A Phytochemical Approach to the Removal of Contaminants from Industrial Dyeing Wastewater
Abstract
:1. Introduction
2. Materials and Methods
2.1. Physicochemical Characterization of Dyeing Wastewater
2.2. Microorganisms
2.3. Experimental Design
2.4. Biomass Concentration and Nutrient Removal
2.5. Carbohydrate Extraction and Quantification
2.6. Total Lipids Extraction and Quantification
2.7. Protein Extraction and Quantification
2.8. Total Carotenoids Extraction and Quantification
2.9. Phycobiliproteins Extraction and Quantification
3. Results and Discussions
3.1. Physicochemical Characterization of Dyeing Wastewater
3.2. Biomass Production and Nutrient Removal
3.3. Validation of the Optimal Conditions
3.4. Production of Metabolites of Interest
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ceretta, M.B.; Vieira, Y.; Wolski, E.A.; Foletto, E.L.; Silvestri, S. Biological Degradation Coupled to Photocatalysis by ZnO/Polypyrrole Composite for the Treatment of Real Textile Wastewater. J. Water Process Eng. 2020, 35, 101230. [Google Scholar] [CrossRef]
- Hubadillah, S.K.; Othman, M.H.D.; Tai, Z.S.; Jamalludin, M.R.; Yusuf, N.K.; Ahmad, A.; Rahman, M.A.; Jaafar, J.; Kadir, S.H.S.A.; Harun, Z. Novel Hydroxyapatite-Based Bio-Ceramic Hollow Fiber Membrane Derived from Waste Cow Bone for Textile Wastewater Treatment. Chem. Eng. J. 2020, 379, 122396. [Google Scholar] [CrossRef]
- Yuan, Y.; Ning, X.A.; Zhang, Y.; Lai, X.; Li, D.; He, Z.; Chen, X. Chlorobenzene Levels, Component Distribution, and Ambient Severity in Wastewater from Five Textile Dyeing Wastewater Treatment Plants. Ecotoxicol. Environ. Saf. 2020, 193, 110257. [Google Scholar] [CrossRef] [PubMed]
- Chhikara, S.; Hooda, A.; Rana, L.; Dhankhar, R. Chromium (VI) Biosorption by Immobilized Aspergillus Niger in Continuous Flow System with Special Reference to FTIR Analysis. J. Environ. Biol. 2010, 31, 561–566. [Google Scholar] [PubMed]
- Daneshvar, E.; Zarrinmehr, M.J.; Kousha, M.; Hashtjin, A.M.; Saratale, G.D.; Maiti, A.; Vithanage, M.; Bhatnagar, A. Hexavalent Chromium Removal from Water by Microalgal-Based Materials: Adsorption, Desorption and Recovery Studies. Bioresour. Technol. 2019, 293, 122064. [Google Scholar] [CrossRef] [PubMed]
- Chung, K.T. Mutagenicity and Carcinogenicity of Aromatic Amines Metabolically Produced from Azo Dyes. J. Environ. Sci. Health Part C 2008, 18, 51–74. [Google Scholar] [CrossRef]
- Kumar, P.; Sumangala, B. Decolorization of Azo Dye Red 3BN by Bacteria. Int. Res. J. Biol. Sci. 2012, 1, 46–52. [Google Scholar]
- Holkar, C.R.; Jadhav, A.J.; Pinjari, D.V.; Mahamuni, N.M.; Pandit, A.B. A Critical Review on Textile Wastewater Treatments: Possible Approaches. J. Environ. Manag. 2016, 182, 351–366. [Google Scholar] [CrossRef]
