mitra, K.Y.; Baumann, R.R.; Lanceros-Mendez, S. All-Printed Piezoresistive Sensor Matrix with Organic Thin-Film Transistors as a Switch for Crosstalk Reduction. ACS Appl. Electron. Mater. 2020, 2, 1470–1477. [Google Scholar] [CrossRef]
- Yuan, Y.; Peng, B.; Chi, H.; Li, C.; Liu, R.; Liu, X. Layer-by-layer inkjet printing SPS:PEDOT NP/RGO composite film for flexible humidity sensors. RSC Adv. 2016, 6, 113298–113306. [Google Scholar] [CrossRef]
- Lo, L.W.; Zhao, J.; Wan, H.; Wang, Y.; Chakrabartty, S.; Wang, C. An Inkjet-Printed PEDOT:PSS-Based Stretchable Conductor for Wearable Health Monitoring Device Applications. ACS Appl. Mater. Interfaces 2021, 13, 21693–21702. [Google Scholar] [CrossRef]
- Kuzubasoglu, B.A.; Sayar, E.; Bahadir, S.K. Inkjet-Printed CNT/PEDOT:PSS Temperature Sensor on a Textile Substrate for Wearable Intelligent Systems. IEEE Sens. J. 2021, 21, 13090–13097. [Google Scholar] [CrossRef]
- Taccola, S.; Poliziani, A.; Santonocito, D.; Mondini, A.; Denk, C.; Ide, A.N.; Oberparleiter, M.; Greco, F.; Mattoli, V. Toward the Use of Temporary Tattoo Electrodes for Impedancemetric Respiration Monitoring and Other Electrophysiological Recordings on Skin. Sensors 2021, 21, 1197. [Google Scholar] [CrossRef]
- Lilliu, S.; Böberl, M.; Sramek, M.; Tedde, S.F.; Macdonald, J.E.; Hayden, O. Inkjet-printed organic photodiodes. Thin Solid Film. 2011, 520, 610–615. [Google Scholar] [CrossRef]
- Pace, G.; Grimoldi, A.; Rengert, Z.; Bazan, G.C.; Natali, D.; Caironi, M. Inkjet printed organic detectors with flat responsivity up to the NIR and inherent UV optical filtering. Synth. Met. 2019, 254, 92–96. [Google Scholar] [CrossRef]
- Ruiz-Preciado, L.A.; Baek, S.; Strobel, N.; Xia, K.; Seiberlich, M.; Park, S.-m.; Lemmer, U.; Jung, S.; Hernandez-Sosa, G. Monolithically printed all-organic flexible photosensor active matrix. Npj Flex. Electron. 2023, 7, 6. [Google Scholar] [CrossRef]
- Pace, G.; Grimoldi, A.; Natali, D.; Sampietro, M.; Coughlin, J.E.; Bazan, G.C.; Caironi, M. All-organic and fully-printed semitransparent photodetectors based on narrow bandgap conjugated molecules. Adv. Mater. 2014, 26, 6773–6777. [Google Scholar] [CrossRef]
- Kim, T.Y.; Ha, J.; Cho, K.; Pak, J.; Seo, J.; Park, J.; Kim, J.K.; Chung, S.; Hong, Y.; Lee, T. Transparent Large-Area MoS2 Phototransistors with Inkjet-Printed Components on Flexible Platforms. ACS Nano 2017, 11, 10273–10280. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, M.V.; Apte, S.K.; Naik, S.D.; Ambekar, J.D.; Kale, B.B. Processing and formulation of inkjet printable conducting polyaniline based ink for low cost, flexible humidity sensors using untreated polymeric substrate. Smart Mater. Struct. 2012, 21, 035023. [Google Scholar] [CrossRef]
- Kulkarni, M.V.; Apte, S.K.; Naik, S.D.; Ambekar, J.D.; Kale, B.B. Ink-jet printed conducting polyaniline based flexible humidity sensor. Sens. Actuators B Chem. 2013, 178, 140–143. [Google Scholar] [CrossRef]
