Drug-Containing Layered Double Hydroxide/Alginate Dispersions for Tissue Engineering
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis and Structural Characterization of LDH-Drug
2.2. Dispersion of LDH–Drug Particles
2.3. In Vitro Drug Release Studies
2.4. Cell Proliferation Assay
3. Results and Discussion
3.1. Structural Characterization of the LDH–Drug Samples
3.2. Dispersion of LDH–Drug Particles
3.3. In Vitro Drug Release Results
3.4. Cell Proliferation Assay
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hariyadi, D.M.; Islam, N. Current status of alginate in drug delivery. Adv. Pharmacol. Pharm. Sci. 2020, 2020, 8886095. [Google Scholar] [CrossRef] [PubMed]
- Ray, P.; Maity, M.; Barik, H.; Sahoo, G.S.; Hasnain, M.S.; Hoda, M.N.; Nayak, A.K. Alginate-based hydrogels for drug delivery applications. In Alginates in Drug Delivery; Academic Press: Cambridge, MA, USA, 2020. [Google Scholar] [CrossRef]
- Venkatesan, J.; Bhatnagar, I.; Manivasagan, P.; Kang, K.H.; Kim, S.K. Alginate composites for bone tissue engineering: A review. Int. J. Biol. Macromol. 2015, 72, 269–281. [Google Scholar] [CrossRef] [PubMed]
- Sotome, S.; Uemura, T.; Kikuchi, M.; Chen, J.; Itoh, S.; Tanaka, J.; Tateishi, T.; Shinomiya, K. Synthesis and in vivo evaluation of a novel hydroxyapatite/collagen- alginate as a bone filler and a drug delivery carrier of bone morphogenetic protein. Mater. Sci. Eng. C 2004, 24, 341–347. [Google Scholar] [CrossRef]
- Frankenberg, E. Controlled nucleation of hydroxyapatite on alginate scaffolds for stem cell-based bone tissue engineering. Bone 2012, 23, 1–7. [Google Scholar] [CrossRef]
- Axpe, E.; Oyen, M.L. Applications of alginate-based bioinks in 3D bioprinting. Int. J. Mol. Sci. 2016, 17, 1976. [Google Scholar] [CrossRef]
- Alcantara, A.C.S.; Aranda, P.; Darder, M.; Ruiz-Hitzky, E. Bionanocomposites based on alginate-zein/layered double hydroxide materials as drug delivery systems. J. Mater. Chem. 2010, 20, 9495–9504. [Google Scholar] [CrossRef]
- Hasnain, M.S.; Ahmed, S.A.; Behera, A.; Alkahtani, S.; Nayak, A.K. Inorganic materials–alginate composites in drug delivery. In Alginates in Drug Delivery; Academic Press: Cambridge, MA, USA, 2020. [Google Scholar] [CrossRef]
- Song, F.; Li, X.; Wang, Q.; Liao, L.; Zhang, C. Nanocomposite hydrogels and their applications in drug delivery and tissue engineering. J. Biomed. Nanotechnol. 2015, 11, 40–52. [Google Scholar] [CrossRef]
- Rives, V. Layered Double Hydroxides: Present and Future; Nova Publishers: Hauppauge, NY, USA, 2001. [Google Scholar]
- Izbudak, B.; Cecen, B.; Anaya, I.; Miri, A.K.; Bal-Ozturk, A.; Karaoz, E. Layered double hydroxide-based nanocomposite scaffolds in tissue engineering applications. RSC Adv. 2021, 11, 30237–30252. [Google Scholar] [CrossRef]
- Rojas, R.; Mosconi, G.; Pablo, J.; Gil, G.A. Layered double hydroxide applications in biomedical implants. Appl. Clay Sci. 2022, 224, 106514. [Google Scholar] [CrossRef]
- Rives, V.; del Arco, M.; Martín, C. Layered double hydroxides as drug carriers and for controlled release of non-steroidal antiinflammatory drugs (NSAIDs): A review. J. Control. Release 2013, 169, 28–39. [Google Scholar] [CrossRef]
- Rojas, R.; Jimenez-Kairuz, A.F.; Manzo, R.H.; Giacomelli, C.E. Release kinetics from LDH-drug hybrids: Effect of layers stacking and drug solubility and polarity. Colloids Surf. A Physicochem. Eng. Asp. 2014, 463, 37–43. [Google Scholar] [CrossRef]
