Investigating the Effect of Thermal Annealing and Changing the Concentration of GO in GO/PVA Nanocomposites on Their Structural, Electrical, and Optical Properties
Abstract
:1. Introduction
2. Materials and Methods
3. Result of Analysis
3.1. X-ray Diffraction (XRD) Analysis
3.2. TEM Analysis
3.3. Optical Properties
- The homogeneous dispersion of GO nanoparticles allows for efficient UV radiation absorption, turning them to heat [13].
- UV rays can be dispersed from the interface created by hydrogen bonding between GO/PVA layers [13].
- UV-VIS analysis for GO/PVA composites with different concentrations, as well as optical methods to determine how the band gap value changes during temperature changes in these composites. The Tauc technique was used to calculate the band gap value.
3.4. Electrical Properties
3.5. EDS Analysis
3.6. DSC and TGA Analysis
4. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hieu, N.H.; Long, N.H.B.S.; Kieu, D.T.M.; Nhiem, L.T. Fabrication and characterization of graphene/graphene oxide-based poly(vinyl alcohol) nanocomposite membranes. J. Electron. Mater. 2015, 45, 2341–2346. [Google Scholar] [CrossRef]
- Morimune, S.; Nishino, T.; Goto, T. Poly(vinyl alcohol)/graphene oxide nanocomposites prepared by a simple eco-process. Polym. J. 2012, 44, 1056–1063. [Google Scholar] [CrossRef]
- Ghosh, T.N.; Pradhan, S.S.; Sarkar, S.K.; Bhunia, A.K. On the incorporation of the various reduced graphene oxide into poly(vinyl alcohol) nano-compositions: A comparative study of the optical, structural properties and magnetodielectric effect. J. Mater. Sci. Mater. Electron. 2021, 32, 19157–19178. [Google Scholar] [CrossRef]
- Jo, G.; Choe, M.; Lee, S.; Park, W.; Kahng, Y.H.; Lee, T. The application of graphene as electrodes in electrical and optical devices. Nanotechnology 2012, 23, 112001. [Google Scholar] [CrossRef]
- Cheng, H.K.F.; Sahoo, N.G.; Tan, Y.P.; Pan, Y.; Bao, H.; Li, L.; Zhao, J. Poly(vinyl alcohol) nanocomposites filled with poly(vinyl alcohol)-grafted graphene oxide. ACS Appl. Mater. Interfaces 2012, 4, 2387–2394. [Google Scholar] [CrossRef]
- Zhao, Y.; Terai, W.; Hoshijima, Y.; Gotoh, K.; Matsuura, K.; Matsumura, K. Development and characterization of a poly(Vinyl Alcohol)/Graphene oxide composite hydrogel as an artificial cartilage material. Appl. Sci. 2018, 8, 2272. [Google Scholar] [CrossRef]
- Wadhwa, H.; Kandhol, G.; Deshpande, U.P.; Mahendra, S.; Kumar, S. Thermal stability and dielectric relaxation behavior of in situ prepared poly(vinyl alcohol)(PVA) reduced graphene oxide (RGO) composites. Colloid Polym. Sci. 2020, 298, 1319–1333. [Google Scholar] [CrossRef]
- Pyun, J.; Matyjaszewski, K. Synthesis of nanocomposite organic/inorganic hybrid materials using controlled/“living” radical polymerization. Chem. Mater. 2001, 13, 3436–3448. [Google Scholar] [CrossRef]
- Chen, Q.; Shen, Y.; Zhang, S.; Zhang, Q.M. Polymer-Based Dielectrics with High Energy Storage Density. Annu. Rev. Mater. Res. 2015, 45, 433. [Google Scholar] [CrossRef]
