Assessment of Bioactive Compounds in Red Peppercorns (Piper nigrum L.) for the Development of Red Peppercorns Powder
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Design of Experiment and Extraction of Bioactive Compounds
2.3. Bioactive Compounds Analysis
2.4. Optimization of Extraction Process
2.5. Statistical Analysis
3. Results
3.1. Extraction Yield of Total Phenolic and Flavonoid Contents
3.2. Linear Effect of Extraction Parameters on Total Phenolic and Total Flavonoid Contents
3.3. Interaction Effects of Extraction Parameters on Total Phenolic and Total Flavonoid Contents
3.4. Optimization of Extraction of Total Phenolic and Total Flavonoid Contents
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Damanhouri, Z.A. A Review on Therapeutic Potential of Piper nigrum L. (Black Pepper): The King of Spices. Med. Aromat. Plants 2014, 3, 3. [Google Scholar] [CrossRef]
- Takooree, H.; Aumeeruddy, M.Z.; Rengasamy, K.R.R.; Venugopala, K.N.; Jeewon, R.; Zengin, G.; Mahomoodally, M.F. A Systematic Review on Black Pepper (Piper nigrum L.): From Folk Uses to Pharmacological Applications. Crit. Rev. Food Sci. Nutr. 2019, 59, S210–S243. [Google Scholar] [CrossRef] [PubMed]
- Pisith, S.O.K. An Analysis of Pepper (Piper nigrum) Value Chains in Cambodia. N. Am. Acad. Res. NAAR J. 2021, 4, 107–127. [Google Scholar] [CrossRef]
- Morm, E.; Ma, K.; Horn, S.; Debaste, F.; Haut, B.; In, S. Experimental Characterization of the Drying of Kampot Red Pepper (Piper nigrum L.). Foods 2020, 9, 1532. [Google Scholar] [CrossRef]
- Ghodki, B.M.; Goswami, T.K. Effect of Grinding Temperatures on Particle and Physicochemical Characteristics of Black Pepper Powder. Powder Technol. 2016, 299, 168–177. [Google Scholar] [CrossRef]
- Tapsell, L.C.; Hemphill, I.; Cobiac, L.; Sullivan, D.R.; Fenech, M.; Patch, C.S.; Roodenrys, S.; Keogh, J.B.; Clifton, P.M.; Williams, P.G.; et al. Health Benefits of Herbs and Spices: The Past, the Present, the Future. Med. J. Aust. 2006, 185, S1–S24. [Google Scholar] [CrossRef]
- Smith, R.M. Before the Injection—Modern Methods of Sample Preparation for Separation Techniques. J. Chromatogr. A 2003, 1000, 3–27. [Google Scholar] [CrossRef]
- Sasidharan, S.; Chen, Y.; Saravanan, D.; Sundram, K.; Latha, L. Extraction, Isolation And Characterization of Bioactive Compounds from Plants’ Extracts. Afr. J. Tradit. Complement. Altern. Med. 2010, 8, 1–10. [Google Scholar] [CrossRef]
- Hernandez, Y.; Lobo, M.; Gonzalez, M. Factors Affecting Sample Extraction in the Liquid Chromatographic Determination of Organic Acids in Papaya and Pineapple. Food Chem. 2009, 114, 734–741. [Google Scholar] [CrossRef]
- Sepahpour, S.; Selamat, J.; Abdul Manap, M.; Khatib, A.; Abdull Razis, A. Comparative Analysis of Chemical Composition, Antioxidant Activity and Quantitative Characterization of Some Phenolic Compounds in Selected Herbs and Spices in Different Solvent Extraction Systems. Molecules 2018, 23, 402. [Google Scholar] [CrossRef]
- Sulaiman, C.; Balachandran, I. Total Phenolics and Total Flavonoids in Selected Indian Medicinal Plants. Indian J. Pharm. Sci. 2012, 74, 258. [Google Scholar] [CrossRef] [PubMed]