- Liang, C.Z.; Sun, S.P.; Li, F.Y.; Ong, Y.K.; Chung, T.S. Treatment of Highly Concentrated Wastewater Containing Multiple Synthetic Dyes by a Combined Process of Coagulation/Flocculation and Nanofiltration. J. Membr. Sci. 2014, 469, 306–315. [Google Scholar] [CrossRef]
- Yeap, K.L.; Teng, T.T.; Poh, B.T.; Morad, N.; Lee, K.E. Preparation and Characterization of Coagulation/Flocculation Behavior of a Novel Inorganic–Organic Hybrid Polymer for Reactive and Disperse Dyes Removal. Chem. Eng. J. 2014, 243, 305–314. [Google Scholar] [CrossRef]
- Chollom, M.N.; Rathilal, S.; Pillay, V.L.; Alfa, D. The Applicability of Nanofiltration for the Treatment and Reuse of Textile Reactive Dye Effluent. Water SA 2015, 41, 398–405. [Google Scholar] [CrossRef]
- Koyuncu, I.; Güney, K. Membrane-Based Treatment of Textile Industry Wastewaters. Encycl. Membr. Sci. Technol. 2013, 1–12. [Google Scholar] [CrossRef]
- Auta, M.; Hameed, B.H. Preparation of Waste Tea Activated Carbon Using Potassium Acetate as an Activating Agent for Adsorption of Acid Blue 25 Dye. Chem. Eng. J. 2011, 171, 502–509. [Google Scholar] [CrossRef]
- Galán, J.; Rodríguez, A.; Gómez, J.M.; Allen, S.J.; Walker, G.M. Reactive Dye Adsorption onto a Novel Mesoporous Carbon. Chem. Eng. J. 2013, 219, 62–68. [Google Scholar] [CrossRef]
- Zuorro, A.; Lavecchia, R. Evaluation of UV/H2O2 Advanced Oxidation Process (AOP) for the Degradation of Diazo Dye Reactive Green 19 in Aqueous Solution. New Pub Balaban 2014, 52, 1571–1577. [Google Scholar] [CrossRef]
- Gupta, V.K.; Jain, R.; Mittal, A.; Saleh, T.A.; Nayak, A.; Agarwal, S.; Sikarwar, S. Photo-Catalytic Degradation of Toxic Dye Amaranth on TiO(2)/UV in Aqueous Suspensions. Mater. Sci. Eng. C Mater. Biol. Appl. 2012, 32, 12–17. [Google Scholar] [CrossRef] [PubMed]
- Mishra, K.P.; Gogate, P.R. Intensification of Degradation of Rhodamine B Using Hydrodynamic Cavitation in the Presence of Additives. Sep. Purif. Technol. 2010, 75, 385–391. [Google Scholar] [CrossRef]
- Wang, Z.; Xue, M.; Huang, K.; Liu, Z.; Wang, Z.; Xue, M.; Huang, K.; Liu, Z. Textile Dyeing Wastewater Treatment. Adv. Treat. Text. Effl. 2011, 5, 91–116. [Google Scholar] [CrossRef]
- Hayat, H.; Mahmood, Q.; Pervez, A.; Bhatti, Z.A.; Baig, S.A. Comparative Decolorization of Dyes in Textile Wastewater Using Biological and Chemical Treatment. Sep. Purif. Technol. 2015, 154, 149–153. [Google Scholar] [CrossRef]
- Castellanos-Estupiñan, M.A.; Carrillo-Botello, A.M.; Rozo-Granados, L.S.; Becerra-Moreno, D.; García-Martínez, J.B.; Urbina-Suarez, N.A.; López-Barrera, G.L.; Barajas-Solano, A.F.; Bryan, S.J.; Zuorro, A. Removal of Nutrients and Pesticides from Agricultural Runoff Using Microalgae and Cyanobacteria. Water 2022, 14, 558. [Google Scholar] [CrossRef]
- Zuorro, A.; García-Martínez, J.B.; Barajas-Solano, A.F. The Application of Catalytic Processes on the Production of Algae-Based Biofuels: A Review. Catalysts 2021, 11, 22. [Google Scholar] [CrossRef]