- Das, T.K.; Prusty, S. Graphene-Based Polymer Composites and Their Applications. Polym. Plast. Technol. Eng. 2013, 52, 319–331. [Google Scholar] [CrossRef]
- Gahlot, S.; Kulshrestha, V.; Agarwal, G.; Jha, P.K. Synthesis and Characterization of PVA/GO Nanocomposite Films. Macromol. Symp. 2015, 357, 173–177. [Google Scholar] [CrossRef]
- Kashyap, S.; Pratihar, S.K.; Behera, S.K. Strong and ductile graphene oxide reinforced PVA nanocomposites. J. Alloys Compd. 2016, 684, 254–260. [Google Scholar] [CrossRef]
- Abu Hurayra-Lizu, K.M.; Bari, M.W.; Gulshan, F.; Islam, M.R. GO based PVA nanocomposites: Tailoring of optical and structural properties of PVA with low percentage of GO nanofillers. Heliyon 2021, 7, e06983. [Google Scholar] [CrossRef]
- Sujiono, E.; Zurnansyah; Zabrian, D.; Dahlan, M.; Amin, B.; Samnur; Agus, J. Graphene oxide based coconut shell waste: Synthesis by modified Hummers method and characterization. Heliyon 2020, 6, e04568. [Google Scholar] [CrossRef]
- Yoo, M.J.; Park, H.B. Effect of hydrogen peroxide on properties of graphene oxide in Hummers method. Carbon 2019, 141, 515–522. [Google Scholar] [CrossRef]
- Bhatnagar, D.; Singh, S.; Yadav, S.; Kumar, A.; Kaur, I. Experimental and theoretical investigation of relative optical band gaps in graphene generations. Mater. Res. Express 2017, 4, 015101. [Google Scholar] [CrossRef]
- Guerrero-Contreras, J.; Caballero-Briones, F. Graphene oxide powders with different oxidation degrees, prepared by synthesis variations of the Hummers method. Mater. Chem. Phys. 2015, 153, 209–220. [Google Scholar] [CrossRef]
- Wu, X.; Xie, Y.; Xue, C.; Chen, K.; Yang, X.; Xu, L.; Zhang, D. Preparation of PVA-GO composite hydrogel and effect of ionic coordination on its properties. Mater. Res. Express 2019, 6, 075306. [Google Scholar] [CrossRef]
- Eisa, W.H.; Shabaka, A.A. Ag seeds mediated growth of Au nanoparticles within PVA matrix: An eco-friendly catalyst for degradation of 4-nitrophenol. React. Funct. Polym. 2013, 73, 1510–1516. [Google Scholar] [CrossRef]
- Abdallah, M.; Osama, H.; Emad, Y. Study the optical properties of poly(vinyl alcohol) doped copper chloride. Al-Nahrain J. Sci. 2013, 16, 17–20. [Google Scholar] [CrossRef]
- Tang, C.M.; Tian, Y.H.; Hsu, S.H. Poly(vinyl alcohol) nanocomposites reinforced with bamboo charcoal nanoparticles: Mineralization behavior and characterization. Materials 2015, 8, 4895–4911. [Google Scholar] [CrossRef] [PubMed]
- Stasko, J.; Kalniņs, M.; Dzene, A.; Tupureina, V. Poly(vinyl alcohol) Hydrogels. Proc. Estonian Acad. Sci. 2009, 58, 63–66. [Google Scholar] [CrossRef]
- Panova, T.V.; Efimova, A.A.; Berkovich, A.K.; Efimov, A.V. Plasticity control of poly(vinyl alcohol)–graphene oxide nanocomposites. RSC Adv. 2020, 10, 24027–24036. [Google Scholar] [CrossRef] [PubMed]
- Narayana, M.; Jammalamadaka, S. Tuning Optical Properties of Graphene Oxide under Compressive Strain Using Wet Ball Milling Method. Graphene 2016, 5, 73–80. [Google Scholar] [CrossRef]
