Electrokinetic Forces as an Electrical Measure of Chemical Aging Potential in Granular Materials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Specimen Selection
2.2. Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS)
2.3. X-ray Fluorescence Analysis (XRF)
2.4. X-ray Diffraction Analysis (XRD)
2.5. Thermogravimetric Analysis (TGA)
2.6. Zeta Potential of Soils
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
Abbreviations
ZP | Zeta potential |
TGA | Thermogravimetric analysis |
XRF | X-ray fluorescence |
XRD | X-ray diffraction |
EDS | Energy dispersive spectrometry |
References
- Wang, Y.H.; Xu, D.; Tsui, K.Y. Discrete Element Modeling of Contact Creep and Aging in Sand. J. Geotech. Geoenviron. Eng. 2008, 134, 1407–1411. [Google Scholar] [CrossRef]
- Bowman, E.T.; Soga, K. Creep, ageing and microstructural change in dense granular materials. Soils Found. 2003, 43, 107–117. [Google Scholar] [CrossRef]
- Baxter, C.D.P.; Mitchell, J.K. Experimental Study on the Aging of Sands. J. Geotech. Geoenviron. Eng. 2004, 130, 1051–1062. [Google Scholar] [CrossRef]
- Joshi, C.; Achari, G.; Shenbaga, I.; Wijeweera, H. Effect of aging on the penetration resistance of sands. Can. Geotech. J. 1995, 782, 767–782. [Google Scholar] [CrossRef]
- Ltifi, M.; Abichou, T.; Tisot, J.P. Effects of Soil Aging on Mechanical and Hydraulic Properties of a Silty Soil. Geotech. Geol. Eng. 2014, 32, 1101–1108. [Google Scholar] [CrossRef]
- Nasiri, M.; Hajiazizi, M.; Jongpradist, P.; Mazaheri, A.R. Impact of natural environment on sand aging under static and dynamic conditions. Granul. Matter 2022, 24, 47. [Google Scholar] [CrossRef]
- Omunguye, I.W.; Howie, J.A.; Styler, M.A. Effects of Ageing on the Shear Modulus Degradation Curve of Loose Fraser River Sand. Geotech. Earthq. Eng. Soil Dyn. V GSP 293 2018, 70, 228–237. [Google Scholar] [CrossRef]
- Suarez, N.; Brandon, T.; Mitchell, J. Aging of Sands as a Micromechanical Process. In Proceedings of the Geo-Congress 2014: Geo-characterization and Modeling for Sustainability, Atlanta, GA, USA, 23–26 February 2014; Geotechnical Special Publication: Los Angeles, CA, USA, 2014; pp. 634–643. [Google Scholar] [CrossRef]
- Howie, J.A.; Shozen, T.; Vaid, Y.P. Effect of ageing on stiffness of very loose sand. Can. Geotech. J. 2002, 39, 149–156. [Google Scholar] [CrossRef]
- Mitchell, J.K. Aging of Sand—A Continuing Enigma? In Proceedings of the 6th International Conference on Case Histories in Geotechnical Engineering, Chicago, IL, USA, 11–16 August 2008; pp. 1–21. [Google Scholar]
- Kokusho, T.; Nagao, Y.; Ito, F.; Fukuyama, T. Aging effect on Sand Liquefaction Observed During The 2011 Earthquake and Basic Laboratory Studies. In Proceedings of the International Symposium on Engineering Lessons Learned from the 2011 Great East Japan Earthquake, Tokyo, Japan, 1–4 March 2012. [Google Scholar]
- Mesri, G.; Feng, T.W.; Benak, J.M. Postdensification penetration resistance of clean sands. J. Geotech. Eng. 1990, 116, 1095–1115. [Google Scholar] [CrossRef]
- Schmertmann, J.H.; Osterberg, J.O. An experimental study of the development of cohesion and friction with axial strain in saturated cohesive soils. In Proceedings of the Research Conference on Shear Strength of Cohesive Soils, Boulder, CO, USA, 13–16 June 1960; pp. 643–694. [Google Scholar]