- Guiza-Franco, L.; Orozco-Rojas, L.G.; Sanchez-Galvis, M.; Garcia-Martinez, J.B.; Barajas-Ferreira, C.; Zuorro, A.; Barajas-Solano, A.F. Production of Chlorella Vulgaris Biomass on UV-Treated Wastewater as an Alternative for Environmental Sustainability on High-Mountain Fisheries. Chem. Eng. Trans. 2018, 64, 517–522. [Google Scholar] [CrossRef]
- Quintero-Dallos, V.; García-Martínez, J.B.; Contreras-Ropero, J.E.; Barajas-Solano, A.F.; Barajas-Ferrerira, C.; Lavecchia, R.; Zuorro, A. Vinasse as a Sustainable Medium for the Production of Chlorella Vulgaris UTEX 1803. Water 2019, 11, 1526. [Google Scholar] [CrossRef]
- García-Martínez, J.B.; Sanchez-Tobos, L.P.; Carvajal-Albarracín, N.A.; Barajas-Solano, A.F.; Barajas-Ferreira, C.; Kafarov, V.; Zuorro, A. The Circular Economy Approach to Improving CNP Ratio in Inland Fishery Wastewater for Increasing Algal Biomass Production. Water 2022, 14, 749. [Google Scholar] [CrossRef]
- García-Martínez, J.B.; Contreras-Ropero, J.E.; Urbina-Suarez, N.A.; López-Barrera, G.L.; Barajas-Solano, A.F.; Kafarov, V.; Barajas-Ferreira, C.; Ibarra-Mojica, D.M.; Zuorro, A. A Simulation Analysis of a Microalgal-Production Plant for the Transformation of Inland-Fisheries Wastewater in Sustainable Feed. Water 2022, 14, 250. [Google Scholar] [CrossRef]
- Aragaw, T.A.; Asmare, A.M. Phycoremediation of Textile Wastewater Using Indigenous Microalgae. Water Pract. Technol. 2018, 13, 274–284. [Google Scholar] [CrossRef]
- Daneshvar, N.; Ayazloo, M.; Khataee, A.R.; Pourhassan, M. Biological Decolorization of Dye Solution Containing Malachite Green by Microalgae Cosmarium sp. Bioresour. Technol. 2007, 98, 1176–1182. [Google Scholar] [CrossRef]
- Dhaouefi, Z.; Toledo-Cervantes, A.; García, D.; Bedoui, A.; Ghedira, K.; Chekir-Ghedira, L.; Muñoz, R. Assessing Textile Wastewater Treatment in an Anoxic-Aerobic Photobioreactor and the Potential of the Treated Water for Irrigation. Algal Res. 2018, 29, 170–178. [Google Scholar] [CrossRef]
- Nagaraj, S.; Sagaya, J.P.J.; Anand, J.; Malairaj, S.; Lakshmaiah, B.; Sathya, R.; MubarakAli, D. A Cyanobacterium Treated Textile Wastewater for the Plant Growth Enhancement: Experimental Study. Appl. Biochem. Biotechnol. 2022. [Google Scholar] [CrossRef]
- Sharif, A. Microbial Degradation of Textile Industry Effluents: A Review. Pure Appl. Biol. 2020, 9, 2361–2382. [Google Scholar] [CrossRef]
- Al-Tohamy, R.; Ali, S.S.; Li, F.; Okasha, K.M.; Mahmoud, Y.A.G.; Elsamahy, T.; Jiao, H.; Fu, Y.; Sun, J. A Critical Review on the Treatment of Dye-Containing Wastewater: Ecotoxicological and Health Concerns of Textile Dyes and Possible Remediation Approaches for Environmental Safety. Ecotoxicol. Environ. Saf. 2022, 231, 113160. [Google Scholar] [CrossRef] [PubMed]
- Lipps, W.C.; Braun-Howland, E.B.; Baxter, T.E. Standard Methods for the Examination of Water and Wastewater, 23rd ed.; American Public Health Association: Washington, DC, USA, 2017; ISBN 0875532993. [Google Scholar]