- Bao, C.; Guo, Y.; Song, L.; Hu, Y.J.L. Poly(vinyl alcohol) nanocomposites based on graphene and graphite oxide: A comparative investigation of property and mechanism. Mater. Chem. 2011, 21, 13942. [Google Scholar] [CrossRef]
- Ricciardi, R.; Auriemma, F.; De Rosa, C.; Lauprêtre, F. X-ray diffraction analysis of poly(vinyl alcohol) hydrogels, obtained by freezing and thawing techniques. Macromolecules 2004, 37, 1921–1927. [Google Scholar] [CrossRef]
- Ma, J.; Li, Y.; Yin, X.; Xu, Y.; Yue, J.; Bao, J.; Zhou, T. Poly(vinyl alcohol)/graphene oxide nanocomposites prepared by in situ polymerization with enhanced mechanical properties and water vapor barrier properties. RSC Adv. 2016, 6, 49448–49458. [Google Scholar] [CrossRef]
- Khichar, K.K.; Dangi, S.B.; Dhayal, V.; Kumar, U.; Hashmi, S.Z.; Sadhu, V. Structural, optical, and surface morphological studies of ethyl cellulose/graphene oxide nanocomposites. Polym. Compos. 2020, 41, 2792–2802. [Google Scholar] [CrossRef]
- Dhayal, V.; Hashmi, S.Z.; Kumar, U.; Choudhary, B.L.; Kuznetsov, A.E.; Dalela, S. Spectroscopic studies, molecular structure optimization and investigation of structural and electrical properties of novel and biodegradable Chitosan-GO polymer nanocomposites. J. Mater. Sci. 2020, 55, 14829–14847. [Google Scholar] [CrossRef]
- Punia, K.; Lal, G.; Dalela, S.; Dolia, S.N.; Alvi, P.A.; Barbar, S.K.; Kumar, S. A comprehensive study on the impact of Gd substitution on structural, optical and magnetic properties of ZnO nanocrystals. J. Alloys Compd. 2021, 868, 159142. [Google Scholar] [CrossRef]
- Kumar, U.; Upadhyay, S.; Alvi, P.A. Study of reaction mechanism, structural, optical and oxygen vacancy-controlled luminescence properties of Eu-modified Sr2SnO4 Ruddlesden popper oxide. Phys. B Condens. Matter. 2020, 604, 412708. [Google Scholar] [CrossRef]
- Dangi, S.B.; Hashmi, S.Z.; Upendra, K.B.L.; Choudhary, A.E.; Kuznetsov, S.D.; Shalendra, K.; Dolia, S.N.; Sudhish, K.; Balsam, F.I.; Sofi, R.D.; et al. Exploration of spectroscopic, surface morphological, structural, electrical, optical and mechanical properties of biocompatible PVA-GO PNCs. Diam. Relat. Mater. 2022, 127, 109158. [Google Scholar] [CrossRef]
- Yahia, I.S.; Mohammed, M.I. Facile synthesis of graphene oxide/PVA nanocomposites for laser optical limiting: Band gap analysis and dielectric constants. J. Mater. Sci. Mater. Electron. 2018, 29, 8555–8563. [Google Scholar] [CrossRef]
- Abdullah, O.G.; Aziz, S.B.; Omer, K.M.; Salih, Y.M. Reducing the optical band gap of polyvinyl alcohol (PVA) based nanocomposite. J. Mater. Sci. Mater. Electron. 2015, 26, 5303–5309. [Google Scholar] [CrossRef]
- Abdullah, O.G.; Aziz, S.B.; Rasheed, M.A. Structural and optical characterization of PVA: KMnO4 based solid polymer electrolyte. Results Phys. 2016, 6, 1103–1108. [Google Scholar] [CrossRef]