- Toyota, H.; Takada, S. Mechanical properties of cementitious sand and sand with small cyclic shear strain to assess aging effects on liquefaction. Acta Geotech. 2022, 17, 2825–2840. [Google Scholar] [CrossRef]
- Nakarai, K.; Yoshida, T. Effect of carbonation on strength development of cement-treated Toyoura silica sand. Soils Found. 2015, 55, 857–865. [Google Scholar] [CrossRef]
- Bwambale, B.; Andrus, R.D. State of the art in the assessment of aging effects on soil liquefaction. Soil Dyn. Earthq. Eng. 2019, 125, 105658. [Google Scholar] [CrossRef]
- Mitchell, J.K.; Solymar, Z.V. Closure to “Time-Dependent Strength Gain in Freshly Deposited or Densified Sand”. J. Geotech. Eng. 1987, 113, 176. [Google Scholar] [CrossRef]
- Mitchell, J.K.; Solymar, Z.V. Time Dependent Strength Gain in Freshly Deposited or Densified Sand. J. Geotech. Eng. 1984, 110, 1559–1576. [Google Scholar] [CrossRef]
- Hajnos, M.; Cieśla, J. Electrokinetic (Zeta) Potential of Soils. In Encyclopedia of Earth Sciences Series; Springer: Dordrecht, The Netherlands, 2011; Volume Part 4, pp. 941–942. [Google Scholar] [CrossRef]
- Kamble, S.; Agrawal, S.; Cherumukkil, S.; Sharma, V.; Jasra, R.V.; Munshi, P. Revisiting Zeta Potential, the Key Feature of Interfacial Phenomena, with Applications and Recent Advancements. ChemistrySelect 2022, 7, e202103084. [Google Scholar] [CrossRef]
- Li, S.; Collini, H.; Jackson, M.D. Anomalous Zeta Potential Trends in Natural Sandstones. Geophys. Res. Lett. 2018, 45, 11068–11073. [Google Scholar] [CrossRef]
- John, K.N.; Arnepalli, D.N. Factors influencing zeta potential of clayey soils. In Geotechnical Characterisation and Geoenvironmental Engineering; Lecture Notes in Civil Engineering; Springer: Berlin/Heidelberg, Germany, 2019; Volume 16, pp. 171–178. [Google Scholar] [CrossRef]
- Alarouj, M.; Collini, H.; Jackson, M.D. Positive Zeta Potential in Sandstones Saturated With Natural Saline Brine. Geophys. Res. Lett. 2021, 48, e2021GL094306. [Google Scholar] [CrossRef]
- Mahrouqi, D.A.; Vinogradov, J.; Jackson, M.D. Zeta potential of artificial and natural calcite in aqueous solution. Adv. Colloid Interface Sci. 2017, 240, 60–76. [Google Scholar] [CrossRef] [PubMed]
- Delgado, A.V.; González-Caballero, F.; Hunter, R.J.; Koopal, L.K.; Lyklema, J. Measurement and interpretation of electrokinetic phenomena: (IUPAC technical report). Pure Appl. Chem. 2005, 77, 1753–1805. [Google Scholar] [CrossRef]
- Erzuah, S.; Aggrey, W.N.; Tetteh, J.T.; Bodi, V.; Adenutsi, C.D.; Sokama-Neuyam, Y.A.; Sarkodie, K.; Ampomah, W.; Ohemeng-Boahen, G.; Nyarko, K.B. Zeta potential prediction of dominant sandstone minerals via surface complexation modelling. Sci. Afr. 2023, 20, 01721. [Google Scholar] [CrossRef]
- Harris, J.C. Electrical Forces Affecting Soil and Substrate in the Detergency Process—Zeta Potential. Text. Res. J. 1958, 28, 912–928. [Google Scholar] [CrossRef]
- Marchuk, A.; Rengasamy, P.; McNeill, A.; Kumar, A. Nature of the clay-cation bond affects soil structure as verified by X-ray computed tomography. Soil Res. 2012, 50, 638–644. [Google Scholar] [CrossRef]
- Vinogradov, J.; Jackson, M.D. Zeta potential in intact natural sandstones at elevated temperatures. Geophys. Res. Lett. 2015, 42, 6287–6294. [Google Scholar] [CrossRef]