- Urbina-Suarez, N.A.; Ayala-González, D.D.; Rivera-Amaya, J.D.; Barajas-Solano, A.F.; Machuca-Martínez, F. Evaluation of the Light/Dark Cycle and Concentration of Tannery Wastewater in the Production of Biomass and Metabolites of Industrial Interest from Microalgae and Cyanobacteria. Water 2022, 14, 346. [Google Scholar] [CrossRef]
- Moheimani, N.R.; Borowitzka, M.A.; Isdepsky, A.; Sing, S.F. Standard Methods for Measuring Growth of Algae and Their Composition BT—Algae for Biofuels and Energy; Borowitzka, M.A., Moheimani, N.R., Eds.; Springer: Dordrecht, The Netherlands, 2013; pp. 265–284. ISBN 978-94-007-5479-9. [Google Scholar]
- Moheimani, N.R.; Webb, J.P.; Borowitzka, M.A. Bioremediation and Other Potential Applications of Coccolithophorid Algae: A Review. Algal Res. 2012, 1, 120–133. [Google Scholar] [CrossRef]
- Urbina-Suarez, N.A.; Rivera-Caicedo, C.; González-Delgado, Á.D.; Barajas-Solano, A.F.; Machuca-Martínez, F. Bicarbonate-Hydrogen Peroxide System for Treating Dyeing Wastewater: Degradation of Organic Pollutants and Color Removal. Toxics 2023, 11, 366. [Google Scholar] [CrossRef] [PubMed]
- Slavov, A.K. General Characteristics and Treatment Possibilities of Dairy Wastewater—A Review. Food Technol. Biotechnol. 2017, 55, 14. [Google Scholar] [CrossRef] [PubMed]
- Urbina-Suarez, N.A.; Barajas-Solano, A.F.; Zuorro, A.; Machuca, F. Advanced Oxidation Processes with Uv-H2O2 for Nitrification and Decolorization of Dyehouse Wastewater. Chem. Eng. Trans. 2022, 95, 235–240. [Google Scholar] [CrossRef]
- Silva, L.G.M.; Moreira, F.C.; Cechinel, M.A.P.; Mazur, L.P.; de Souza, A.A.U.; Souza, S.M.A.G.U.; Boaventura, R.A.R.; Vilar, V.J.P. Integration of Fenton’s Reaction Based Processes and Cation Exchange Processes in Textile Wastewater Treatment as a Strategy for Water Reuse. J. Environ. Manag. 2020, 272, 111082. [Google Scholar] [CrossRef]
- Urbina-Suárez, N.A. Different Effect of Nitrogen Sources in Autotrophic and Mixotrophic Culture of Scenedesmus sp. for Biomass and Carotenoids Production Using Acidic Coal Mine Drainage Effluents. Ing. Y Compet. 2022, 24. [Google Scholar] [CrossRef]
- Esther Baby, J.; Jaambavi, I.; Rajeswari, G.; Akshaya, T. Optimization Removal of Colour and Organic Solid Pollutants from Textile Industry Wastewater by Electrocoagulation. Mater. Today Proc. 2021. [Google Scholar] [CrossRef]
- Subashini, P.S.; Rajiv, P. An Investigation of Textile Wastewater Treatment Using Chlorella Vulgaris. Orient. J. Chem. 2018, 34, 2517–2524. [Google Scholar] [CrossRef]
- Hussain, Z.; Arslan, M.; Shacir, G.; Malik, M.H.; Mohsin, M.; Iqbal, S.; Afzal, M. Remediation of Textile Bleaching Effluent by Bacterial Augmented Horizontal Flow and Vertical Flow Constructed Wetlands: A Comparison at Pilot Scale. Sci. Total Environ. 2019, 685, 370–379. [Google Scholar] [CrossRef] [PubMed]