- Zhang, R.; Peng, B.; Yuan, Y. Flexible printed humidity sensor based on poly(3,4-ethylenedioxythiophene)/reduced graphene oxide/Au nanoparticles with high performance. Compos. Sci. Technol. 2018, 168, 118–125. [Google Scholar] [CrossRef]
- Yuan, Y.; Zhang, Y.; Liu, R.; Liu, J.; Li, Z.; Liu, X. Humidity sensor fabricated by inkjet-printing photosensitive conductive inks PEDOT:PVMA on a paper substrate. RSC Adv. 2016, 6, 47498–47508. [Google Scholar] [CrossRef]
- Morais, R.M.; Klem, M.d.S.; Nogueira, G.L.; Gomes, T.C.; Alves, N. Low Cost Humidity Sensor Based on PANI/PEDOT:PSS Printed on Paper. IEEE Sens. J. 2018, 18, 2647–2651. [Google Scholar] [CrossRef]
- Nilsson, D. An all-organic sensor–transistor based on a novel electrochemical transducer concept printed electrochemical sensors on paper. Sens. Actuators B Chem. 2002, 86, 193–197. [Google Scholar] [CrossRef]
- Majumdar, S.; Majumdar, H.S.; Tobjörk, D.; Österbacka, R. Towards printed magnetic sensors based on organic diodes. Phys. Status Solidi A 2009, 206, 2198–2201. [Google Scholar] [CrossRef]
- Closson, A.; Richards, H.; Xu, Z.; Jin, C.; Dong, L.; Zhang, J.X.J. Method for Inkjet-printing PEDOT:PSS polymer electrode arrays on piezoelectric PVDF-TrFE fibers. IEEE Sens. J. 2021, 21, 26277–26285. [Google Scholar] [CrossRef]
- Cruz, S.; Dias, D.; Viana, J.C.; Rocha, L.A. Inkjet Printed Pressure Sensing Platform for Postural Imbalance Monitoring. IEEE Trans. Instrum. Meas. 2015, 64, 2813–2820. [Google Scholar] [CrossRef]
- Griffith, M.J.; Cooling, N.A.; Elkington, D.C.; Wasson, M.; Zhou, X.; Belcher, W.J.; Dastoor, P.C. Controlling Nanostructure in Inkjet Printed Organic Transistors for Pressure Sensing Applications. Nanomaterials 2021, 11, 1185. [Google Scholar] [CrossRef] [PubMed]
- Ryu, D.; Meyers, F.N.; Loh, K.J. Inkjet-printed, flexible, and photoactive thin film strain sensors. J. Intell. Mater. Syst. Struct. 2014, 26, 1699–1710. [Google Scholar] [CrossRef]
- Borghetti, M.; Serpelloni, M.; Sardini, E.; Pandini, S. Mechanical behavior of strain sensors based on PEDOT:PSS and silver nanoparticles inks deposited on polymer substrate by inkjet printing. Sens. Actuators A Phys. 2016, 243, 71–80. [Google Scholar] [CrossRef]
- Kye, J.W.; Han, D.C.; Shin, H.J.; Yeom, S.-h.; Lee, W. Fabrication of Inkjet Printed Strain Gauge Using PEDOT:PSS. J. Sens. Sci. Technol. 2017, 26, 56–59. [Google Scholar] [CrossRef]
- Kang, T.-K. Inkjet Printing of Highly Sensitive, Transparent, Flexible Linear Piezoresistive Strain Sensors. Coatings 2021, 11, 51. [Google Scholar] [CrossRef]
- Rivadeneyra, A.; Bobinger, M.; Albrecht, A.; Becherer, M.; Lugli, P.; Falco, A.; Salmeron, J.F. Cost-effective PEDOT:PSS Temperature Sensors Inkjetted on a Bendable Substrate by a Consumer Printer. Polymers 2019, 11, 824. [Google Scholar] [CrossRef] [PubMed]
- Khalaf, A.M.; Issa, H.H.; Ramirez, J.L.; Mohamed, S.A. All Inkjet-Printed Temperature Sensors Based on PEDOT:PSS. IEEE Access 2022, 10, 61094–61100. [Google Scholar] [CrossRef]
