Chitosan–Resole–Pectin Aerogel in Methylene Blue Removal: Modeling and Optimization Using an Artificial Neuron Network
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Preparation of the Chitosan, Pectin, and Resole Solution for the Sol–Gel Reaction
2.2.1. Fabrication of the Chitosan–Resole–Pectin Aerogel
2.2.2. Characterization of the CS–R–P Aerogel
2.3. Artificial Neural Network Modeling
2.3.1. Adsorption Studies
2.3.2. Kinetic Studies
2.3.3. MB Adsorption
2.4. Artificial Neural Network Optimization
3. Results and Discussion
3.1. Characterization
3.2. MB Adsorption Capacity Study
Final Thermal Effect on the Kinetic Study
3.3. Neural Network Modeling
3.4. Evaluation of the Predictive Performance of the ANN-IGWO
3.5. Optimization Process
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Elzahar, M.M.H. Utilization of Chitosan and Polyacrylamide Gel to Remove Direct Dyes from Wastewater. Res. Sq. 2022. [Google Scholar] [CrossRef]
- Kang, S.; Zhao, Y.; Wang, W.; Zhang, T.; Chen, T.; Yi, H.; Rao, F.; Song, S. Removal of Methylene Blue from Water with Montmorillonite Nanosheets/Chitosan Hydrogels as Adsorbent. Appl. Surf. Sci. 2018, 448, 203–211. [Google Scholar] [CrossRef]
- Rafatullah, M.; Sulaiman, O.; Hashim, R.; Ahmad, A. Adsorption of methylene blue on low-cost adsorbents: A review. J. Hazard. Mater. 2010, 177, 70–80. [Google Scholar] [CrossRef] [PubMed]
- Anastopoulos, I.; Bhatnagar, A.; Hameed, B.H.; Ok, Y.S.; Omirou, M. A review on waste-derived adsorbents from sugar industry for pollutant removal in water and wastewater. J. Mol. Liq. 2017, 240, 179–188. [Google Scholar] [CrossRef]
- Albis Arrieta, A.R.; López Rangel, A.J.; Romero Castilla, M.C. Removal of Methylene Blue from Aqueous Solutions Using Cassava Peel (Manihot Esculenta) Modified with Phosphoric Acid//Remoción de Azul de Metileno de Soluciones Acuosas Utilizando Cáscara de Yuca (Manihot Esculenta) Modificada Con Ácido Fosfórico. Prospectiva 2017, 15, 60–73. [Google Scholar] [CrossRef]
- Somma, S.; Reverchon, E.; Baldino, L. Water Purification of Classical and Emerging Organic Pollutants: An Extensive Review. ChemEngineering 2021, 5, 47. [Google Scholar] [CrossRef]
- Wang, W.; Bai, H.; Zhao, Y.; Kang, S.; Yi, H.; Zhang, T.; Song, S. Synthesis of Chitosan Cross-Linked 3D Network-Structured Hydrogel for Methylene Blue Removal. Int. J. Biol. Macromol. 2019, 141, 98–107. [Google Scholar] [CrossRef]
- Rocha, L.S.; Almeida, A.; Nunes, C.; Henriques, B.; Coimbra, M.A.; Lopes, C.B.; Silva, C.M.; Duarte, A.C.; Pereira, E. Simple and Effective Chitosan Based Films for the Removal of Hg from Waters: Equilibrium, Kinetic and Ionic Competition. Chem. Eng. J. 2016, 300, 217–229. [Google Scholar] [CrossRef]
- Abdolali, A.; Guo, W.S.; Ngo, H.H.; Chen, S.S.; Nguyen, N.C.; Tung, K.L. Typical Lignocellulosic Wastes and By-Products for Biosorption Process in Water and Wastewater Treatment: A Critical Review. Bioresour. Technol. 2014, 160, 57–66. [Google Scholar] [CrossRef]
- Rezakazemi, M.; Shirazian, S. Lignin-Chitosan Blend for Methylene Blue Removal: Adsorption Modeling. J. Mol. Liq. 2019, 274, 778–791. [Google Scholar] [CrossRef]