- Roy, M.; Saha, R. Dyes and Their Removal Technologies from Wastewater: A Critical Review. Intell. Environ. Data Monit. Pollut. Manag. 2021, 127–160. [Google Scholar] [CrossRef]
- Yao, J.; Mei, Y.; Xia, G.; Lu, Y.; Xu, D.; Sun, N.; Wang, J.; Chen, J. Process Optimization of Electrochemical Oxidation of Ammonia to Nitrogen for Actual Dyeing Wastewater Treatment. Int. J. Environ. Res. Public Health 2019, 16, 2931. [Google Scholar] [CrossRef] [PubMed]
- de Carvalho, J.C.; Borghetti, I.A.; Cartas, L.C.; Woiciechowski, A.L.; Soccol, V.T.; Soccol, C.R. Biorefinery Integration of Microalgae Production into Cassava Processing Industry: Potential and Perspectives. Bioresour. Technol. 2018, 247, 1165–1172. [Google Scholar] [CrossRef] [PubMed]
- Gita, S.; Shukla, S.P.; Saharan, N.; Prakash, C.; Deshmukhe, G. Toxic Effects of Selected Textile Dyes on Elemental Composition, Photosynthetic Pigments, Protein Content and Growth of a Freshwater Chlorophycean Alga Chlorella Vulgaris. Bull. Environ. Contam. Toxicol. 2019, 102, 795–801. [Google Scholar] [CrossRef] [PubMed]
- Javed, F.; Rashid, N.; Fazal, T.; Hafeez, A.; Rehman, F. Integration of Real Industrial Wastewater Streams to Enhance Chlorella Vulgaris Growth: Nutrient Sequestration and Biomass Production. Water Air Soil Pollut. 2023, 234, 1–11. [Google Scholar] [CrossRef]
- El-Sheekh, M.M.; El-Shanshoury, A.R.; Abou-El-Souod, G.W.; Gharieb, D.Y.; El Shafay, S.M. Decolorization of Dyestuffs by Some Species of Green Algae and Cyanobacteria and Its Consortium. Int. J. Environ. Sci. Technol. 2021, 18, 3895–3906. [Google Scholar] [CrossRef]
- Shetty, K.; Krishnakumar, G. Algal and Cyanobacterial Biomass as Potential Dye Biodecolorizing Material: A Review. Biotechnol. Lett. 2020, 42, 2467–2488. [Google Scholar] [CrossRef]
- Dellamatrice, P.M.; Silva-Stenico, M.E.; de Moraes, L.A.B.; Fiore, M.F.; Monteiro, R.T.R. Degradation of Textile Dyes by Cyanobacteria. Braz. J. Microbiol. 2017, 48, 25. [Google Scholar] [CrossRef]
- Kumar, A.; Bera, S. Revisiting Nitrogen Utilization in Algae: A Review on the Process of Regulation and Assimilation. Bioresour. Technol. Rep. 2020, 12, 100584. [Google Scholar] [CrossRef]
- Cuellar-Bermudez, S.P.; Aleman-Nava, G.S.; Chandra, R.; Garcia-Perez, J.S.; Contreras-Angulo, J.R.; Markou, G.; Muylaert, K.; Rittmann, B.E.; Parra-Saldivar, R. Nutrients Utilization and Contaminants Removal. A Review of Two Approaches of Algae and Cyanobacteria in Wastewater. Algal Res. 2017, 24, 438–449. [Google Scholar] [CrossRef]
- Fazal, T.; Rehman, M.S.U.; Javed, F.; Akhtar, M.; Mushtaq, A.; Hafeez, A.; Alaud Din, A.; Iqbal, J.; Rashid, N.; Rehman, F. Integrating Bioremediation of Textile Wastewater with Biodiesel Production Using Microalgae (Chlorella vulgaris). Chemosphere 2021, 281, 130758. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, A.L. The Use of Microalgae and Cyanobacteria in the Improvement of Agricultural Practices: A Review on Their Biofertilising, Biostimulating and Biopesticide Roles. Appl. Sci. 2021, 11, 871. [Google Scholar] [CrossRef]