- Yoon, B.; Shin, H.; Kang, E.M.; Cho, D.W.; Shin, K.; Chung, H.; Lee, C.W.; Kim, J.M. Inkjet-compatible single-component polydiacetylene precursors for thermochromic paper sensors. ACS Appl. Mater. Interfaces 2013, 5, 4527–4535. [Google Scholar] [CrossRef]
- Ma, S.; Ribeiro, F.; Powell, K.; Lutian, J.; Moller, C.; Large, T.; Holbery, J. Fabrication of Novel Transparent Touch Sensing Device via Drop-on-Demand Inkjet Printing Technique. ACS Appl. Mater. Interfaces 2015, 7, 21628–21633. [Google Scholar] [CrossRef]
- Ling, H.; Chen, R.; Huang, Q.; Shen, F.; Wang, Y.; Wang, X. Transparent, flexible and recyclable nanopaper-based touch sensors fabricated via inkjet-printing. Green Chem. 2020, 22, 3208–3215. [Google Scholar] [CrossRef]
- Poldsalu, I.; Rohtlaid, K.; Plesse, C.; Vidal, F.; Nguyen, N.T.; Peikolainen, A.L.; Tamm, T.; Kiefer, R. Printed PEDOT:PSS Trilayer: Mechanism Evaluation and Application in Energy Storage. Materials 2020, 13, 491. [Google Scholar] [CrossRef] [PubMed]
- Fan, L.; Zhang, N.; Sun, K. Flexible patterned micro-electrochemical capacitors based on PEDOT. Chem. Commun. 2014, 50, 6789–6792. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Liang, X.; Li, G.; Shao, F.; Xia, T.; Xu, S.; Hu, N.; Su, Y.; Yang, Z.; Zhang, Y. Inkjet-Printed Ultrathin MoS2-Based Electrodes for Flexible In-Plane Microsupercapacitors. ACS Appl. Mater. Interfaces 2020, 12, 39444–39454. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Ruiz, V.; Mishukova, V.; Wan, Q.; Liu, H.; Xue, H.; Gao, Y.; Cao, G.; Li, Y.; Zhuang, X.; et al. Inkjet Printed Disposable High-Rate On-Paper Microsupercapacitors. Adv. Funct. Mater. 2021, 32, 2108773. [Google Scholar] [CrossRef]
- Diao, J.; Yuan, J.; Ding, A.; Zheng, J.; Lu, Z. Flexible Supercapacitor Based on Inkjet-Printed Graphene@Polyaniline Nanocomposites with Ultrahigh Capacitance. Macromol. Mater. Eng. 2018, 303, 1800092. [Google Scholar] [CrossRef]
- Xu, Y.; Hennig, I.; Freyberg, D.; James Strudwick, A.; Georg Schwab, M.; Weitz, T.; Chih-Pei Cha, K. Inkjet-printed energy storage device using graphene/polyaniline inks. J. Power Sources 2014, 248, 483–488. [Google Scholar] [CrossRef]
- Stempien, Z.; Khalid, M.; Kozanecki, M.; Filipczak, P.; Wrzesinska, A.; Korzeniewska, E.; Sasiadek, E. Inkjet Printing of Polypyrrole Electroconductive Layers Based on Direct Inks Freezing and Their Use in Textile Solid-State Supercapacitors. Materials 2021, 14, 3577. [Google Scholar] [CrossRef] [PubMed]
- Lawes, S.; Sun, Q.; Lushington, A.; Xiao, B.; Liu, Y.; Sun, X. Inkjet-printed silicon as high performance anodes for Li-ion batteries. Nano Energy 2017, 36, 313–321. [Google Scholar] [CrossRef]
- Wang, C.; Park, M.J.; Seo, D.H.; Shon, H.K. Inkjet printing of graphene oxide and dopamine on nanofiltration membranes for improved anti-fouling properties and chlorine resistance. Sep. Purif. Technol. 2021, 254, 117604. [Google Scholar] [CrossRef]
- Li, R.; Li, J.; Rao, L.; Lin, H.; Shen, L.; Xu, Y.; Chen, J.; Liao, B.-Q. Inkjet printing of dopamine followed by UV light irradiation to modify mussel-inspired PVDF membrane for efficient oil-water separation. J. Membr. Sci. 2021, 619, 118790. [Google Scholar] [CrossRef]