- Szabados, M.; Gácsi, A.; Gulyás, Y.; Kónya, Z.; Kukovecz, Á.; Csányi, E.; Pálinkó, I.; Sipos, P. Conventional or mechanochemically-aided intercalation of diclofenac and naproxen anions into the interlamellar space of CaFe-layered double hydroxides and their application as dermal drug delivery systems. Appl. Clay Sci. 2021, 212, 106233. [Google Scholar] [CrossRef]
- Bernardo, M.P.; Rodrigues, B.C.S.; de Olivera, T.D.; Guedes, A.P.M.; Batista, A.A.; Mattoso, L.H.C. Naproxen/layered double hydroxide composites for tissue-engineering applications: Physicochemical characterization and biological evaluation. Clays Clay Miner. 2020, 68, 623–631. Available online: https://link.springer.com/article/10.1007/s42860-020-00101-w (accessed on 22 February 2022). [CrossRef]
- Yousefi, Y.; Tarhriz, V.; Eyvazi, S.; Dilmaghani, A. Synthesis and application of magnetic@layered double hydroxide as an anti-inflammatory drugs nanocarrier. J. Nanobiotechnol. 2020, 18, 155. [Google Scholar] [CrossRef]
- Kang, H.; Shu, Y.; Li, Z.; Guan, B.; Peng, S.; Huang, Y.; Liu, R. An effect of alginate on the stability of LDH nanosheets in aqueous solution and preparation of alginate/LDH nanocomposites. Carbohydr. Polym. 2014, 100, 158–165. [Google Scholar] [CrossRef]
- Vasti, C.; Borgiallo, A.; Giacomelli, C.E.; Rojas, R. Layered double hydroxide nanoparticles customization by polyelectrolyte adsorption: Mechanism and effect on particle aggregation. Colloids Surf. A Physicochem. Eng. Asp. 2017, 533, 316–322. [Google Scholar] [CrossRef]
- Borgiallo, A.; Rojas, R. Reactivity and Heavy Metal Removal Capacity of Calcium Alginate Beads Loaded with Ca–Al Layered Double Hydroxides. ChemEngineering 2019, 3, 22. [Google Scholar] [CrossRef]
- Zhang, J.P.; Wang, Q.; Xie, X.L.; Li, X.; Wang, A.Q. Preparation and swelling properties of pH-sensitive sodium alginate/layered double hydroxides hybrid beads for controlled release of diclofenac sodium. J. Biomed. Mater. Res. Part B Appl. Biomater. 2010, 92, 205–214. [Google Scholar] [CrossRef]
- Viscusi, G.; Gorrasi, G. Facile preparation of layered double hydroxide (LDH)-alginate beads as sustainable system for the triggered release of diclofenac: Effect of pH and temperature on release rate. Int. J. Biol. Macromol. 2021, 184, 271–281. [Google Scholar] [CrossRef]
- Munhoz, D.R.; Bernardo, M.P.; Malafatti, J.O.D.; Moreira, F.K.V.; Mattoso, L.H.C. Alginate films functionalized with silver sulfadiazine-loaded [Mg-Al] layered double hydroxide as antimicrobial wound dressing. Int. J. Biol. Macromol. 2019, 141, 504–510. [Google Scholar] [CrossRef]
- U.S. Pharmacopoeial Convention. United States Pharmacopoeia; U.S. Pharmacopoeial Convention: Rockville, MD, USA, 2015. [Google Scholar]
- Marques, M.R.C.; Loebenberg, R.; Almukainzi, M. Simulated biological fluids with possible application in dissolution testing. Dissolut. Technol. 2011, 18, 15–28. [Google Scholar] [CrossRef]
- Costa, P.; Sousa Lobo, J.M. Modeling and comparison of dissolution profiles. Eur. J. Pharm. Sci. 2001, 13, 123–133. [Google Scholar] [CrossRef]
- Castellaro, A.M.; Rodriguez-Baili, M.C.; Di Tada, C.E.; Gil, G.A. Tumor-associated macrophages induce endocrine therapy resistance in ER+ breast cancer cells. Cancers 2019, 11, 189. [Google Scholar] [CrossRef] [PubMed]