- Sehrawat, P.; Islam, S.S.; Mishra, P.; Ahmad, S. Reduced graphene oxide (rGO) based wideband optical sensor and the role of Temperature. Defect States Quantum Effic. Sci. Rep. 2018, 8, 3537. [Google Scholar] [CrossRef]
- Dhayal, V.; Hashmi, S.Z.; Kumar, U.; Choudhary, B.L.; Dalela, S.; Dolia, S.N.; Alvi, P.A. Optical and electrical properties of biocompatible and novel (CS–GO) polymer nanocomposites. Opt. Quantum Electron. 2021, 53, 53. [Google Scholar] [CrossRef]
- Nangia, R.; Shukla, N.K.; Sharma, A. Frequency and temperature-dependent impedance spectroscopy of PVA/PEG polymer blend film. High-Perform. Polym. 2018, 30, 918–926. [Google Scholar] [CrossRef]
- Muradov, M.B.; Yusifova, K.A.; Eyvazova, G.M.; Mammadov, R.K.; Salahova, A.Z. Study of dielectric properties of CdS/PVA nanocomposites obtained by using successive ionic layer adsorption and reaction. World J. Condens. Matter. Phys. 2013, 3, 83–86. [Google Scholar] [CrossRef]
- Deshmukh, K.; Ahamed, M.B.; Sadasivuni, K.K.; Ponnamma, D.; Deshmukh, R.R.; Trimukhe, A.M.; Chidambaram, K. Solution-processed white graphene-reinforced ferroelectric polymer nanocomposites with improved thermal conductivity and dielectric properties for electronic encapsulation. J. Polym. Res. 2017, 24, 27. [Google Scholar] [CrossRef]
- Najihah, J.; Hazlina, H.; Ahmad, A.; Zachary, A. and Zulkafli, H. Characterization and Preparation of Polyvinyl Alcohol (PVA) as Inhibitor in Formation of Hydrates. Inter. J. Curr. Sci. Eng. Technol. 2018, 1, 578–584. [Google Scholar]
- Mallikarjun, H.; Bhajantri, R.; Sunil, G.; Kanakaraj, T.; Chetan, C.; Shivaprasad, C. Mechanical and thermal studies of brilliant green dye-doped poly(vinyl alcohol) polymer composite. AIP Conf. Proc. 2019, 2115, 030222. [Google Scholar] [CrossRef]
- Chiellini, E.; Cinelli, P.; Fernandes, E.G.; Kenawy, E.R.S.; Lazzeri, A. Gelatin-based blends and composites, morphological and thermal-mechanical characterization. Biomacromolecules 2001, 2, 806–811. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.W.; Choi, H.M. Enhancement of thermal, mechanical, and barrier properties of ethylene vinyl alcohol copolymer by incorporation of graphene nanosheets. High Perform. Polym. 2014, 27, 694–704. [Google Scholar] [CrossRef]
- Zhu, Y.; Wang, H.; Zhu, J.; Chang, L.; Ye, L. Nanoindentation and thermal study of polyvinylalcohol/graphene oxide nanocomposite film through organic/inorganic assembly. Appl. Surf. Sci. 2015, 349, 27–34. [Google Scholar] [CrossRef]
- Albert, E.L.; Abdullah, C.A.C.; Shiroshaki, Y. Synthesis and characterization of graphene oxide functionalized with magnetic nanoparticle via simple emulsion method. Results Phys. 2018, 11, 944–950. [Google Scholar] [CrossRef]
- Huang, G.; Gao, J.; Wang, X.; Liang, H.; Ge, C. How can graphene reduce the flammability of polymer nanocomposites? Mater. Lett. 2012, 66, 187–189. [Google Scholar] [CrossRef]
- Aslam, M.; Kalyar, M.A.; Raza, Z.A. Polyvinyl alcohol: A review of research status and use of polyvinyl alcohol-based nanocomposites. Polym. Eng. Sci. 2018, 58, 2119–2132. [Google Scholar] [CrossRef]