- Afsari, M.; Park, M.J.; Kaleekkal, N.J.; Motsa, M.M.; Shon, H.K.; Tijing, L. Janus Distillation Membrane via Mussel-Inspired Inkjet Printing Modification for Anti-Oil Fouling Membrane Distillation. Membranes 2023, 13, 191. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, M.; Lu, Z.; Lau, G.K. Transparent Tunable Acoustic Absorber Membrane Using Inkjet-Printed PEDOT:PSS Thin-Film Compliant Electrodes. ACS Appl. Mater. Interfaces 2018, 10, 39942–39951. [Google Scholar] [CrossRef] [PubMed]
- Almasri, R.M.; AlChamaa, W.; Tehrani-Bagha, A.R.; Khraiche, M.L. Highly Flexible Single-Unit Resolution All Printed Neural Interface on a Bioresorbable Backbone. ACS Appl. Bio. Mater. 2020, 3, 7040–7051. [Google Scholar] [CrossRef] [PubMed]
- Fortunato, G.M.; De Maria, C.; Eglin, D.; Serra, T.; Vozzi, G. An ink-jet printed electrical stimulation platform for muscle tissue regeneration. Bioprinting 2018, 11, e00035. [Google Scholar] [CrossRef]
- Bihar, E.; Roberts, T.; Zhang, Y.; Ismailova, E.; Hervé, T.; Malliaras, G.G.; De Graaf, J.B.; Inal, S.; Saadaoui, M. Fully printed all-polymer tattoo/textile electronics for electromyography. Flex. Print. Electron. 2018, 3, 034004. [Google Scholar] [CrossRef]
- Weng, B.; Liu, X.; Shepherd, R.; Wallace, G.G. Inkjet printed polypyrrole/collagen scaffold: A combination of spatial control and electrical stimulation of PC12 cells. Synth. Met. 2012, 162, 1375–1380. [Google Scholar] [CrossRef]
- Weng, B.; Liu, X.; Higgins, M.J.; Shepherd, R.; Wallace, G. Fabrication and characterization of cytocompatible polypyrrole films inkjet printed from nanoformulations cytocompatible, inkjet-printed polypyrrole films. Small 2011, 7, 3434–3438. [Google Scholar] [CrossRef]
- Rajzer, I.; Rom, M.; Menaszek, E.; Pasierb, P. Conductive PANI patterns on electrospun PCL/gelatin scaffolds modified with bioactive particles for bone tissue engineering. Mater. Lett. 2015, 138, 60–63. [Google Scholar] [CrossRef]
Polymer | Electrical Conductivity | p/n | Polymerization Method | Form 1 | Applications 2 |
---|---|---|---|---|---|
PEDOT:PSS | High/medium | p | Oxidative | AqD | WC, LE, PV, SA, ES |
PANI | High/medium | p | Oxidative | AqD, OS | WC, LE, PV, SA |
PPy | High/medium | p | Oxidative | AqD | WC, SA |
P3HT/P3OT | Medium | p | Cross-coupling Oxidative | OS | SC, PV, LE |
PVVs | Low | p | HWE Cross-coupling | OS, AqS | SC, LE |
DA polymers | Medium/low | p/n | Cross-coupling | OS | SC, PV, LE, SA |
Polyfluorenes | Medium/low | p | Cross-coupling | OS | SC, LE, PV |
Channel 1 | Gate | Insulator 2 | Source/ Drain | Substrate 3 | µ, cm2 V−1 s−1 | Ion/Ioff | Configuration 4 | Ref. |
---|---|---|---|---|---|---|---|---|
P3OT | Si+Al-RS | SiO2 | Au | Si | 2 × 10−3 | 2 × 104 | BG | [122] |
F8T2 | Ag PEDOT:PSS | PVP | PEDOT:PSS | Glass | 2 × 10−2 | 105 | TG | [123] |
PPy | PEDOT:PSS | K60 | PEDOT:PSS | SiO2 | 10−1 | 3 × 103 | BG | [124] |
F8T2 | PEDOT:PSS | PVP | PEDOT:PSS | SiO2 | 10−3 | 104 | TG | [125] |