- Liu, Q.; Yu, H.; Zeng, F.; Li, X.; Sun, J.; Li, C.; Lin, H.; Su, Z. HKUST-1 Modified Ultrastability Cellulose/Chitosan Composite Aerogel for Highly Efficient Removal of Methylene Blue. Carbohydr. Polym. 2021, 255, 117402. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.L.; Guo, D.M.; An, Q.D.; Xiao, Z.Y.; Zhai, S.R. High-Efficacy Adsorption of Cr(VI) and Anionic Dyes onto β-Cyclodextrin/Chitosan/Hexamethylenetetramine Aerogel Beads with Task-Specific, Integrated Components. Int. J. Biol. Macromol. 2019, 128, 268–278. [Google Scholar] [CrossRef]
- Shahbazi, M.A.; Ghalkhani, M.; Maleki, H. Directional Freeze-Casting: A Bioinspired Method to Assemble Multifunctional Aligned Porous Structures for Advanced Applications. Adv. Eng. Mater. 2020, 22, 2000033. [Google Scholar] [CrossRef]
- Smirnova, I.; Gurikov, P. Aerogel Production: Current Status, Research Directions, and Future Opportunities. J. Supercrit. Fluids 2018, 134, 228–233. [Google Scholar] [CrossRef]
- Sheng, Z.; Liu, Z.; Hou, Y.; Jiang, H.; Li, Y.; Li, G.; Zhang, X. The Rising Aerogel Fibers: Status, Challenges, and Opportunities. Adv. Sci. 2023, 10, e2205762. [Google Scholar] [CrossRef]
- De Luna, M.S.; Ascione, C.; Santillo, C.; Verdolotti, L.; Lavorgna, M.; Buonocore, G.G.; Ambrosio, L. Optimization of dye adsorption capacity and mechanical strength of chitosan aerogels through crosslinking strategy and graphene oxide addition. Carbohydr. Polym. 2019, 211, 195–203. [Google Scholar] [CrossRef] [PubMed]
- Rahmi; Ismaturrahmi; Mustafa, I. Methylene Blue Removal from Water Using H2SO4 Crosslinked Magnetic Chitosan Nanocomposite Beads. Microchem. J. 2019, 144, 397–402. [Google Scholar] [CrossRef]
- Tan, M.; Zheng, S.; Lv, H.; Wang, B.; Zhao, Q.; Zhao, B. Rational Design and Synthesis of Chitosan-Quinoa Polysaccharide Composite Aerogel and Its Adsorption Properties for Congo Red and Methylene Blue. New J. Chem. 2021, 45, 9829–9837. [Google Scholar] [CrossRef]
- Flores-Gómez, J.; Romero Arellano, V.H.; Vazquez-Lepe, M.; de Martínez-Gómez, A.J.; Morales-Rivera, J. Modeling and Optimization of the Adsorption of Cr (VI) in a Chitosan-Resole Aerogel Using Response Surface Methodology. Gels 2023, 9, 197. [Google Scholar] [CrossRef]
- Ighalo, J.O.; Igwegbe, C.A.; Adeniyi, A.G.; Abdulkareem, S.A. Artificial neural network modeling of the water absorption behavior of plantain peel and bamboo fibers reinforced polystyrene composites. J. Macromol. Sci. Part B 2021, 60, 472–484. [Google Scholar] [CrossRef]
- Kurczewska, J.; Cegłowski, M.; Schroeder, G. PAMAM-Halloysite Dunino Hybrid as an Effective Adsorbent of Ibuprofen and Naproxen from Aqueous Solutions. Appl. Clay Sci. 2020, 190, 105603. [Google Scholar] [CrossRef]
- Tafreshi, O.A.; Saadatnia, Z.; Ghaffari-Mosanenzadeh, S.; Okhovatian, S.; Park, C.B.; Naguib, H.E. Machine learning-based model for predicting the material properties of nanostructured aerogels. SPE Polym. 2023, 4, 24–37. [Google Scholar] [CrossRef]
- Abdusalamov, R.; Pandit, P.; Milow, B.; Itskov, M.; Rege, A. Machine learning-based structure–property predictions in silica aerogels. Soft Matter 2021, 17, 7350–7358. [Google Scholar] [CrossRef]
- Yang, Z.; Qiao, W.M.; Liang, X.Y. Modelling and optimization of the pore structure of carbon aerogels using an artificial neural network. New Carbon Mater. 2017, 32, 77–85. [Google Scholar] [CrossRef]