- Drits, V.A.; Bookin, A.S. Crystal Structure and X-ray identification of Layered Double hydroxides. In Layered Double Hydroxides: Present and Future; Rives, V., Ed.; Nova Science: Hauppauge, NY, USA, 2001; pp. 39–92. [Google Scholar]
- Mohanambe, L.; Vasudevan, S. Anionic clays containing anti-inflammatory drug molecules: Comparison of molecular dynamics simulation and measurements. J. Phys. Chem. B 2005, 109, 15651–15658. [Google Scholar] [CrossRef]
- Gu, Z.; Wu, A.; Li, L.; Xu, Z.P. Influence of hydrothermal treatment on physicochemical properties and drug release of anti-inflammatory drugs of intercalated layered double hydroxide nanoparticles. Pharmaceutics 2014, 6, 235–248. [Google Scholar] [CrossRef]
- Figueiredo, M.P.; Cunha, V.R.R.; Cellier, J.; Taviot-Guého, C.; Constantino, V.R.L. Fe(III)-Based Layered Double Hydroxides Carrying Model Naproxenate Anions: Compositional and Structural Aspects. ChemistrySelect 2022, 7, e202103880. [Google Scholar] [CrossRef]
- Kloprogge, J.T.; Frost, R.L. Infrared and Raman Spectroscopic Studies of Layered Double Hydroxides (LDHs). In Layered Double Hydroxides: Present and Future; Rives, V., Ed.; Nova Science Publishers: Hauppauge, NY, USA, 2001; pp. 139–192. [Google Scholar]
- Gaskell, E.E.; Ha, T.; Hamilton, A.R. Ibuprofen intercalation and release from different layered double hydroxides. Ther. Deliv. 2018, 9, 653–666. [Google Scholar] [CrossRef]
- Wypych, F.; Arízaga, G.G.C.; da Costa Gardolinski, J.E.F. Intercalation and functionalization of zinc hydroxide nitrate with mono- and dicarboxylic acids. J. Colloid Interface Sci. 2005, 283, 130–138. [Google Scholar] [CrossRef]
- Rojas, R.; Palena, M.C.; Jimenez-Kairuz, A.F.; Manzo, R.H.; Giacomelli, C.E. Modeling drug release from a layered double hydroxide-ibuprofen complex. Appl. Clay Sci. 2012, 62–63, 15–20. [Google Scholar] [CrossRef]
- Luengo, C.V.; Crescitelli, M.C.; Lopez, N.A.; Avena, M.J. Synthesis of Layered Double Hydroxides Intercalated With Drugs for Controlled Release: Successful Intercalation of Ibuprofen and Failed Intercalation of Paracetamol. J. Pharm. Sci. 2021, 110, 1779–1787. [Google Scholar] [CrossRef]
- Du, B.-Z.; Wang, R.M. Synthesis and characterizations of naproxen intercalated Mg-Al layered double hydroxides. J. Chin. Pharm. Sci. 2010, 19, 371–378. [Google Scholar]
- Rojas, R.; Linck, Y.G.; Cuffini, S.L.; Monti, G.A.; Giacomelli, C.E. Structural and physicochemical aspects of drug release from layered double hydroxides and layered hydroxide salts. Appl. Clay Sci. 2015, 109–110, 119–126. [Google Scholar] [CrossRef]
- Rojas Delgado, R.; Arandigoyen Vidaurre, M.; de Pauli, C.P.; Ulibarri, M.A.; Avena, M.J. Surface-charging behavior of Zn-Cr layered double hydroxide. J. Colloid Interface Sci. 2004, 280, 431–441. [Google Scholar] [CrossRef]
- Rojas, R.; Barriga, C.; de Pauli, C.P.; Avena, M.J. Influence of carbonate intercalation in the surface-charging behavior of Zn–Cr layered double hydroxides. Mater. Chem. Phys. 2010, 119, 303–308. [Google Scholar] [CrossRef]
- Pavlovic, M.; Rouster, P.; Oncsik, T.; Szilagyi, I. Tuning Colloidal Stability of Layered Double Hydroxides: From Monovalent Ions to Polyelectrolytes. ChemPlusChem 2017, 82, 121–131. [Google Scholar] [CrossRef]
