Low-Waste Synthesis and Properties of Highly Dispersed NiO·Al2O3 Mixed Oxides Based on the Products of Centrifugal Thermal Activation of Gibbsite
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Fractional Composition of Powder Particles
3.2. XRD Data
3.3. Thermal Analysis Data
3.4. Nitrogen Porosimetry Data
3.5. Scanning Electron Microscopy Data
3.6. TPR-H2 Data
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Meng, X.; Yang, Y.; Chen, L.; Xu, M.; Zhang, X.; Wei, M. A control over hydrogenation selectivity of furfural via tuning exposed facet of Ni catalysts. ACS Catal. 2019, 9, 4226–4235. [Google Scholar] [CrossRef]
- Kobzar, E.O.; Stepanova, L.N.; Leont’eva, N.N.; Belskaya, O.B. The influence of composition of Ni-containing layered hydroxides prepared by mechanochemical method on their properties in the furfural hydrogenation. AIP Conf. Proceed 2020, 2301, 030010. [Google Scholar] [CrossRef]
- Chen, S.; Wojcieszak, R.; Dumeignil, F.; Marceau, E.; Royer, S. How catalysts and experimental conditions determine the selective hydroconversion of furfural and 5-hydroxymethylfurfural. Chem. Rev. 2018, 118, 11023–11117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, H.; Zhao, J.; Li, S.; Xu, J.; Shen, J. Effects of water on the hydrogenation of acetone over Ni/MgAlO catalysts. Chin. J. Catal. 2015, 36, 380–388. [Google Scholar] [CrossRef]
- Deng, L.; Cai, J.; Chen, H.; Fu, J.; Hao, C.; Shen, J. Effects of acetone on the hydrogenation of diisopropylimine over supported nickel catalysts. Catal. Commun. 2019, 122, 24–27. [Google Scholar] [CrossRef]
- Koo, K.Y.; Roh, H.S.; Seo, Y.T.; Seo, D.J.; Yoon, W.L.; Park, S.B. Coke study on MgO-promoted Ni/Al2O3 catalyst in combined H2O and CO2 reforming of methane for gas to liquid (GTL) process. Appl. Cat. A Gen. 2008, 340, 183–190. [Google Scholar] [CrossRef]
- Rastegarpanah, A.; Rezaei, M.; Zhang, K.; Zhao, X.; Pei, W.; Liu, Y.; Deng, J.; Arandiyan, H.; Dai, H. Mesoporous Ni/MeOx (Me = Al, Mg, Ti, and Si): Highly efficient catalysts in the decomposition of methane for hydrogen production. Appl. Sur. Sci. 2019, 478, 581–593. [Google Scholar] [CrossRef]
- Shen, Y.; Lua, A.C. Sol-gel synthesis of titanium oxide supported nickel catalysts for hydrogen and carbon production by methane decomposition. J. Pow. Sour. 2015, 280, 467–475. [Google Scholar] [CrossRef]
- Li, L.; Zeng, W.; Song, M.; Wu, X.; Li, G.; Hu, C. Research progress and reaction mechanism of CO2 methanation over Ni-based catalysts at low temperature: A Review. Catalysts 2022, 12, 244. [Google Scholar] [CrossRef]
- Zhuzhgov, A.V.; Krivoruchko, O.P.; Isupova, L.A.; Mart’yanov, O.N.; Parmon, V.H. Low-temperature conversion of ortho-hydrogen into liquid para-hydrogen: Process and catalysts. Review. Catal. Ind. 2017, 17, 9–19. [Google Scholar] [CrossRef]
- Zhuzhgov, A.V.; Krivoruchko, O.P.; Isupova, L.A. Low-temperature conversion of ortho-hydrogen to para-hydrogen over Ni/Al2O3 supported catalysts. Russ. J. Phys. Chem. A 2020, 94, 58–66. [Google Scholar] [CrossRef]
- Buyanov, R.A.; Parmon, V.N. Theoretical foundations of the technology and industrial development of the production of liquid para-hydrogen in the USSR. Catal. Ind. 2017, 17, 390–398. [Google Scholar] [CrossRef]
- Catalyst NIAP-15-09 for Purification of Process Gases from Oxygen Impurities, Including Hydrogen by Catalytic Hydrogenation. OOO «NIAP-KATALYZATOR». Available online: http://niap-kt.ru/production/n-15-09/ (accessed on 1 June 2023).
- Kawasaki Hydrogen Road. Available online: https://global.kawasaki.com/en/stories/hydrogen (accessed on 1 June 2023).
- Kawasaki, about Project “Large-Scale Hydrogen Supply Chain Establishment”. Available online: https://global.kawasaki.com/en/hydrogen/other.html#news (accessed on 1 June 2023).
