Imprinted-Zeolite-X-Based Sensor for Non-Enzymatic Detection of Blood Glucose by Potentiometry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experimental Procedure
2.2.1. Synthesis of Imprinted Zeolite (IZ) X
2.2.2. Fabrication of IZ–Carbon Paste Sensor
2.2.3. Sensor Performance and Validity of Analysis Method
3. Results and Discussion
3.1. Identification the Structure of Synthesized Zeolite
3.2. The Preparation of Imprinted Zeolite X
3.3. The Pore Formation of the Imprinted Zeolite
3.4. Effect of Sensor Material Composition
3.5. The Performance of Electrode and Analysis Method Validity
3.6. The Adsorption Performance of IZ
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yoo, E.H.; Lee, S.Y. Glucose biosensors: An overview of use in clinical practice. Sensors 2010, 10, 4558–4576. [Google Scholar] [CrossRef] [PubMed]
- Galant, A.L.; Kaufman, R.C.; Wilson, J.D. Glucose: Detection and analysis. Food Chem. 2015, 188, 149–160. [Google Scholar] [CrossRef] [PubMed]
- Wang, J. Glucose biosensors: 40 years of advances and challenges. Electroanalysis 2001, 13, 983–988. [Google Scholar] [CrossRef]
- Lim, S.H.; Wei, J.; Lin, J.; Li, Q.; KuaYou, J. A glucose biosensor based on electrodeposition of palladium nanoparticles and glucose oxidase onto nafion-solubilized carbon nanotube electrode. Biosens. Bioelectron. 2005, 20, 2341–2346. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.M.; Saleh Ahammad, A.J.; Jin, J.H.; Ahn, S.J.; Lee, J.J. A comprehensive review of glucose biosensors based on nanostructured metal-oxides. Sensors 2010, 10, 4855–4886. [Google Scholar] [CrossRef] [PubMed]
- Du, J.; Yu, X.; Wu, Y.; Di, J. ZnS nanoparticles electrodeposited onto ITO electrode as a platform for fabrication of enzyme-based biosensors of glucose. Mater. Sci. Eng. C 2013, 33, 2031–2036. [Google Scholar] [CrossRef]
- Zhang, L.; Ni, Y.; Li, H. Addition of porous cuprous oxide to a Nafion film strongly improves the performance of a nonenzymatic glucose sensor. Microchim. Acta 2010, 171, 103–108. [Google Scholar] [CrossRef]
- Zhou, X.; Dai, X.; Li, J.; Long, Y.; Li, W.; Tu, Y. A sensitive glucose biosensor based on Ag@ C core–shell matrix. Mater. Sci. Eng. C 2015, 49, 579–587. [Google Scholar] [CrossRef]
- Bishop, D.K.; La Belle, J.T.; Vossler, S.R.; Patel, D.R.; Cook, C.B. A disposable tear glucose biosensor—Part 1: Design and concept testing. J. Diabetes Sci. Technol. 2010, 4, 299–306. [Google Scholar] [CrossRef]
- Wang, R.T.; Yang, L.W.; Xu, A.F.; Liu, E.E. Achieving non-enzymatic blood glucose sensing by uprooting saturation. Anal. Chem. 2020, 92, 10777–10782. [Google Scholar] [CrossRef]
- Yang, L.W.; Liu, E.E.; Xu, A.F.; Chen, J.Y.; Wang, R.T.; Xu, G. Improving linear range limitation of non-enzymatic glucose sensor by OH- concentration. Crystals 2020, 10, 186. [Google Scholar] [CrossRef]
- Gonzales, N.M.; Fitch, A.L.; Al-Bazi, J. Development of a RP-HPLC method for determination of glucose in Shewanella oneidensis cultures utilizing 1-phenyl-3-methyl-5-pyrazolone derivatization. PLoS ONE 2020, 15, e0229990. [Google Scholar] [CrossRef] [PubMed]
- Kamal, M.A.; Klein, P. Determination of sugars in honey by liquid chromatography. Saudi J. Biol. Sci. 2011, 18, 17–21. [Google Scholar] [CrossRef] [PubMed]
- Çiftçi, H.; Tamer, U.; Teker, M.Ş.; Pekmez, N.Ö. An enzyme free potentiometric detection of glucose based on a conducting polymer poly (3-aminophenyl boronic acid-co-3-octylthiophene). Electrochim. Acta 2013, 90, 358–365. [Google Scholar] [CrossRef]