- Touliabah, H.E.S.; El-Sheekh, M.M.; Ismail, M.M.; El-Kassas, H. A Review of Microalgae- and Cyanobacteria-Based Biodegradation of Organic Pollutants. Molecules 2022, 27, 1141. [Google Scholar] [CrossRef] [PubMed]
- Tamil Selvan, S.; Dakshinamoorthi, B.M.; Chandrasekaran, R.; Muthusamy, S.; Ramamurthy, D.; Balasundaram, S. Integrating Eco-Technological Approach for Textile Dye Effluent Treatment and Carbon Dioxide Capturing from Unicellular Microalga Chlorella Vulgaris RDS03: A Synergistic Method. Int. J. Phytoremediat. 2023, 25, 466–482. [Google Scholar] [CrossRef] [PubMed]
- Selvan, B.K.; Pandiyan, R.; Vaishnavi, M.; Das, S.; Thirunavoukkarasu, M. Ameliorative Biodegradation of Hazardous Textile Industrial Wastewater Dyes by Potential Microalgal sp. Biomass Convers. Biorefinery 2022, 1–12. [Google Scholar] [CrossRef]
- Arutselvan, C.; Narchonai, G.; Pugazhendhi, A.; kumar Seenivasan, H.; LewisOscar, F.; Thajuddin, N. Phycoremediation of Textile and Tannery Industrial Effluents Using Microalgae and Their Consortium for Biodiesel Production. J. Clean. Prod. 2022, 367, 133100. [Google Scholar] [CrossRef]
- Ding, T.; Yang, M.; Zhang, J.; Yang, B.; Lin, K.; Li, J.; Gan, J. Toxicity, Degradation and Metabolic Fate of Ibuprofen on Freshwater Diatom Navicula sp. J. Hazard. Mater. 2017, 330, 127–134. [Google Scholar] [CrossRef]
Parameter | Units | Standard Methods Code |
---|---|---|
COD | mg × L−1 | 5220C |
BOD | mg × L−1 | 5210B-4500-OG |
Nitrates | mg × L−1 | 4500-NO3 B |
Nitrites | mg × L−1 | 4500-NO2 B |
Ammonia nitrogen | mg × L−1 | 4500-NH3 F |
Phosphates | mg × L−1 | 4500-P C |
Total Suspended Solids | mg × L−1 | 2540D |
Heavy Metals (Fe, Cr) | mg × L−1 | 3111D |
Sulfides | mg × L−1 | 4500-S2 F |
Chlorides | mg × L−1 | 4500-ClB |
Total Hardness | mg × L−1 CaCO3 | SM2340C |
pH | pH units | 4500B |
Conductivity | µS × cm−1 | 2510B |
Experiment | Wastewater Concentration | Photoperiod Light/Dark |
---|---|---|
% v/v | Hours | |
1 | 20 | 8 |
2 | 50 | 8 |
3 | 20 | 21 |
4 | 50 | 21 |
5 | 35 | 14.5 |
6 | 35 | 14.5 |
7 | 35 | 14.5 |
8 | 56.21 | 14.5 |
9 | 35 | 14.5 |
10 | 35 | 23.69 |
11 | 35 | 14.5 |
12 | 35 | 5.30 |
13 | 35 | 14.5 |
14 | 13.78 | 14.5 |
Parameter | Units | This Research | [38] | [39] | [40] | [41] | [42] |
---|---|---|---|---|---|---|---|
COD | mg × L−1 | 974.7 ± 3.1 | 598 | 689 | 622 | 12,690 | 1700 |
BOD | mg × L−1 | 290.33 ± 2.5 | 225.56 | 248 | 214.2 | 2667 | 782 |
Nitrates | mg × L−1 | 42.95 ± 0.91 | 65 | 29.06 | 24.3 | 5.18 | n/a |
Nitrites | mg × L−1 | 6.34 ± 0.09 | 1.25 | n/a | 3.23 | n/a | n/a |
Ammonia nitrogen | mg × L−1 | 18.45 ± 0.21 | 35.6 | n/a | 15.6 | n/a | 10.5 |
Phosphates | mg × L−1 | 9.1 ± 0.72 | n/a | n/a | 0.96 | 40.39 | 12.4 |