- Vasti, C.; Giacomelli, C.E.; Rojas, R. Pros and cons of coating layered double hydroxide nanoparticles with polyacrylate. Appl. Clay Sci. 2019, 172, 11–18. [Google Scholar] [CrossRef]
- Baino, F.; Yamaguchi, S. The use of simulated body fluid (SBF) for assessing materials bioactivity in the context of tissue engineering: Review and challenges. Biomimetics 2020, 5, 57. [Google Scholar] [CrossRef]
- Lee, K.Y.; Mooney, D.J. Alginate: Properties and biomedical applications. Prog. Polym. Sci. 2012, 37, 106–126. [Google Scholar] [CrossRef]
- Baradaran, T.; Shafiei, S.S.; Mohammadi, S.; Moztarzadeh, F. Poly (ε-caprolactone)/layered double hydroxide microspheres-aggregated nanocomposite scaffold for osteogenic differentiation of mesenchymal stem cell. Mater. Today Commun. 2020, 23, 100913. [Google Scholar] [CrossRef]
Sample | % Mg | % Al | % D | % H2O * | Chemical Formula | a(Å) | c (Å) |
---|---|---|---|---|---|---|---|
LDH-Ibu | 11.3 | 6.5 | 47.9 | 9.5 | Mg0.66Al0.34(OH)2Ibu0.34·0.75 H2O | 3.02 | 66.5 |
LDH-Nap | 12.2 | 6.2 | 46.9 | 9.3 | Mg0.69Al0.31(OH)2Nap0.31·0.72 H2O | 3.02 | 67.3 |
Sample | Receptor Media | Kinetic Models | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Zero-Order | Higuchi | Korsmeyer-Peppas | ||||||||
% Drug0 | k0 | R2 | % Drug0 | kH | R2 | kP | n | R2 | ||
LDH-Ibu/Alg, 5 g L−1 | PBS | 6.6 | 4.8 | 0.88 | −3.7 | 16.1 | 0.97 * | 9.2 | 0.84 | 0.97 * |
LDH-Ibu/Alg, 0.5 g L−1 | 12.6 | 4.8 | 0.85 | 2.0 | 16.3 | 0.96 | 16.9 | 0.54 | 0.98 * | |
Ibu/Alg | 9.9 | 4.2 | 0.88 | 0.8 | 14.3 | 0.98 | 14.1 | 0.54 | 0.99 | |
LDH-Ibu/Alg, 5 g L−1 | SBF | 1.5 | 2.4 | 0.98 | −3.0 | 7.7 | 0.98 | 4.2 | 0.73 | 0.99 * |
LDH-Ibu/Alg, 0.5 g L−1 | 8.6 | 3.6 | 0.90 | 1.0 | 11.9 | 0.98 * | 12.8 | 0.48 | 0.98 * | |
Ibu/Alg | 17.0 | 3.3 | 0.86 | 9.8 | 11.2 | 0.97 | 21.8 | 0.30 | 0.99 * | |
LDH-Nap/Alg, 5 g L−1 | PBS | 17.0 | 5.2 | 0.69 | 4.1 | 18.5 | 0.86 * | 16.1 | 0.74 | 0.87 * |
LDH-Nap/Alg, 0.5 g L−1 | 12.0 | 6.1 | 0.89 | −1.1 | 20.5 | 0.98 * | 17.4 | 0.62 | 0.98 * | |
Nap/Alg | 11.1 | 5.3 | 0.90 | −0.23 | 18.0 | 0.99 * | 16.3 | 0.58 | 0.99 * | |
LDH-Nap/Alg, 5 g L−1 | SBF | 4.1 | 4.7 | 0.97 | −5.0 | 15.2 | 0.99 * | 9.0 | 0.73 | 0.99 * |
LDH-Nap/Alg, 0.5 g L−1 | 12.5 | 4.5 | 0.91 | 2.9 | 15.2 | 0.99 * | 18.5 | 0.42 | 0.97 | |
Nap/Alg | 15.5 | 5.0 | 0.90 | 4.8 | 17.0 | 0.99 * | 22.0 | 0.42 | 0.99 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zanin, J.P.; Gil, G.A.; García, M.C.; Rojas, R. Drug-Containing Layered Double Hydroxide/Alginate Dispersions for Tissue Engineering. ChemEngineering 2022, 6, 70. https://doi.org/10.3390/chemengineering6050070
Zanin JP, Gil GA, García MC, Rojas R. Drug-Containing Layered Double Hydroxide/Alginate Dispersions for Tissue Engineering. ChemEngineering. 2022; 6(5):70. https://doi.org/10.3390/chemengineering6050070
Chicago/Turabian StyleZanin, Juan Pablo, German A. Gil, Mónica C. García, and Ricardo Rojas. 2022. "Drug-Containing Layered Double Hydroxide/Alginate Dispersions for Tissue Engineering" ChemEngineering 6, no. 5: 70. https://doi.org/10.3390/chemengineering6050070
APA StyleZanin, J. P., Gil, G. A., García, M. C., & Rojas, R. (2022). Drug-Containing Layered Double Hydroxide/Alginate Dispersions for Tissue Engineering. ChemEngineering, 6(5), 70. https://doi.org/10.3390/chemengineering6050070