P3HT | PEDOT:PSS | PVP | Ag | PE | - | 102 | TG | [126] |
TIPS | ITO | Al2O3 | PEDOT:PSS | Glass | 3 × 10−1 | 105 | BG | [127] |
P3HT | Doped Si | SiO2 | Au/Ti | Si | 6 × 10−3 | 106 | BG | [117] |
pBTTT | Doped Si | SiO2 | Au | Si | 10−1 | 107 | BG | [61] |
P3HT/C | Au | SiO2 | Au | Si | 6 × 10−3 | 104 | BG | [128] |
PQT12 P3HT F8T2 | Al | PMMA PVP | Au/Ni | Glass | 8 × 10−2 | 5 × 103 | TG | [129] |
TIPS | PEDOT:PSS | PMMA | PEDOT:PSS | - | 10−1 | 102 | BG | [130] |
PHTBTz-C8 | Mo | SiO2 | Au | SiO2 | 2.5 × 10−1 | 107 | BG | [86] |
TIPS/triarylamine | Cu | CYTOP | PEDOT:PSS | PET | 2 × 10−1 | 3 × 102 | TG | [131] |
P3HT PC12TV12F P(NDI2OD-T2) PTVPhI-Eh F8BT PDTTDPP DPPT-TT | Al | PMMA P(VDF-TrFE) | Au/Ni | PEN | 2.3 | 105 | TG | [132] |
P(NDI2OD-T2) | Al | PMMA | Au/Cr | Glass | 6.4 | 107 | TG | [133] |
PQTBTz-C12 PQTBTz-C12/PS | - | SiO2 | Au/Ti | Si | 4.6 × 10−2 | - | BG | [134] |
PDVT-8/PS | Doped Si | SiO2 | Au | Si | 5.8 × 10−1 | 2 × 103 | BG | [135] |
DPPT-TT P(NDI2OD-T2) | - | - | - | - | - | - | - | [136] |
PDVT-8/PS | Doped Si | SiO2 | Au | Si | 1.5 | 105 | BG | [137] |
P(NDI2OD-T2) | PEDOT:PSS | PMMA | Ag | Glass | 9 × 10−1 | - | TG | [138] |
TIPS | Ag | PVP | PEDOT:PSS | PEN | 1 | 3 × 103 | BG | [139] |
P3DT/CNT | PEDOT:PSS | PMMA | Au/Cr | Glass | 15 | 107 | TG | [140] |
TIPS | Ag | Parylene C | PEDOT:PSS | PI | 4 × 10−1 | 105 | BG | [141] |
P(NDI2OD-T2) IDTBT | Al | PMMA/ Parylene C | Au/Ni | Glass | 5 × 10−1 | - | TG | [95] |
P(NDI2OD-T2) | PEDOT:PSS | PMMA | PEDOT:PSS | PEN | 2.5 × 10−1 | 104 | TG | [142] |
P12CPDTBT/ CNT | Al | PMMA | Au/Cr | Glass | 20 | 107 | TG | [92] |
DPPT-TT | PEDOT:PSS | PS | Ag | Glass PEN | 1.6 | 103 | TG | [118] |
P(8T2Z-co-6T2Z)-12 | Mo | SiO2 | Au | Glass | 2 × 10−1 | 107 | BG | [143] |
P(NDI2OD-T2) | PEDOT:PSS | Parylene C | PEDOT:PSS | Master-Bi | 10−2 | 105 | TG | [144] |
Channel 1 | Gate | Insulator | Source/ Drain | Substrate | µ, cm2 V−1 s−1 | Ion/Ioff | Configuration | Ref. |
---|---|---|---|---|---|---|---|---|
P3HT F8T2 | Doped Si | SiO2 | Au/Cr | Si | 10−1 | 106 | BG | [20] |
P3HT F8T2 poly(vinylenethiophene) | PEDOT:PSS | PVP | PEDOT:PSS | Glass | 2 × 10−3 | 105 | TG | [76] |
p3HT | Doped Si | SiO2 | PEDOT:PSS | Si | 1.2 × 10−2 | 2.9 × 103 | BG | [146] |
p3HT | Doped Si | SiO2 | PEDOT:PSS | Si | 6 × 10−3 | 103 | BG | [147] |
F8T2 | Al PEDOT:PSS | PMMA | PEDOT:PSS ITO | Glass ITO | 4.5 × 10−3 | 104 | BG TG | [148] |
P3HT | ITO | SiO2 | ITO | ITO | 2.3 × 10−3 | 105 | BG | [149] |
PQT12 | Doped Si | SiO2 | Ag/ PEDOT:PSS | Si | 2.5 × 10−2 | 2 × 107 | BG | [150] |
PQT12/CNT | Doped Si | SiO2 | Au/Cr | Si | 2.3 × 10−1 | 106 | BG | [59] |
P(NDI2OD-T2) | Au | Cytop PS PMMA PTBS | Au | PET Glass | 8.5 × 10−1 | 106 | TG | [151] |
TIPS | PEDOT:PSS | PVP | PEDOT:PSS | - | 1.3 × 10−1 | 5.6 × 106 | TG BG | [152] |
TIPS N1400 | PEDOT:PSS | Parylene C | PEDOT:PSS | PET | 7.8 × 10−3 | 104 | BG | [153] |
F8T2 | PEDOT:PSS | PVP | PEDOT:PSS | PI | 2 × 10−2 | 105 | TG | [154] |