- Krivoruchko, O.P.; Taraban, E.A.; Buyanov, R.A. Study of the regularities of co-precipitation of hydroxides Al3+–Ni2+. J. Chemi J. Inorg. Chem. 1987, 32, 551–556. [Google Scholar]
- Prakash, I.; Muralidharan, P.; Nallamuthu, N.; Satyanarayana, N. Preparation of NiAl2O4/SiO2 and Co2+-doped NiAl2O4/SiO2 nanocomposites by the sol-gel route. J. Am. Ceram. Soc. 2006, 89, 2220–2225. [Google Scholar] [CrossRef]
- Kong, L.B.; Li, X.M.; Liu, M.C.; Luo, Y.C.; Kang, L. Fabrication of flower-like Ni3(NO3)2(OH)4 and their electrochemical properties evaluation. Mat. Res. Bull. 2012, 47, 1641–1647. [Google Scholar] [CrossRef]
- Jabłońska, M.; Nothdurft, K.; Nocuń, M.; Girman, V.l.; Palkovits, R. Redox-performance correlations in Ag–Cu–Mg–Al, Ce–Cu–Mg–Al, and Ga–Cu–Mg–Al hydrotalcite derived mixed metal oxides. Appl. Catal. B Environ. 2017, 207, 385–396. [Google Scholar] [CrossRef]
- Krivoruchko, O.P.; Buyanov, R.A.; Paramsin, S.M.; Zolotovskii, B.P. Reaction of mechanochemically activated hydroxides of Al(III) with crystalline oxides of divalent metals. Kinet. Catal. 1988, 29, 252–253. [Google Scholar]
- Belskaya, O.B.; Likholobov, V.A. Mechanochemical synthesis of layered double hydroxides as a promising method for the preparation of adsorbents and catalysts. Kinet. Catal. 2022, 63, 615–641. [Google Scholar] [CrossRef]
- Qu, J.; Sha, L.; Wu, C.; Zhang, Q. Applications of mechanochemically prepared layered double hydroxides as adsorbents and catalysts: A mini-review. Nanomaterials 2019, 9, 80. [Google Scholar] [CrossRef] [Green Version]
- Williams, G.R.; Moorhouse, S.J.; Timothy, J.P.; Fogg, A.M.; Rees, N.H.; O’Hare, D.A. New insights into the intercalation chemistry of Al(OH)3. Dalton Trans. 2011, 40, 6012–6022. [Google Scholar] [CrossRef]
- Fogg, A.M.; Williams, G.R.; Chester, R.; O’Hare, D.A. Novel family of layered double hydroxides–[MAl4(OH)12](NO3)2·xH2O (M = Co, Ni, Cu, Zn). J. Mater. Chem. 2004, 14, 2369–2371. [Google Scholar] [CrossRef]
- Ingram-Jones, V.J.; Davies, R.C.T.; Southern, J.C.; Salvador, S. Dehydroxylation sequences of gibbsite and boehmite: Study of differences between soak and flash calcinations and of particle-size effects. J. Mat. Chem. 1996, 6, 73–79. [Google Scholar] [CrossRef]
- Tanashev, Y.Y.; Moroz, E.M.; Isupova, L.A.; Ivanova, A.S.; Litvak, G.S.; Amosov, Y.I.; Rudina, N.A.; Shmakov, A.N.; Stepanov, A.G.; Kharina, I.V.; et al. Synthesis of aluminum oxides from the products of the rapid thermal decomposition of hydrargillite in a centrifugal flash reactor. Physicochemical properties of the products obtained by the centrifugal thermal activation of hydrargillite. Kinet. Catal. 2007, 48, 153–161. [Google Scholar] [CrossRef]
- Buyanov, R.A.; Krivoruchko, O.P.; Zolotovskii, B.P. On the nature of the thermochemical activation of crystalline hydroxides. Izv. Sib. Otdel. Akad. Nauk SSSR 1986, 4, 39–44. [Google Scholar]
- Zhuzhgov, A.V.; Kruglykov, V.Y.; Suprun, E.A.; Protsenko, R.S.; Isupova, L.A. Synthesis of highly dispersed aluminum magnesium oxides from the product of centrifugal thermal activation of gibbsite. Rus. J. Phys. Chem. A 2021, 94, 152–161. [Google Scholar] [CrossRef]
- Zhuzhgov, A.V.; Kruglykov, V.Y.; Suprun, E.A.; Isupova, L.A. Synthesis of barium aluminate of disk-shaped morphology using the product of centrifugal thermal activation of gibbsite. Rus. J. Phys. Chem. A 2022, 95, 512–518. [Google Scholar] [CrossRef]
- Zhuzhgov, A.V.; Kruglykov, V.Y.; Glazneva, T.S.; Suprun, E.A.; Isupova, L.A. Wasteless synthesis and properties of highly dispersed MgAl2O4 based on product of thermal activation of gibbsite. Chemistry 2022, 4, 316–328. [Google Scholar] [CrossRef]
- Shafiee, P.; Alavi, S.M.; Rezaei, M. Investigation of the effect of cobalt on the Ni–Al2O3 catalyst prepared by the mechanochemical method for CO2 methanation. Res. Chem. Int. 2022, 48, 1923–1938. [Google Scholar] [CrossRef]