- Gómora-Herrera, D.; Bolaños, J.N.; Lijanova, I.V.; Olivares-Xometl, O.; Likhanova, N.V. Study of Surface Wettability Change of Unconsolidated Sand Using Diffuse Reflectance Infrared Fourier Transform Spectroscopy and Thermogravimetric Analysis. Appl. Spectrosc. 2018, 72, 562–572. [Google Scholar] [CrossRef] [PubMed]
- Castilla-Barbosa, M.; Ocampo-Terreros, M.; Rincon-Arango, O. A preliminary approach to interlocking phenomena for Colombian fluvio-lacustrine granular materials. In Proceedings of the 2022 Congreso Internacional de Innovacion y Tendencias en Ingenieria, CONIITI 2022—Conference Proceedings, Bogota, Colombia, 5–7 October 2022; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2022. [Google Scholar] [CrossRef]
- Girão, A.V.; Caputo, G.; Ferro, M.C. Application of Scanning Electron Microscopy–Energy Dispersive X-Ray Spectroscopy (SEM-EDS). Compr. Anal. Chem. 2017, 75, 153–168. [Google Scholar] [CrossRef]
- Potts, P.J. X-ray fluorescence analysis: Principles and practice of wavelength dispersive spectrometry. In A Handbook of Silicate Rock Analysis; Springer: Dordrecht, The Netherlands, 1987; pp. 226–285. [Google Scholar] [CrossRef]
- Potts, P.J.; Webb, P.C. X-ray fluorescence spectrometry. J. Geochem. Explor. 1992, 44, 251–296. [Google Scholar] [CrossRef]
- Oyedotun, T.D.T. X-ray fluorescence (XRF) in the investigation of the composition of earth materials: A review and an overview. Geol. Ecol. Landsc. 2018, 2, 148–154. [Google Scholar] [CrossRef]
- Ali, A.; Chiang, Y.W.; Santos, R.M. X-Ray Diffraction Techniques for Mineral Characterization: A Review for Engineers of the Fundamentals, Applications, and Research Directions. Minerals 2022, 12, 205. [Google Scholar] [CrossRef]
- Raja, P.B.; Munusamy, K.R.; Perumal, V.; Ibrahim, M.N.M. Characterization of nanomaterial used in nanobioremediation. In Nano-Bioremediation: Fundamentals and Applications; Elsevier: Amsterdam, The Netherlands, 2022; pp. 57–83. [Google Scholar] [CrossRef]
- Harris, W.; White, G.N. X-ray Diffraction Techniques for Soil Mineral Identification. In Methods of Soil Analysis Part 5—Mineralogical Methods; SSSA Book Series; Soil Science Society of America, Inc.: Madison, WI, USA, 2008. [Google Scholar] [CrossRef]
- Földvári, M. Handbook of the Thermogravimetric System of Minerals and Its Use in Geological Practice; Geological Institute of Hungary: Budapest, Hungary, 2011; Volume 213, pp. 1–400. [Google Scholar]
- Limited, M.I. Zeta Potential—An Introduction in 30 Minutes; Technical report; Malvern Instruments Limited: Malvern, UK, 2015. [Google Scholar]
- Fairhur, D. An Overview of the Zeta Potential—Part 2: Measurement; Technical report; American Pharmaceutical Review: Fishers, IN, USA, 2013. [Google Scholar]
- Matsumoto, S.; Ogata, S.; Shimada, H.; Sasaoka, T.; Hamanaka, A.; Kusuma, G.J. Effects of ph-induced changes in soil physical characteristics on the development of soil water erosion. Geosciences 2018, 8, 134. [Google Scholar] [CrossRef]
- Sze, A.; Erickson, D.; Ren, L.; Li, D. Zeta-potential measurement using the Smoluchowski equation and the slope of the current-time relationship in electroosmotic flow. J. Colloid Interface Sci. 2003, 261, 402–410. [Google Scholar] [CrossRef]