P3HT | Doped Si | SiO2 | Au | Si | 8.1 × 10−3 | 103 | BG | [155] |
pBTTT | Ag | PVP | Ag | PVP on paper | 10−1 | 3.2 × 104 | BG | [156] |
TAA | Ag | PVP | Ag | PEN | 10−1 | 5 × 101 | BG | [157] |
P3HT | Doped Si | SiO2 | Au | Si | 6 × 10−2 | 103 | BG | [158] |
CNT | PEDOT:PSS | PVP | PEDOT:PSS | PEN | 7 | 105 | BG | [159] |
pBTCT | PEDOT:PSS | - | Ag | Glass | 2.5 × 10−3 | 1.8 × 102 | TG | [160] |
PQT-12 | Doped Si | SiO2 | Ag | Si | 10−1 | 106 | BG | [161] |
CNT/P3HT | PEDOT:PSS | PVP | PEDOT:PSS | PI | 5.3 × 10−2 | 104 | BG | [162] |
P3HT | PEDOT:PSS | PVP P(VDF-HPF) | PEDOT:PSS | PI | 5 × 10−3 | 5.9 × 106 | BG | [163] |
PDVT-8 | Mo | Al2O3 | Au/Mo | PI | 2.4 | 106 | BG | [164] |
PDVT-8 | Doped Si | PVP/ Al2O3 SiO2 | Au | Si | 6.5 × 10−1 | 1.6 × 104 | BG | [165] |
P3HT PQT-12 P(8T2Z-co-6T2Z)-12 | Mo | SiO2 | Au | Glass | 10 | - | BG | [166] |
P(NDI2OD-T2) | Al | Cytop Al2O3 | Au | Glass | 10−1 | - | TG | [167] |
Type 1 | Channel | Gate | Source/Drain | Gain | Substrate 2 | Ref. |
---|---|---|---|---|---|---|
EGT | - | PEDOT:PSS | - | - | Glass | [202] |
FET | pBTTT | - | - | 16 | Si | [61] |
EGT | - | PEDOT:PSS | - | - | ITO | [203] |
EGT | - | PEDOT:PSS | - | 9.6 | ITO | [204] |
FET | PDBD PDBD-Se | - | - | 80 | PET | [89] |
FET | P(NDI2OD-T2) DPPT-TT | - | - | 28 | Plastic | [205] |
FET | P(NDI2OD-T2) | - | - | 22.8 | Glass | [206] |
FET | P(NDI2OD-T2) DPPT-TT | PEDOT:PSS | PEDOT:PSS | 17 | PEN | [207] |
FET | P(NDI2OD-T2) PC12TV12T | - | - | 25 | PEN | [208] |
TFT | F8T2 | PEDOT:PSS | PEDOT:PSS | 7 | Glass | [181] |
FET | P3HT P2100 P(NDI2OD-T2) | - | - | 30 | PEN Glass | [209] |
TFT | PQT | - | - | 6.6 | Glass | [210] |
TFT | P(NDI2OD-T2) PQT12 | PEDOT:PSS | - | 6.2 | Glass | [211] |
FET | P(NDI2OD-T2) PC12TV12T | - | - | 25 | Glass | [212] |
FET | P(NDI2OD-T2) P3HT P3Se P5Se | - | - | 10 | Glass | [62] |
FET | PDBTAZ | - | - | 20 | Glass | [90] |
TFT | PHTBTz-C8 | - | - | 35 | PET | [213] |
TFT | - | PEDOT:PSS | PEDOT:PSS | 7.2 | PE | [214] |
FET | P(NDI2OD-T2) 29-DPP-TVT | PEDOT:PSS | - | 17 | PEN | [215] |
FET | P(NDI2OD-T2) DPPT-TT | PEDOT:PSS | PEDOT:PSS | 21 | Glass | [216] |
EGT | - | PEDOT:PSS | - | 3.5 | PI | [217] |
TFT | DPPDTT P3HT | - | - | - | PEN | [218] |
EGT | - | PEDOT:PSS | - | 329 | Glass | [219] |
Type 1 | Printed | IJP Materials | NOT | AND | OR | NOR | XOR | NAND | Gain | Substrate | Ref. |
---|---|---|---|---|---|---|---|---|---|---|---|
EGT | G | PEDOT:PSS | + | + | + | - | Glass | [202] | |||
FET | SC | pBTTT | + | 16 | Si | [61] | |||||
EGT | G | PEDOT:PSS | + | + | + | + | + | - | ITO | [203] | |
EGT | G | PEDOT:PSS | + | + | + | 9.6 | ITO | [204] | |||
FET | SC | PDBD PDBD-Se | + | + | 80 | PET | [89] | ||||
FET | SC | P(NDI2OD-T2) DPPT-TT | + | + | 28 | Plastic | [205] | ||||
FET | SC | P(NDI2OD-T2) | + | + | 22.8 | Glass | [206] | ||||
FET | S/D, G; SC | PEDOT:PSS; P(NDI2OD-T2) DPPT-TT | + | 17 | PEN | [207] | |||||
FET | SC | P(NDI2OD-T2) PC12TV12T | + | + | + | + | 25 | PEN | [208] | ||
TFT | S/D, G; SC | PEDOT:PSS; P3HT | + | + | 7 | PEN | [145] | ||||