- Liu, L.; Che, N.; Wang, S.; Liu, Y.; Li, C. Copper nanoparticle loading and F doping of graphene aerogel enhance its adsorption of aqueous perfluorooctanoic acid. ACS Omega 2021, 6, 7073–7085. [Google Scholar] [CrossRef]
- Arabameri, M.; Javid, A.; Roudbari, A. Artificial neural network (ANN) modeling of COD reduction from landfill leachate by the ultrasonic process. Environ. Prot. Eng. 2017, 43, 59–73. [Google Scholar] [CrossRef]
- Betiku, E.; Odude, V.O.; Ishola, N.B.; Bamimore, A.; Osunleke, A.S.; Okeleye, A.A. Predictive capability evaluation of RSM, ANFIS and ANN: A case of reduction of high free fatty acid of palm kernel oil via esterification process. Energy Convers. Manag. 2016, 124, 219–230. [Google Scholar] [CrossRef]
- Nadimi-Shahraki, M.H.; Taghian, S.; Mirjalili, S. An improved grey wolf optimizer for solving engineering problems. Expert Syst. Appl. 2021, 166, 113917. [Google Scholar] [CrossRef]
- Perentena, L.; Celis, B.; Valbuena, A. Síntesis de bases de schiff derivadas del quitosano por metoxibenzaldehido. Rev. Iberoam. Polímeros 2015, 16, 1–27. [Google Scholar]
- Sahebjamee, N.; Soltanieh, M.; Mousavi, S.M.; Heydarinasab, A. Preparation and Characterization of Porous Chitosan–Based Membrane with Enhanced Copper Ion Adsorption Performance. React. Funct. Polym. 2020, 154, 104681. [Google Scholar] [CrossRef]
- Yavuz, A.G.; Dincturk-Atalay, E.; Uygun, A.; Gode, F.; Aslan, E. A Comparison Study of Adsorption of Cr(VI) from Aqueous Solutions onto Alkyl-Substituted Polyaniline/Chitosan Composites. Desalination 2011, 279, 325–331. [Google Scholar] [CrossRef]
- Poljanšek, I.; Krajnc, M. Characterization of Phenol-Formaldehyde Prepolymer Resins by in Line FT-IR Spectroscopy. Acta Chim. Slov. 2005, 52, 238–244. [Google Scholar]
- Wu, W.; Wu, Y.; Lin, Y.; Shao, P. Facile fabrication of multifunctional citrus pectin aerogel fortified with cellulose nanofiber as controlled packaging of edible fungi. Food Chem. 2022, 374, 131763. [Google Scholar] [CrossRef] [PubMed]
- El-Kousy, S.M.; El-Shorbagy, H.G.; El-Ghaffar, M.A.A. Chitosan/Montmorillonite Composites for Fast Removal of Methylene Blue from Aqueous Solutions. Mater. Chem. Phys. 2020, 254, 123236. [Google Scholar] [CrossRef]
- Beh, J.H.; Lim, T.H.; Lew, J.H.; Lai, J.C. Cellulose Nanofibril-Based Aerogel Derived from Sago Pith Waste and Its Application on Methylene Blue Removal. Int. J. Biol. Macromol. 2020, 160, 836–845. [Google Scholar] [CrossRef]
- Gong, R.; Ye, J.; Dai, W.; Yan, X.; Hu, J.; Hu, X.; Li, S.; Huang, H. Adsorptive Removal of Methyl Orange and Methylene Blue from Aqueous Solution with Finger-Citron-Residue-Based Activated Carbon. Ind. Eng. Chem. Res. 2013, 52, 14297–14303. [Google Scholar] [CrossRef]
- Almaamary, E.A.S.; Abdullah, S.R.S.; Hasan, H.A.; Rahim, R.A.A.; Idris, M. Rawatan Metilena Biru Dalam Air Sisa Menggunakan Scirpus Grossus. Malays. J. Anal. Sci. 2017, 21, 182–187. [Google Scholar]
- Varmazyar, A.; Sedaghat, S.; Khalaj, M. Highly Efficient Removal of Methylene Blue by a Synthesized TiO2/Montmorillonite-Albumin Nanocomposite: Kinetic and Isothermal Analysis in Water. RSC Adv. 2017, 7, 37214–37219. [Google Scholar] [CrossRef]