- Çelik, F.; Çiftçi, H.; Tamer, U. A Glucose Selective Non-enzymatic Potentiometric Chitosan-Goldnanoparticle Nanocomposite Sensor Based on Boronic Acid-Diol Recognition. Electroanalysis 2018, 30, 2696–2703. [Google Scholar] [CrossRef]
- Kianfar, E. Zeolites: Properties, applications, modification and selectivity. In Zeolites: Advances in Research and Applications; Mahler, A., Ed.; Nova Science Publishers, Inc.: Hauppauge, NY, USA, 2020. [Google Scholar]
- Bish, D.L. Parallels and distinctions between clay minerals and zeolites. Dev. Clay Sci. 2013, 5, 783–800. [Google Scholar]
- Wang, J.; Walcarius, A. Zeolite-modified carbon paste electrode for selective monitoring of dopamine. J. Electroanal. Chem. 1996, 407, 183–187. [Google Scholar] [CrossRef]
- Khasanah, M.; Widati, A.A.; Handajani, U.S.; Shofiyyah, M.R.; Rakhma, S.A.; Predianto, H. Imprinted zeolite modified carbon paste electrode as a selective potentiometric sensor for blood glucose. In AIP Conference Proceeding; AIP Publishing LLC: Melville, NY, USA, 2020. [Google Scholar]
- Khasanah, M.; Widati, A.A.; Handajani, U.S.; Harsini, M.; Ilmiah, B.; Oktavia, I.D. Imprinted zeolite modified carbon paste electrode as a selective sensor for blood glucose analysis by potentiometry. Indones. J. Chem. 2020, 20, 1301–1310. [Google Scholar] [CrossRef]
- Qiang, Z.; Shen, X.; Guo, M.; Cheng, F.; Zhang, M. A simple hydrothermal synthesis of zeolite X from bauxite tailings for highly efficient adsorbing CO2 at room temperature. Micro. Meso. Mater. 2019, 287, 77–84. [Google Scholar] [CrossRef]
- Ardakani, M.M.; Akrami, Z.; Kazemian, H.; Zare, H.R. Electrocatalytic characteristics of uric acid oxidation at graphite–zeolite-modified electrode doped with iron (III). J. Electroanal. Chem. 2006, 586, 31–38. [Google Scholar] [CrossRef]
- Thammavong, S. Studies of synthesis, kinetics and particle size of zeolite X from narathiwat kaolin. Master Thesis, Suranaree University of Technology, Nakhon Ratchasima, Thailand, 2003. [Google Scholar]
- Masoudian, S.K.; Sadighi, S.; Abbasi, A. Synthesis and characterization of high aluminum zeolite X from technical grade materials. Bull. Chem. React. Eng. Catal. 2013, 8, 54–60. [Google Scholar] [CrossRef] [Green Version]
- Maccà, C. Response time of ion-selective electrodes: Current usage versus IUPAC recommendations. Anal. Chim. Acta 2004, 512, 183–190. [Google Scholar] [CrossRef]
- Tohda, K.; Dragoe, D.; Shibata, M.; Umezawa, Y. Studies on the matched potential method for determining the selectivity coefficients of ion-selective electrodes based on neutral ionophores: Experimental and theoretical verification. Anal. Sci. 2001, 17, 733–743. [Google Scholar] [CrossRef] [PubMed]
- Azizi, S.N.; Daghigh, A.A.; Abrishamkar, M. Phase Transformation of Zeolite P to Y and Analcime Zeolites due to Changing the Time and Temperature. J. Spectrosc. 2013, 2013, 428216. [Google Scholar] [CrossRef]
- McCuistion, L.E.; Dimaggio, K.V.; Winton, M.B.; Yeager, J.J. Pharmacology: A Patient-Centered Nursing Process Approach, 11th ed.; Elsevier: Amsterdam, The Netherlands, 2021. [Google Scholar]
- Taverniers, I.; De Loose, M.; Van Bockstaele, E. Trends in quality in the analytical laboratory. II. Analytical method validation and quality assurance. Trends Anal. Chem. 2004, 23, 535–552. [Google Scholar] [CrossRef]
- Buhlmann, P.; Umezawa, Y.; Rondinini, S.; Vertova, A.; Pigliucci, A.; Bertesago, L. Lifetime of ion selective electrodes based on charged ionophores. Anal. Chem. 2000, 72, 1843–1852. [Google Scholar] [CrossRef] [PubMed]