- Peng, Z.; Kong, L.X. A thermal degradation mechanism of polyvinyl alcohol/silica nanocomposites. Polym. Degrad. Stab. 2007, 92, 1061–1071. [Google Scholar] [CrossRef]
- Tsuchiya, Y.; Sumi, K. Thermal decomposition products of poly(vinyl alcohol). J. Polym. Sci. Part A 1969, 7, 3151–3158. [Google Scholar] [CrossRef]
- Ballistreri, A.; Foti, S.; Montaudo, G.; Scamporrino, E. Evolution of aromatic compounds in the thermal decomposition of vinyl polymers. J. Polym. Sci. Part A 1980, 18, 1147–1153. [Google Scholar] [CrossRef]
- Holland, B.-J.; Hay, J.-N. The thermal degradation of poly(vinyl alcohol). Polymer 2001, 42, 6775–6783. [Google Scholar] [CrossRef]
Concentration (c, %) | 1% GO/PVA | 2% GO/PVA | 3% GO/PVA | 5% GO/PVA |
---|---|---|---|---|
Band gap value (Eg, eV) | 2.65 eV | 2.4 eV | 2.6 eV | 1.8 eV |
Composite | 25 °C | 40 °C | 70 °C | 110 °C |
---|---|---|---|---|
2% GO/PVA | 2.40 eV | 2.35 eV | 2.30 eV | 2.20 eV |
Samples | Temperatures ( °C) | |||
---|---|---|---|---|
Tı (Initial)–Tı (Final) | Tıı (Initial)–Tıı (Final) | Tııı (Initial)–Tııı (Final) | Tıv (Initial)–Tıv (Final) | |
PVA | 275–470 | 470–609 | - | - |
1% GO/PVA | 318–382 | 402–500 | 502–625 | - |
2% GO/PVA | 280–418 | 425–495 | 499–640 | - |
3% GO/PVA | 295–420 | 425–480 | 480–620 | |
5% GO/PVA | 342–396 | 400–420 | 422–496 | 505–597 |
20% GO/PVA | 184–219 | 380–388 | 480–511 | 542–608 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gahramanli, L.; Muradov, M.; Eyvazova, G.; Baghirov, M.B.; Mammadyarova, S.; Aliyeva, G.; Hajiyev, E.; Mammadov, F.; Bellucci, S. Investigating the Effect of Thermal Annealing and Changing the Concentration of GO in GO/PVA Nanocomposites on Their Structural, Electrical, and Optical Properties. ChemEngineering 2023, 7, 92. https://doi.org/10.3390/chemengineering7050092
Gahramanli L, Muradov M, Eyvazova G, Baghirov MB, Mammadyarova S, Aliyeva G, Hajiyev E, Mammadov F, Bellucci S. Investigating the Effect of Thermal Annealing and Changing the Concentration of GO in GO/PVA Nanocomposites on Their Structural, Electrical, and Optical Properties. ChemEngineering. 2023; 7(5):92. https://doi.org/10.3390/chemengineering7050092
Chicago/Turabian StyleGahramanli, Lala, Mustafa Muradov, Goncha Eyvazova, Mahammad Baghir Baghirov, Sevinj Mammadyarova, Gunel Aliyeva, Elman Hajiyev, Faig Mammadov, and Stefano Bellucci. 2023. "Investigating the Effect of Thermal Annealing and Changing the Concentration of GO in GO/PVA Nanocomposites on Their Structural, Electrical, and Optical Properties" ChemEngineering 7, no. 5: 92. https://doi.org/10.3390/chemengineering7050092
APA StyleGahramanli, L., Muradov, M., Eyvazova, G., Baghirov, M. B., Mammadyarova, S., Aliyeva, G., Hajiyev, E., Mammadov, F., & Bellucci, S. (2023). Investigating the Effect of Thermal Annealing and Changing the Concentration of GO in GO/PVA Nanocomposites on Their Structural, Electrical, and Optical Properties. ChemEngineering, 7(5), 92. https://doi.org/10.3390/chemengineering7050092