- Han, H.; Wei, W.; Jiang, Z.; Lu, J.; Zhu, J.; Xie, J. Removal of Cationic Dyes from Aqueous Solution by Adsorption onto Hydrophobic/Hydrophilic Silica Aerogel. Colloids Surf. A Physicochem. Eng. Asp. 2016, 509, 539–549. [Google Scholar] [CrossRef]
- Ibrahim, A.G.; Abdel Hai, F.; Abd El-Wahab, H.; Aboelanin, H. Methylene Blue Removal Using a Novel Hydrogel Containing 3-Allyloxy-2-Hydroxy-1-Propanesulfonic Acid Sodium Salt. Adv. Polym. Technol. 2018, 37, 3561–3573. [Google Scholar] [CrossRef]
- Ibrahim, A.G.; Elkony, A.M.; El-Bahy, S.M. Methylene Blue Uptake by Gum Arabic/Acrylic Amide/3-Allyloxy-2-Hydroxy-1-Propanesulfonic Acid Sodium Salt Semi-IPN Hydrogel. Int. J. Biol. Macromol. 2021, 186, 268–277. [Google Scholar] [CrossRef] [PubMed]
- Dosa, M.; Grifasi, N.; Galletti, C.; Fino, D.; Piumetti, M. Natural Zeolite Clinoptilolite Application in Wastewater Treatment: Methylene Blue, Zinc and Cadmium Abatement Tests and Kinetic Studies. Materials 2022, 15, 8191. [Google Scholar] [CrossRef] [PubMed]
Factor | Parameter | Coded Variables | ||
---|---|---|---|---|
−1 | 0 | 1 | ||
A | Chitosan/resole/pectin concentration by vol (%) | 45/45/10 | 60/25/15 | 75/5/20 |
B | Thermal treatment (hours) | 6 | 24 | 36 |
C | Initial concentration of methylene blue (mg/L) | 25 | 50 | 100 |
CS–R–P | Thermal Treatment | MB Concentration |
---|---|---|
Factor A | Factor B | Factor C |
6 | ||
45%45%10% | 24 | 50 mg/L |
(−1) | 36 | |
6 | ||
60%25%15% | 24 | 50 mg/L |
(0) | 36 | |
6 | ||
75%5%20% | 24 | 50 mg/L |
(1) | 36 |
Model | Property | Value |
---|---|---|
ANN | Algorithm | IGWO |
Input layer | No transfer function | |
Hidden layer | (tansig) | |
Output layer | (purelin) | |
Minimized error function | Mean square error (MSE) | |
Training iterations | Minimum gradient of 0.00015 | |
Input neurons | 3 (Chitosan/resole/pectin concentration by vol, thermal treatment time, and initial concentration of methylene blue) | |
Hidden neurons | (4, 6, 8, 10, and 12) | |
Number of output neurons | 1 (Methylene blue removal) |
Run | Weight (g) | W% | Ve (cm3) |
---|---|---|---|
1 | 0.157 | 93.48 +/− 0.119 | 0.569 |
2 | 0.589 | 57.83 +/− 0.094 | 0.198 |
3 | 0.614 | 63.37 +/− 0.151 | 0.271 |
4 | 0.371 | 73.09 +/− 0.060 | 0.253 |
5 | 0.359 | 73.28 +/− 0.140 | 0.254 |
6 | 0.575 | 62.91 +/− 0.142 | 0.247 |
7 | 0.158 | 94.58 +/− 0.334 | 0.689 |
8 | 0.557 | 60.20 +/− 0.196 | 0.321 |
9 | 0.585 | 66.26 +/− 0.166 | 0.244 |
10 | 0.528 | 66.93 +/− 0.120 | 0.272 |
11 | 0.398 | 72.06 +/− 0.052 | 0.259 |
12 | 0.179 | 93.08 +/− 0.313 | 0.602 |
13 | 0.390 | 66.87 +/− 0.017 | 0.196 |
14 | 0.387 | 65.88 +/− 0.307 | 0.191 |
15 | 0.183 | 92.52 +/− 0.139 | 0.566 |
16 | 0.535 | 67.79 +/− 0.115 | 0.218 |
17 | 0.373 | 68.92 +/− 0.123 | 0.218 |
CS–R–P | qe, Exp | Pseudo-First-Order | Pseudo-Second-Order | ||
---|---|---|---|---|---|
Factor A | (mg/g) | k1 | R2 | k2 | R2 |
45%45%10% | 12.44 | −0.3626 | 0.8642 | 0.5269 | 0.9998 |
−1 | 8.65 | 0.072 | 0.8743 | 0.5115 | 0.9998 |
10.27 | −0.2281 | 0.87 | 0.1753 | 0.9988 | |
60%25%15% | 10.54 | −0.7343 | 0.8892 | 0.3959 | 0.9997 |
0 | 8.65 | 0.9343 | 0.9005 | 0.8104 | 0.9898 |
8.38 | −1.157 | 0.9389 | 0.2365 | 0.9989 | |
75%5%20% | 9.73 | 0.8409 | 0.9531 | 0.6172 | 0.9992 |
1 | 9.49 | 0.714 | 0.9304 | 0.4624 | 0.9996 |
6.76 | 0.806 | 0.9672 | 0.2558 | 0.9995 |
References | Adsorbent | qmax (mg/g) | % Remotion | Observations |