Total Suspended Solids | mg × L−1 | 1345.31 ± 2.61 | 587.43 | 235 | 602.4 | n/a | n/a |
Fe | mg × L−1 | 1.98 ± 0.01 | 7.5 | 2.36 | 7.5 | n/a | 17.77 |
Cr | mg × L−1 | 1.067 ± 0.01 | n/a | n/a | 0.1 | n/a | 3.56 |
Chlorides | mg × L−1 | 594 ± 0.12 | 850.67 | 2586 | 893.88 | 198.39 | 286 |
Total Hardness | mg × L−1 CaCO3 | 612.21 ± 2.5 | n/a | n/a | n/a | n/a | 1054 |
pH | pH units | 5.8 ± 0.1 | 6.1 | 7.5 | 5.98 | 4.94 | 6.25 |
Conductivity | µS × cm−1 | 893.56 ± 3.4 | 1145 | 15.2 | 1302 | 1675 | 1180 |
Strain | Source | Sum of Squares | df | Mean Square | F-Value | p-Value |
---|---|---|---|---|---|---|
Chlorella sp. | Block | 0.0008 | 1 | 0.0008 | ||
Model | 0.0595 | 3 | 0.0198 | 34.17 | <0.0001 * | |
A-Wastewater | 0.0287 | 1 | 0.0287 | 49.57 | <0.0001 * | |
B-Photoperiod | 0.0210 | 1 | 0.0210 | 36.12 | 0.0002 * | |
A2 | 0.0098 | 1 | 0.0098 | 16.82 | 0.0027 * | |
Residual | 0.0052 | 9 | 0.0006 | |||
Lack of Fit | 0.0038 | 5 | 0.0008 | 2.06 | 0.2511 ** | |
Pure Error | 0.0015 | 4 | 0.0004 | |||
Cor Total | 0.0655 | 13 | ||||
Scenedesmus sp. | Block | 0.0063 | 1 | 0.0063 | ||
Model | 0.2082 | 5 | 0.0416 | 83.78 | <0.0001 * | |
A-Wastewater | 0.0731 | 1 | 0.0731 | 147.11 | <0.0001 * | |
B-Photoperiod | 0.0624 | 1 | 0.0624 | 125.51 | <0.0001 * | |
AB | 0.0006 | 1 | 0.0006 | 1.26 | 0.2991 ** | |
A2 | 0.0713 | 1 | 0.0713 | 143.50 | <0.0001 * | |
B2 | 0.0000 | 1 | 0.0000 | 0.0913 | 0.7713 ** | |
Residual | 0.0035 | 7 | 0.0005 | |||
Lack of Fit | 0.0001 | 3 | 0.0000 | 0.0355 | 0.9897 ** | |
Pure Error | 0.0034 | 4 | 0.0008 | |||
Cor Total | 0.2179 | 13 | ||||
Oscillatoria sp. | Block | 0.0206 | 1 | 0.0206 | ||
Model | 0.9950 | 2 | 0.4975 | 85.89 | <0.0001 * | |
A-Wastewater | 0.0963 | 1 | 0.0963 | 16.62 | 0.0022 * | |
B-Photoperiod | 0.8987 | 1 | 0.8987 | 155.15 | <0.0001 * | |
Residual | 0.0579 | 10 | 0.0058 | |||
Lack of Fit | 0.0264 | 6 | 0.0044 | 0.5581 | 0.7509 ** | |
Pure Error | 0.0315 | 4 | 0.0079 | |||
Cor Total | 1.07 | 13 | ||||
Hapalosiphon sp. | Block | 0.0206 | 1 | 0.0206 | ||
Model | 0.9950 | 2 | 0.4975 | 85.89 | <0.0001 * | |
A-Wastewater | 0.0963 | 1 | 0.0963 | 16.62 | 0.0022 * | |
B-Photoperiod | 0.8987 | 1 | 0.8987 | 155.15 | <0.0001 * | |
Residual | 0.0579 | 10 | 0.0058 | |||
Lack of Fit | 0.0264 | 6 | 0.0044 | 0.5581 | 0.7509 ** | |
Pure Error | 0.0315 | 4 | 0.0079 | |||
Cor Total | 1.07 | 13 |
Strains | Wastewater Concentration % v/v | Photoperiod Light/Dark h | ||||
---|---|---|---|---|---|---|
Low | Medium | High | Low | Medium | High | |
Chlorella sp. | 50 | 75 | 100 | 8 | 12 | 16 |
Scenedesmus sp. | 50 | 75 | 100 | 14 | 17 | 20 |
Oscillatoria sp. | 50 | 75 | 100 | 17 | 20 | 23 |
Hapalosiphon sp. | 50 | 75 | 100 | 17 | 20 | 23 |
Strain | Source | Sum of Squares | df | Mean Square | F-Value | p-Value |
---|---|---|---|---|---|---|
Chlorella sp. | Model | 0.0595 | 3 | 0.0198 | 34.17 | <0.0001 * |
A-Wastewater | 0.0287 | 1 | 0.0287 | 49.57 | <0.0001 * | |