- Arranz, S.; Silván, J.M.; Saura-Calixto, F. Nonextractable Polyphenols, Usually Ignored, Are the Major Part of Dietary Polyphenols: A Study on the Spanish Diet. Mol. Nutr. Food Res. 2010, 54, 1646–1658. [Google Scholar] [CrossRef] [PubMed]
- Hosseininejad, S.; González, C.M.; Hernando, I.; Moraga, G. Valorization of Persimmon Fruit Through the Development of New Food Products. Front. Food Sci. Technol. 2022, 2, 914952. [Google Scholar] [CrossRef]
- Parmar, V.S.; Jain, S.C.; Bisht, K.S.; Jain, R.; Taneja, P.; Jha, A.; Tyagi, O.D.; Prasad, A.K.; Wengel, J.; Olsen, C.E.; et al. Phytochemistry of the Genus Piper. Phytochemistry 1997, 46, 597–673. [Google Scholar] [CrossRef]
- Halligudi, N.; Bhupathyraaj, M.; Hakak, M.H.S. Therapeutic Potential of Bioactive Compounds of Piper nigrum L. (Black Pepper): A Review. Asian J. Appl. Chem. Res. 2022, 3, 17–23. [Google Scholar] [CrossRef]
- Rodríguez-Carpena, J.-G.; Morcuende, D.; Andrade, M.-J.; Kylli, P.; Estévez, M. Avocado (Persea americana Mill.) Phenolics, In Vitro Antioxidant and Antimicrobial Activities, and Inhibition of Lipid and Protein Oxidation in Porcine Patties. J. Agric. Food Chem. 2011, 59, 5625–5635. [Google Scholar] [CrossRef]
- Balasundram, N.; Sundram, K.; Samman, S. Phenolic Compounds in Plants and Agri-Industrial by-Products: Antioxidant Activity, Occurrence, and Potential Uses. Food Chem. 2006, 99, 191–203. [Google Scholar] [CrossRef]
- Ermi Hikmawanti, N.P.; Fatmawati, S.; Asri, A.W. The Effect of Ethanol Concentrations as The Extraction Solvent on Antioxidant Activity of Katuk (Sauropus androgynus (L.) Merr.) Leaves Extracts. IOP Conf. Ser. Earth Environ. Sci. 2021, 755, 012060. [Google Scholar] [CrossRef]
- Dai, J.; Mumper, R.J. Plant Phenolics: Extraction, Analysis and Their Antioxidant and Anticancer Properties. Molecules 2010, 15, 7313–7352. [Google Scholar] [CrossRef]
- Al-Farsi, M.A.; Lee, C.Y. Optimization of Phenolics and Dietary Fibre Extraction from Date Seeds. Food Chem. 2008, 108, 977–985. [Google Scholar] [CrossRef]
- Zhang, S.; Bi, H.; Liu, C. Extraction of Bio-Active Components from Rhodiola Sachalinensis under Ultrahigh Hydrostatic Pressure. Sep. Purif. Technol. 2007, 57, 277–282. [Google Scholar] [CrossRef]
- Cacace, J.E.; Mazza, G. Mass Transfer Process during Extraction of Phenolic Compounds from Milled Berries. J. Food Eng. 2003, 59, 379–389. [Google Scholar] [CrossRef]
- Andres, A.I.; Petron, M.J.; Lopez, A.M.; Timon, M.L. Optimization of Extraction Conditions to Improve Phenolic Content and In Vitro Antioxidant Activity in Craft Brewers’ Spent Grain Using Response Surface Methodology (RSM). Foods 2020, 9, 1398. [Google Scholar] [CrossRef] [PubMed]
- Che Sulaiman, I.S.; Basri, M.; Fard Masoumi, H.R.; Chee, W.J.; Ashari, S.E.; Ismail, M. Effects of Temperature, Time, and Solvent Ratio on the Extraction of Phenolic Compounds and the Anti-Radical Activity of Clinacanthus Nutans Lindau Leaves by Response Surface Methodology. Chem. Cent. J. 2017, 11, 54. [Google Scholar] [CrossRef]
Independent Variables | Factors X | Levels | ||