---|---|---|---|---|
Gong et al. [36] | Activated carbon | 934.58 | 48.9 | |
Almaamar et al. [37] | Scirpus grossus for phytoremediation | 87 | After 72 days of contact | |
Varmazyar et al. [38] | TiO2/montmorillonite–albumin nanocomposite | 18.18 | Synthesized by green process | |
Han et al. [39] | Hydrophilic (hydroxyl group) silica aerogel | 47.21 | Ambient pressure drying method | |
Ibrahim et al. [40] | 3-Allyloxy-2-hydroxy-1-propanesulfonic acid sodium salt-based hydrogel | 81.03 | ||
Beh et al. [35] | CNF aerogel from kenaf core | 122.2 | 90 | at 20 °C and a pH of 9 |
El-Kousy et al. [34] | CS/montmorillonite hydrogel | 180 | ||
Tan et al. [18] | Chitosan/quinoa aerogel | 22.72 | ||
Ibrahim et al. [41] | Semi-IPN Acrylamide-co-3-Allyloxy-2-hydroxy-1-propanesulfonic acid sodium salt hydrogel | 194.61 | ||
Dosa et al. [42] | Natural zeolite clinoptilolite | 22.2 | 96 | |
This work | CS/P/R aerogel | 12.44 | 90 |
Run | Independent Variables | ||||
---|---|---|---|---|---|
A | B | C | Experiment | Predicted ANN-IGWO | |
Chitosan/Resole/Pectin Concentration by Vol | Thermal Treatment | Initial Concentration of Methylene Blue | Methylene Blue Removal [%] | Methylene Blue Removal [%] | |
1 | 1 | 1 | 0 | 50.13 +/− 0.96 | 50.08 |
2 | −1 | −1 | 0 | 82.01 +/− 2.73 | 82.03 |
3 | 0 | 0 | 0 | 88.26 +/− 1.51 | 88.23 |
4 | −1 | 0 | 1 | 48.04 +/− 0.12 | 48.17 |
5 | −1 | 0 | −1 | 79.52 +/− 1.98 | 79.00 |
6 | 0 | 0 | 0 | 88.26 +/− 0.12 | 88.23 |
7 | 1 | −1 | 0 | 57.17 +/− 1.91 | 57.80 |
8 | 0 | 0 | 0 | 88.26 +/− 0.02 | 88.23 |
9 | 0 | 0 | 0 | 88.26 +/− 1.66 | 88.23 |
10 | −1 | 1 | 0 | 75.37 +/− 0.12 | 74.75 |
11 | 0 | 1 | −1 | 78.5 +/− 0.85 | 78.49 |
12 | 1 | 0 | −1 | 79.09 +/− 2.08 | 79.60 |
13 | 0 | −1 | 1 | 80.38 +/− 0.33 | 80.84 |
14 | 0 | −1 | −1 | 90.41 +/− 1.46 | 90.01 |
15 | 1 | 0 | 1 | 26.37 +/− 1.02 | 26.65 |
16 | 0 | 0 | 0 | 88.26+/− 2.73 | 88.23 |
17 | 0 | 1 | 1 | 40.19 +/− 0.14 | 40.51 |
Parameter | ANN-MFO |
---|---|
R | 0.9999 |
R2 | 0.9997 |
Adjusted R2 | 0.9990 |
MSE | 0.1111 |
RMSE | 0.3333 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Flores-Gómez, J.; Villegas-Ruvalcaba, M.; Blancas-Flores, J.; Morales-Rivera, J. Chitosan–Resole–Pectin Aerogel in Methylene Blue Removal: Modeling and Optimization Using an Artificial Neuron Network. ChemEngineering 2023, 7, 82. https://doi.org/10.3390/chemengineering7050082
Flores-Gómez J, Villegas-Ruvalcaba M, Blancas-Flores J, Morales-Rivera J. Chitosan–Resole–Pectin Aerogel in Methylene Blue Removal: Modeling and Optimization Using an Artificial Neuron Network. ChemEngineering. 2023; 7(5):82. https://doi.org/10.3390/chemengineering7050082
Chicago/Turabian StyleFlores-Gómez, Jean, Mario Villegas-Ruvalcaba, José Blancas-Flores, and Juan Morales-Rivera. 2023. "Chitosan–Resole–Pectin Aerogel in Methylene Blue Removal: Modeling and Optimization Using an Artificial Neuron Network" ChemEngineering 7, no. 5: 82. https://doi.org/10.3390/chemengineering7050082
APA StyleFlores-Gómez, J., Villegas-Ruvalcaba, M., Blancas-Flores, J., & Morales-Rivera, J. (2023). Chitosan–Resole–Pectin Aerogel in Methylene Blue Removal: Modeling and Optimization Using an Artificial Neuron Network. ChemEngineering, 7(5), 82. https://doi.org/10.3390/chemengineering7050082