B-Photoperiod | 0.0210 | 1 | 0.0210 | 36.12 | 0.0002 * | |
A² | 0.0098 | 1 | 0.0098 | 16.82 | 0.0027 * | |
Lack of Fit | 0.0038 | 5 | 0.0008 | 2.06 | 0.2511 ** | |
Scenedesmus sp. | Model | 0.2082 | 5 | 0.0416 | 83.78 | <0.0001 * |
A-Wastewater | 0.0731 | 1 | 0.0731 | 147.11 | <0.0001 * | |
B-Photoperiod | 0.0624 | 1 | 0.0624 | 125.51 | <0.0001 * | |
AB | 0.0006 | 1 | 0.0006 | 1.26 | 0.2991 * | |
A² | 0.0713 | 1 | 0.0713 | 143.50 | <0.0001 * | |
B² | 0.0000 | 1 | 0.0000 | 0.0913 | 0.7713 ** | |
Lack of Fit | 0.0001 | 3 | 0.0000 | 0.0355 | 0.9897 ** | |
Oscillatoria sp. | Model | 1.31 | 5 | 0.2621 | 133.19 | <0.0001 * |
A-Wastewater | 0.1375 | 1 | 0.1375 | 69.87 | <0.0001 * | |
B-Photoperiod | 0.0398 | 1 | 0.0398 | 20.23 | 0.0028 * | |
AB | 0.0047 | 1 | 0.0047 | 2.38 | 0.1665 ** | |
A² | 0.7865 | 1 | 0.7865 | 399.60 | <0.0001 * | |
B² | 0.4839 | 1 | 0.4839 | 245.86 | <0.0001 * | |
Lack of Fit | 0.0081 | 3 | 0.0027 | 1.91 | 0.2687 ** | |
Hapalosiphon sp. | Model | 1.49 | 5 | 0.2977 | 87.50 | <0.0001 * |
A-Wastewater | 0.1540 | 1 | 0.1540 | 45.25 | 0.0003 * | |
B-Photoperiod | 0.0484 | 1 | 0.0484 | 14.24 | 0.0070 * | |
A2 | 0.0020 | 1 | 0.0020 | 0.5951 | 0.4657 * | |
B2 | 0.9770 | 1 | 0.9770 | 287.10 | <0.0001 * | |
Lack of Fit | 0.0257 | 5 | 0.0051 | 5.73 | 0.0577 ** |
Strain | Wastewater Concentration % v/v | Photoperiod Light/Dark h |
---|---|---|
Chlorella sp. | 80 | 13.5 |
Scenedesmus sp. | 81 | 18.5 |
Oscillatoria sp. | 75 | 19.2 |
Hapalosiphon sp. | 75 | 19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Urbina-Suarez, N.A.; Salcedo-Pabón, C.J.; Contreras-Ropero, J.E.; López-Barrera, G.L.; García-Martínez, J.B.; Barajas-Solano, A.F.; Machuca-Martínez, F. A Phytochemical Approach to the Removal of Contaminants from Industrial Dyeing Wastewater. ChemEngineering 2023, 7, 90. https://doi.org/10.3390/chemengineering7050090
Urbina-Suarez NA, Salcedo-Pabón CJ, Contreras-Ropero JE, López-Barrera GL, García-Martínez JB, Barajas-Solano AF, Machuca-Martínez F. A Phytochemical Approach to the Removal of Contaminants from Industrial Dyeing Wastewater. ChemEngineering. 2023; 7(5):90. https://doi.org/10.3390/chemengineering7050090
Chicago/Turabian StyleUrbina-Suarez, Néstor A., Cristian J. Salcedo-Pabón, Jefferson E. Contreras-Ropero, German L. López-Barrera, Janet B. García-Martínez, Andrés F. Barajas-Solano, and Fiderman Machuca-Martínez. 2023. "A Phytochemical Approach to the Removal of Contaminants from Industrial Dyeing Wastewater" ChemEngineering 7, no. 5: 90. https://doi.org/10.3390/chemengineering7050090
APA StyleUrbina-Suarez, N. A., Salcedo-Pabón, C. J., Contreras-Ropero, J. E., López-Barrera, G. L., García-Martínez, J. B., Barajas-Solano, A. F., & Machuca-Martínez, F. (2023). A Phytochemical Approach to the Removal of Contaminants from Industrial Dyeing Wastewater. ChemEngineering, 7(5), 90. https://doi.org/10.3390/chemengineering7050090