FET | G | PEDOT:PSS | + | + | + | 14 | Glass | [220] | |||
FET | S/D, G | PEDOT:PSS | + | + | + | + | + | 14 | Paper | [221] | |
FET | SC | P(NDI2OD-T2) | + | + | + | - | Glass | [200] |
Hole Transport Layer | Active Layer | PCE 1, % | OCV 2, V | SCC 3, mA cm−2 | Ref. |
---|---|---|---|---|---|
PEDOT:PSS | P3HT:PCBM | 2.28 | 0.61 | 6.92 | [260] |
0.08 | 0.31 | 0.82 | [259] | ||
3.71 | 0.63 | 10.7 | [261] | ||
2.25 | 0.57 | 9.49 | [262] | ||
1 | 0.56 | 6.8 | [263] | ||
0.18 | 0.48 | 0.33 | [264] | ||
2.28 | 0.61 | 6.92 | [260] | ||
0.08 | 0.31 | 0.82 | [259] | ||
[265,266] | |||||
PEDOT:PSS | P3HT:PCBM | 3 | 0.45 | 4.7 | [267] |
1.4 | 0.66 | 4.67 | [268] | ||
4.05 | 0.58 | 11.2 | [269] | ||
3.5 | 0.54 | 10.1 | [270] | ||
3.8 | 0.68 | 9.05 | [271] | ||
2.4 | 0.57 | 9.34 | [272] | ||
1.3 | 0.45 | 4.73 | [273] | ||
2.83 | 0.62 | 8.6 | [274] | ||
1.99 | 0.54 | 7.9 | [275] | ||
3.07 | 0.53 | 1212 | [276] | ||
2.6 | 0.53 | 7.6 | [277] | ||
2.2 | 0.6 | 8.3 | [278] | ||
0.6 | 0.46 | 3 | [279] | ||
3 | 0.45 | 4.7 | [267] | ||
1.4 | 0.66 | 4.67 | [268] | ||
[280] | |||||
PEDOT:PSS | P3HT:PCBM | 3.2 | 0.6 | 9.6 | [281] |
3.3 | 0.62 | 9.78 | [282] | ||
1.5 | 0.61 | 6.6 | [283] | ||
2.5 | 0.55 | 7.25 | [284] | ||
2.53 | 0.56 | 10.8 | [52] | ||
0.19 | 0.56 | 5.6 | [285] | ||
- | P3HT:PCBM | 0.35 | [286] | ||
3.2 | 0.6 | 9.8 | [287] | ||
PEDOT:PSS | PCPDTBT or PSBTBT: PCBM or bis-PCBM | 1.48 | 0.67 | 5.29 | [288] |
- | P3OT:PC71BM | 6.5 | [289] | ||
0.03 | 0.9 | 2.3 × 10−3 | [290] | ||
0.9 | 4.73 × 10−3 | [291] | |||
PEDOT:PSS | P3HT: PCBM or PC71BM | 2.22 | 0.61 | 9.49 | [292] |
PEDOT:PSS | PFDTBTP:PCBM | 3 | 0.83 | 6 | [293] |
- | NK-1952:PEDOT:PSS | 0.13 | 0.4 | [294] | |
PEDOT:PSS | PFDTBTP: PCBM or PC71BM | 3.5 | 0.9 | 6.71 | [295] |
PEDOT:PSS | PCPDTBTP:PCBM | 3.7 | 0.9 | 8.65 | [296] |
PEDOT:PSS | PCDTBT:PC71BM | 5.1 | 0.89 | 9.95 | [297] |
PEDOT:PSS | Si-PCPDTBT or PCPDTBT: PC71BM | 5.66 | 0.61 | 16.8 | [94] |
PEDOT:PSS | PV2000 | 7 | 0.78 | 13.4 | [298] |
PEDOT:PSS | PS:P3HT:PCBM | 2 | 0.51 | 7.38 | [299] |
PEDOT:PSS | P3HT:ICBA | 2.9 | 0.81 | 7.1 | [300] |
Poly-PT PEDOT:PSS | P3HT:PCBM | [301] | |||
Ag:PEDOT | P3HT:PCBM | 2.94 | 8.82 | [302] | |
PANI:PAMPSA | P3HT:PC71BM | 2.53 | 0.63 | 7.72 | [303] |
PEDOT:PSS | O-IDTBR or PV2000: PC71BM | 5 | [304] | ||
- | P3HT:O-IDTBR | 6.47 | 0.71 | 13.8 | [305] |
- | P3HT:ICBA | 4.7 | 0.83 | 9.57 | [306] |
PANI:PAMPSA | - | 10.6 | 0.94 | 18.4 | [307] |
PEDOT:PSS | PTB7-Th:IEICO-4F | 12.5 | 0.71 | 27 | [308] |
PEDOT:PSS | P3HT:O-IDTBR | 6.47 | 0.71 | 13.8 | [309] |
- | PM6:ITIC-4F | 10.8 | 0.88 | 19.9 | [310] |
PEDOT:PSS | - | 16.8 | 1.02 | 22 | [311] |
- | PBDB-T:ITIC or PBDB-T-2F: BTP-BO-4Cl | 13.6 | 0.83 | 23.9 | [312] |
Graphene/PEDOT:PSS | PTB7:PCBM | 1.12 | 0.65 | 3.16 | [313] |
Inkjet-Printed Polymer | Sensing Principle | Analyte 1 | Ref. |
---|---|---|---|
PANI | Electrochemical | Ascorbic acid | [314] |
PEDOT:PSS | Amperometric | H2O2 | [315] |
DPP-DTT | Transistor | DNA | [316] |