- He, Z.; Wang, X.; Liu, R.; Gao, S.; Xiao, T. Perfomances of different additives on NiO/γ-Al2O3 catalyst in CO methanation. App. Petr. Res. 2016, 6, 235–241. [Google Scholar] [CrossRef] [Green Version]
- Hu, D.; Gao, G.; Ping, Y.; Jia, L.; Gunawan, P.; Zhong, Z.; Xu, G.; Gu, F.; Su, F. Enhanced investigation of CO methanation over Ni/Al2O3 catalysts for synthetic natural gas production. Ind. Eng. Chem. Res. 2012, 51, 4875–4886. [Google Scholar] [CrossRef]
- Kwon, Y.; Eichler, J.E.; Mullins, C.B. NiAl2O4 as a beneficial precursor for Ni/Al2O3 catalysts for the dry reforming of methane. J. CO2 Util. 2022, 63, 102112. [Google Scholar] [CrossRef]
- Heracleous, E.; Lee, A.F.; Wilson, K.; Lemonidou, A.A. Investigation of Ni-based alumina-supported catalysts for the oxidative dehydrogenation of ethane to ethylene: Structural characterization and reactivity studies. J. Catal. 2005, 231, 159–171. [Google Scholar] [CrossRef]
Sample Designation | Description |
---|---|
G | initial crystal gibbsite (aluminum hydroxide γ-Al(OH3)) |
CTA-G | product of centrifugal thermal activation of crystal gibbsite |
NiAl(25)-110 | product of room temperature hydration (interaction) of CTA-G with aqueous solution of Ni2+ nitrate and subsequent drying at 110 °C |
NiAl(150)-110 | product of hydration (interaction) of activated CTA-G with solution of Ni2+ nitrate under hydrothermal treatment at 150 °C and subsequent drying at 110 °C |
NiAl(25)-550 | product of NiAl(25)-110 thermal treatment at 550 °C |
NiAl(25)-850 | product of NiAl(25)-110 thermal treatment at 850 °C |
NiAl(150)-350 | product of NiAl(150)-110 thermal treatment at 350 °C |
NiAl(150)-550 | product of NiAl(150)-110 thermal treatment at 550 °C |
NiAl(150)-850 | product of NiAl(150)-110 thermal treatment at 850 °C |
Sample | Qualitative Composition of Samples (XRD + TA) |
---|---|
NiAl(25)-110 | LDH, BN, admixture of G and B |
NiAl(150)-110 | |
NiAl(25)-550 NiAl(25)-850 | NiO, NiAl2O4 “protospinel” |
NiAl(150)-350 | NiO, NiAl2O4 “protospinel”, B admixture |
NiAl(150)-550 NiAl(150)-850 | NiO, NiAl2O4 “protospinel” |
Sample | Ssp, m2/g BET/BJH | Vpore, cm3/g (BJH) | Dpore, nm (BJH) |
---|---|---|---|
NiAl(25)-550 | 141/162 | 0.24 | 4.0 |
NiAl(150)-550 | 200/242 | 0.35 | 5.7 |
Sample | Tmax, °C | H2 Absorption with Respect to NiO, % | H2 Absorption with Respect to NiAlOx, % | Amount of Absorbed H2 per g NiO, 10–3 mol/g |
---|---|---|---|---|
NiAl(150)-350 | 160–270 | 8 | - | 0.38 |
350 | 22 | - | 1.11 | |
535 | - | 70 | 3.43 | |
∑ = 4.92 | ||||
NiAl(25)-550 | 370 | 36 | - | 1.40 |
680 | - | 64 | 2.46 | |
∑ = 3.86 | ||||
NiAl(150)-550 | 370 | 5 | - | 0.20 |
700 | - | 95 | 3.78 | |
∑ = 3.98 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhuzhgov, A.V.; Isupova, L.A.; Suprun, E.A.; Gorkusha, A.S. Low-Waste Synthesis and Properties of Highly Dispersed NiO·Al2O3 Mixed Oxides Based on the Products of Centrifugal Thermal Activation of Gibbsite. ChemEngineering 2023, 7, 71. https://doi.org/10.3390/chemengineering7040071
Zhuzhgov AV, Isupova LA, Suprun EA, Gorkusha AS. Low-Waste Synthesis and Properties of Highly Dispersed NiO·Al2O3 Mixed Oxides Based on the Products of Centrifugal Thermal Activation of Gibbsite. ChemEngineering. 2023; 7(4):71. https://doi.org/10.3390/chemengineering7040071
Chicago/Turabian StyleZhuzhgov, Aleksey V., Lyubov A. Isupova, Evgeny A. Suprun, and Aleksandr S. Gorkusha. 2023. "Low-Waste Synthesis and Properties of Highly Dispersed NiO·Al2O3 Mixed Oxides Based on the Products of Centrifugal Thermal Activation of Gibbsite" ChemEngineering 7, no. 4: 71. https://doi.org/10.3390/chemengineering7040071
APA StyleZhuzhgov, A. V., Isupova, L. A., Suprun, E. A., & Gorkusha, A. S. (2023). Low-Waste Synthesis and Properties of Highly Dispersed NiO·Al2O3 Mixed Oxides Based on the Products of Centrifugal Thermal Activation of Gibbsite. ChemEngineering, 7(4), 71. https://doi.org/10.3390/chemengineering7040071