- Markgrafa, W. Quantifying microstructural stability of South-Brazilian soils by the application of rheological techniques and zeta potential measurements. In Proceedings of the 19th World Congress of Soil Science: Soil Solutions for a Changing World, Brisbane, Australia, 1–6 August 2010; pp. 1–6. [Google Scholar]
- Abbate, G.; Bernini, U.; Ragozzino, E.; Somma, F. The temperature dependence of the refractive index of water. J. Phys. D Appl. Phys. 1978, 11, 1167–1172. [Google Scholar] [CrossRef]
- Moldoveanu, S.C.; David, V. Chapter 7—Mobile Phases and Their Properties. In Essentials in Modern HPLC Separations; Moldoveanu, S.C., David, V., Eds.; Elsevier: Amsterdam, The Netherlands, 2013; pp. 363–447. [Google Scholar] [CrossRef]
- Ishida, T.; Ando, H.; Fukuhara, M. Estimation of complex refractive index of soil particles and its dependence on soil chemical properties. Remote Sens. Environ. 1991, 38, 173–182. [Google Scholar] [CrossRef]
- Tan, K.H. Degradation of Soil Minerals by Organic Acids. In Interactions of Soil Minerals with Natural Organics and Microbes; SSSA Special Publications: Madison, WI, USA, 2015; Volume 17, pp. 1–27. [Google Scholar] [CrossRef]
- Lee, S.O.; Tran, T.; Jung, B.H.; Kim, S.J.; Kim, M.J. Dissolution of iron oxide using oxalic acid. Hydrometallurgy 2007, 87, 91–99. [Google Scholar] [CrossRef]
- Majima, H.; Awakura, Y.; Mishima, T. The Leaching of Hematite in Acid Solutions. Metall. Trans. B 1985, 16, 23–30. [Google Scholar] [CrossRef]
- Taxiarchou, M.; Panias, D.; Douni, I.; Paspaliaris, I.; Kontopoulos, A. Dissolution of hematite in acidic oxalate solutions. Hydrometallurgy 1997, 44, 287–299. [Google Scholar] [CrossRef]
- Xu, S.; Habib, A.H.; Gee, S.H.; Hong, Y.K.; McHenry, M.E. Spin orientation, structure, morphology, and magnetic properties of hematite nanoparticles. J. Appl. Phys. 2015, 117, 17. [Google Scholar] [CrossRef]
- Zainuri, M. Hematite from Natural Iron Stones as Microwave Absorbing Material on X-Band Frequency Ranges. In IOP Conference Series: Materials Science and Engineering; Institute of Physics Publishing: Bristol, UK, 2017; Volume 196. [Google Scholar] [CrossRef]
- Csáki, S.; Trnovcová, V.; Štubňa, I.; Ondruška, J.; Sunitrová, I.; Vozár, L.; Dobroň, P. AC conductivity of an illitic clay with zeolite addition after firing at different temperatures. In AIP Conference Proceedings; American Institute of Physics Inc.: College Park, MD, USA, 2017; Volume 1866. [Google Scholar] [CrossRef]
- Meradi, H.; Atoui, L.; Bahloul, L.; Boubendira, K.; Bouazdia, A.; Ismail, F. Characterization by Thermal Analysis of Natural Kieselguhr and Sand for Industrial Application. Energy Procedia 2015, 74, 1282–1288. [Google Scholar] [CrossRef]
- Aloulou, H.; Bouhamed, H.; Amar, R.B.; Khemakhem, S. New ceramic microfiltration membrane from tunisian natural sand: Application for tangential wastewater treatment. Desalin. Water Treat. 2017, 78, 41–48. [Google Scholar] [CrossRef]
- Gridi-Bennadji, F.; Beneu, B.; Laval, J.P.; Blanchart, P. Structural transformations of Muscovite at high temperature by X-ray and neutron diffraction. Appl. Clay Sci. 2008, 38, 259–267. [Google Scholar] [CrossRef]