PANI | Amperometric | Biomolecules | [317,318] |
PANI | Electrochemical | Antioxidants | [319] |
PEDOT:PSS | Electrochemical | Salbutamol | [320] |
PEDOT:PSS | Resistive | CO2 | [321,322] |
PEDOT:PSS | Amperometric | Glucose | [323,324,325] |
PPy | Amperometric | Glucose | [326] |
PANI | Amperometric | Glucose | [327] |
PANI | Resistive | Glucose | [328] |
PEDOT:PSS | Transistor | Glucose | [329] |
PEDOT:PSS | Electrochemical | H2O2, NADH, Fe(III) | [330] |
PANI | Resistive | H2S | [331] |
PEDOT:PSS | Electrochemical | N2H4 | [332] |
PANI | Amperometric | NH3, amines | [333,334] |
PEDOT:PSS | CMOS | NH3 | [335] |
PANI | Impedancimetric | NH3 | [336,337,338] |
PANI | Resistive | NH3 | [68,339,340,341,342] |
PEDOT:PSS | Resistive | NH3 | [343,344,345,346,347] |
PANI | Impedancimetric | NH3(aq) | [348] |
PANI | Impedancimetric | NH3(aq) | [348] |
PANI | Potentiometric | pH | [69] |
PPy | Potentiometric | pH | [349] |
PEDOT:PSS | Transistor | pH, Na, K | [350,351] |
PEDOT:PSS | Chemical fuse | VOC | [352] |
Poly(vinylacetylene) | Indicator paper | VOC | [353] |
PPy | Resistive | VOC | [354] |
PEDOT:PSS | Resistive | VOC | [355,356,357,358] |
PEDOT:PSS | RFID | VOC | [359] |
P3HT | Transistor | VOC | [360] |
PEDOT:PSS | Transistor | VOC | [361] |
Inkjet-Printed Polymer | Sensing Principle | Measured Property | Ref. |
---|---|---|---|
PEDOT:PSS | Resistive | Health monitoring | [365] |
PANI | Impedancimetric | Humidity | [65] |
PANI | Resistive | Humidity | [373,374] |
PEDOT:PSS | Resistive | Humidity | [364,375] |
PEDOT:PVMA | Resistive | Humidity | [376] |
PEDOT:PSS PANI | Resistive | Humidity | [377] |
PEDOT:PSS | Transistor | Humidity | [378] |
P3HT | Diode | Magnetic field | [379] |
PEDOT:PSS | Piezoelectric | Mechanical | [380] |
PEDOT:PSS | Capacitive | Pressure | [381] |
PEDOT:PSS | Resistive | Pressure | [362] |
PEDOT:PSS P3HT | Transistor | Pressure | [382] |
P3HT | Resistive | Strain | [383] |
PEDOT:PSS | Resistive | Strain | [384,385,386] |
P3HT:PC61BM | Transistor | Strain | [363] |
PEDOT:PSS | Resistive | Temperature | [366,387,388] |
Polydiacetylene | Thermochromic | Temperature | [389] |
PEDOT:PSS | Capacitive | Touch panel | [390,391] |
Polydopamine | Capacitive | Touch panel | [104] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lukyanov, D.A.; Levin, O.V. Inkjet Printing with (Semi)conductive Conjugated Polymers: A Review. ChemEngineering 2024, 8, 53. https://doi.org/10.3390/chemengineering8030053
Lukyanov DA, Levin OV. Inkjet Printing with (Semi)conductive Conjugated Polymers: A Review. ChemEngineering. 2024; 8(3):53. https://doi.org/10.3390/chemengineering8030053
Chicago/Turabian StyleLukyanov, Daniil A., and Oleg V. Levin. 2024. "Inkjet Printing with (Semi)conductive Conjugated Polymers: A Review" ChemEngineering 8, no. 3: 53. https://doi.org/10.3390/chemengineering8030053
APA StyleLukyanov, D. A., & Levin, O. V. (2024). Inkjet Printing with (Semi)conductive Conjugated Polymers: A Review. ChemEngineering, 8(3), 53. https://doi.org/10.3390/chemengineering8030053