---|---|---|---|---|
Low (−1) | Center (0) | High (+1) | ||
Extraction time [min] | X1 | 30 | 90 | 150 |
Temperature [°C] | X2 | 35 | 50 | 65 |
Solid-to-solvent ratio [g/mL] | X3 | 0.5:10 | 0.5:15 | 0.5:20 |
Runs | Time [min], X1 | Temperature [°C], X2 | Solid-to-Solvent Ratio [g/mL], X3 | TFC * (mg QE/g DW) | TPC * (mg GAE/g DW) |
---|---|---|---|---|---|
1 | 30 | 35 | 0.5:15 | 10.08 ± 3.00 | 3.82 ± 1.04 |
2 | 30 | 65 | 0.5:15 | 12.82 ± 0.09 | 5.92 ± 0.64 |
3 | 150 | 35 | 0.5:15 | 8.91 ± 1.55 | 3.95 ± 0.45 |
4 | 150 | 65 | 0.5:15 | 15.51 ± 1.23 | 8.38 ± 0.58 |
5 | 90 | 35 | 0.5:10 | 10.92 ± 0.68 | 4.34 ± 0.07 |
6 | 90 | 35 | 0.5:20 | 8.03 ± 0.53 | 3.26 ± 0.28 |
7 | 90 | 65 | 0.5:10 | 14.90 ± 1.03 | 7.17 ± 0.55 |
8 | 90 | 65 | 0.5:20 | 12.72 ± 0.23 | 6.69 ± 0.49 |
9 | 30 | 50 | 0.5:10 | 11.64 ± 0.31 | 5.16 ± 0.58 |
10 | 150 | 50 | 0.5:10 | 13.63 ± 0.00 | 6.61 ± 0.04 |
11 | 30 | 50 | 0.5:20 | 9.39 ± 1.93 | 4.36 ± 0.93 |
12 | 150 | 50 | 0.5:20 | 10.37 ± 0.42 | 5.14 ± 0.59 |
13 | 90 | 50 | 0.5:15 | 11.79 ± 1.55 | 5.68 ± 0.50 |
14 | 90 | 50 | 0.5:15 | 11.58 ± 1.36 | 5.31 ± 0.90 |
15 | 90 | 50 | 0.5:15 | 11.42 ± 0.73 | 1.31 ± 0.90 |
Sources | Sum of Squares | DF | F-Value | p-Value |
---|---|---|---|---|
Model | 53.63 | 9 | 18.44 | <0.0001 * |
Lack of fit | 0.17 | 3 | 0.17 | 0.8954 |
X1 | 5.83 | 1 | 4.93 | 0.0004 * |
X2 | 40.83 | 1 | 75.32 | <0.0001 * |
X3 | 3.64 | 1 | 26.52 | 0.0031 * |
X1 ∗ X2 | 2.72 | 1 | 6.91 | 0.0088 * |
X1 ∗ X3 | 0.22 | 1 | 0.37 | 0.4109 |
X2 ∗ X3 | 0.18 | 1 | 0.23 | 0.4604 |
X12 | 0.002 | 1 | 0.05 | 0.9365 |
X22 | 0.03 | 1 | 0.71 | 0.7614 |
X32 | 0.13 | 1 | 0.53 | 0.5240 |
Sources | Sum of Squares | DF | F-Value | p-Value |
---|---|---|---|---|
Model | 124.30 | 9 | 13.81 | <0.0001 * |
Lack of fit | 0.80 | 3 | 0.26 | 0.8582 |
X1 | 5.30 | 1 | 48.18 | 0.03801 * |
X2 | 80.91 | 1 | 185.60 | <0.0001 * |
X3 | 28.48 | 1 | 34.03 | <0.0001 * |
X1 ∗ X2 | 7.43 | 1 | 36.40 | 0.0160 * |
X1 ∗ X3 | 0.40 | 1 | 1.82 | 0.05461 |
X2 ∗ X3 | 0.24 | 1 | 0.40 | 0.6357 |
X12 | 0.06 | 1 | 1.67 | 0.8150 |
X22 | 0.77 | 1 | 18.66 | 0.4066 |
X32 | 0.57 | 1 | 1.02 | 0.4746 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lay, S.; Sen, S.; Houng, P. Assessment of Bioactive Compounds in Red Peppercorns (Piper nigrum L.) for the Development of Red Peppercorns Powder. ChemEngineering 2023, 7, 83. https://doi.org/10.3390/chemengineering7050083
Lay S, Sen S, Houng P. Assessment of Bioactive Compounds in Red Peppercorns (Piper nigrum L.) for the Development of Red Peppercorns Powder. ChemEngineering. 2023; 7(5):83. https://doi.org/10.3390/chemengineering7050083
Chicago/Turabian StyleLay, Sovannmony, Sochetra Sen, and Peany Houng. 2023. "Assessment of Bioactive Compounds in Red Peppercorns (Piper nigrum L.) for the Development of Red Peppercorns Powder" ChemEngineering 7, no. 5: 83. https://doi.org/10.3390/chemengineering7050083
APA StyleLay, S., Sen, S., & Houng, P. (2023). Assessment of Bioactive Compounds in Red Peppercorns (Piper nigrum L.) for the Development of Red Peppercorns Powder. ChemEngineering, 7(5), 83. https://doi.org/10.3390/chemengineering7050083