- García-Martínez, J.; Johnson, M.; Valla, J.; Li, K.; Ying, J.Y. Mesostructured zeolite Y—High hydrothermal stability and superior FCC catalytic performance. Catal. Sci. Technol. 2011, 2, 987–994. [Google Scholar] [CrossRef]
Sensor Code | Mass of Activated Carbon:Paraffin:IZ |
---|---|
E1 | 13:7:0 |
E2 | 12:7:1 |
E3 | 11:7:2 |
E4 | 10:7:3 |
E5 | 9:7:4 |
E6 | 8:7:5 |
2θ (°) Position | |
---|---|
Synthesized Zeolite | Standard Zeolite X |
18.44 | 18.42 |
23.35 | 23.58 |
24.69 | 24.64 |
27.32 | 27.32 |
29.91 | 29.21 |
30.32 | 30.30 |
47.02 | 47.06 |
Sensor Code | Mass of Activated Carbon:Solid Paraffin:IZ | Nernst Factor (mV/Decade) | Measurement Range (M) | Linearity (r) |
---|---|---|---|---|
E1 | 13:7:0 | 26 | 10−4–10−2 | 0.9980 |
E2 | 12:7:1 | 30 | 10−4–10−2 | 0.9868 |
E3 | 11:7:2 | 26.5 | 10−4–10−2 | 0.9740 |
E4 | 10:7:3 | 27 | 10−4–10−2 | 0.9695 |
E5 | 9:7:4 | 22.5 | 10−4–10−2 | 0.9556 |
E6 | 8:7:5 | 21 | 10−4–10−2 | 0.9162 |
Sensor Code | Mass Ratio of Activated Carbon, Paraffin, Modifier * | Nernst Factor (mV/Decade) | Measurement Range (M) | Linearity (r) |
---|---|---|---|---|
E1 | 13:7:0 | 26 | 10−4–10−2 | 0.9980 |
E2 | 12:7:1 | 30 | 10−4–10−2 | 0.9868 |
EZ | 12:7:1 | 25.5 | 10−4–10−2 | 0.9884 |
ENIZ | 12:7:1 | 32 | 10−4–10−2 | 0.9720 |
[Glucose] (M) | Electrode Potential (mV, vs. Ag/AgCl) | SD | CV (%) | Precision (%) | ||
---|---|---|---|---|---|---|
1 | 2 | 3 | ||||
10−4 | 255 | 266 | 252 | 7.37 | 2.86 | 97.14 |
10−3 | 278 | 286 | 274 | 6.11 | 2.18 | 97.82 |
10−2 | 311 | 315 | 309 | 3.05 | 0.98 | 99.02 |
[Glucose] (M) | Potential (mV, vs. Ag/AgCl) | Response Time (Second) |
---|---|---|
10−4 | 274 | 13 |
10−3 | 293 | 11 |
10−2 | 302 | 10 |
The _st Measurement | Nernst Factor (mV/Decade) | Measurement Range (M) |
---|---|---|
41 | 30 | 10−4–10−2 |
111 | 30 | 10−4–10−2 |
141 | 28.5 | 10−4–10−2 |
Solution | Concentration (M) | Selectivity Coefficient (Kij) | |
---|---|---|---|
Carbon Paste | IZ–Carbon Paste | ||
Urea | 10−4 | 3.86 × 10−2 | 4.04 × 10−3 |
10−3 | 2.84 × 10−2 | 7.02 × 10−3 | |
10−2 | 1.85 × 10−2 | 2.09 × 10−3 | |
Uric acid | 10−4 | 4.80 | 4.37 × 10−2 |
10−3 | 3.01 | 1.16 × 10−2 | |
10−2 | 0.33 | 4.94 × 10−2 | |
NaCl | 10−4 | 8.05 | 1.21 × 10-1 |
10−3 | 2.91 | 2.66 × 10−1 | |
10−2 | 4.56 | 1.98 × 10−1 | |
KCl | 10−4 | 1.33 | 3.30 × 10−1 |
10−3 | 1.02 | 6.46 × 10−1 | |
10−2 | 9.67 | 3.41 × 10−1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khasanah, M.; Widati, A.A.; Handajani, U.S.; Mastura, A.; Sari, E.Y. Imprinted-Zeolite-X-Based Sensor for Non-Enzymatic Detection of Blood Glucose by Potentiometry. ChemEngineering 2022, 6, 71. https://doi.org/10.3390/chemengineering6050071
Khasanah M, Widati AA, Handajani US, Mastura A, Sari EY. Imprinted-Zeolite-X-Based Sensor for Non-Enzymatic Detection of Blood Glucose by Potentiometry. ChemEngineering. 2022; 6(5):71. https://doi.org/10.3390/chemengineering6050071
Chicago/Turabian StyleKhasanah, Miratul, Alfa Akustia Widati, Usreg Sri Handajani, Akhsin Mastura, and Eka Yunicha Sari. 2022. "Imprinted-Zeolite-X-Based Sensor for Non-Enzymatic Detection of Blood Glucose by Potentiometry" ChemEngineering 6, no. 5: 71. https://doi.org/10.3390/chemengineering6050071
APA StyleKhasanah, M., Widati, A. A., Handajani, U. S., Mastura, A., & Sari, E. Y. (2022). Imprinted-Zeolite-X-Based Sensor for Non-Enzymatic Detection of Blood Glucose by Potentiometry. ChemEngineering, 6(5), 71. https://doi.org/10.3390/chemengineering6050071