- Guggenheim, S.; Chang, Y.H.; Groos, A.K.V. Muscovite Dehydroxylation: High-Temperature Studies. Am. Mineral. 1987, 72, 537–550. [Google Scholar]
- Vinogradov, J.; Jackson, M.D.; Chamerois, M. Zeta potential in sandpacks: Effect of temperature, electrolyte pH, ionic strength and divalent cations. Colloids Surf. A Physicochem. Eng. Asp. 2018, 553, 259–271. [Google Scholar] [CrossRef]
- Leroy, P.; Maineult, A.; Li, S.; Vinogradov, J. The zeta potential of quartz. Surface complexation modelling to elucidate high salinity measurements. Colloids Surf. A Physicochem. Eng. Asp. 2022, 650, 129507. [Google Scholar] [CrossRef]
- Zhou, F.; Liu, Q.; Liu, X.; Li, W.; Feng, J.; Chi, R.A. Surface Electrical Behaviors of Apatite, Dolomite, Quartz, and Phosphate Ore. Front. Mater. 2020, 7, 35. [Google Scholar] [CrossRef]
- Nishimura, S.; Tateyama, H.; Tsunematsu, K.; Jinnai, K. Zeta Potential Measurement of Muscovite Mica Basal Plane-Aqueous Solution Interface by Means of Plane Interface Technique. J. Colloid Interface Sci. 1992, 152, 359–367. [Google Scholar] [CrossRef]
- Liu, G.; Jiang, F.; Ge, L.; Zhang, Q.; Chen, X.; Fan, Z.; Wang, J. Investigation of salinity and ion effects on low salinity water flooding efficiency in a tight sandstone reservoir. Energy Rep. 2023, 9, 2732–2744. [Google Scholar] [CrossRef]
- Tabar, M.A.; Bagherzadeh, H.; Shahrabadi, A.; Dahim, S. A comprehensive research in chemical consolidator/stabilizer agents on sand production control. J. Pet. Explor. Prod. Technol. 2021, 11, 4305–4324. [Google Scholar] [CrossRef]
- Sides, P.J.; Faruqui, D.; Gellman, A.J. Dynamics of charging of muscovite mica: Measurement and modeling. Langmuir 2009, 25, 1475–1481. [Google Scholar] [CrossRef]
- Tang, J.; Zhang, Y.; Bao, S. The effect of Ca2+ and Mg2+ on the dispersion and flocculation behaviors of muscovite particles. Minerals 2016, 6, 93. [Google Scholar] [CrossRef]
- Filippov, L.O.; Duverger, A.; Filippova, I.V.; Kasaini, H.; Thiry, J. Selective flotation of silicates and Ca-bearing minerals: The role of non-ionic reagent on cationic flotation. Miner. Eng. 2012, 36–38, 314–323. [Google Scholar] [CrossRef]
- Erzin, Y.; Yukselen, Y. The use of neural networks for the prediction of zeta potential of kaolinite. Math. Geosci. 2009, 41, 779–797. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castilla-Barbosa, M.; Rincón-Arango, O.; Ocampo-Terreros, M. Electrokinetic Forces as an Electrical Measure of Chemical Aging Potential in Granular Materials. ChemEngineering 2023, 7, 91. https://doi.org/10.3390/chemengineering7050091
Castilla-Barbosa M, Rincón-Arango O, Ocampo-Terreros M. Electrokinetic Forces as an Electrical Measure of Chemical Aging Potential in Granular Materials. ChemEngineering. 2023; 7(5):91. https://doi.org/10.3390/chemengineering7050091
Chicago/Turabian StyleCastilla-Barbosa, Miguel, Orlando Rincón-Arango, and Manuel Ocampo-Terreros. 2023. "Electrokinetic Forces as an Electrical Measure of Chemical Aging Potential in Granular Materials" ChemEngineering 7, no. 5: 91. https://doi.org/10.3390/chemengineering7050091
APA StyleCastilla-Barbosa, M., Rincón-Arango, O., & Ocampo-Terreros, M. (2023). Electrokinetic Forces as an Electrical Measure of Chemical Aging Potential in Granular Materials. ChemEngineering, 7(5), 91. https://doi.org/10.3390/chemengineering7050091