Economic Analysis of Biogas Production via Biogas Digester Made from Composite Material
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Physiochemical Properties of the Substrate
2.3. The Economic Analysis
2.3.1. Net Present Value (NPV)
2.3.2. Internal Rate of Return (IRR)
2.3.3. Profitability or Return on Investment (ROI)
2.3.4. Annuity (A)
2.3.5. Cost Annuity (Ak)
2.4. Cost Analysis Study
- -
- Amount of methane produced (mL/g) = amount of biogas produced × methane content produced;
- -
- Total amount of methane from the cow dung = amount of cow dung × amount of methane produced × (103)/(106);
- -
- LPG volume in one cylinder (L/cylinder) = Amount of LPG in a cylinder/Density of LPG;
- -
- LPG volume in one cylinder (m3/cylinder) = Volume of LPG (L/cylinder)/1000;
- -
- Amount of gas after expansion = Volume of LPG (m3/cylinder) × LPG expansion rate;
- -
- Number of cylinders that can replaced by biogas per month = Total amount of methane based on the quantity of cow dung/amount of gas after expansion;
- -
- Consumption reduction rate = Number of cylinders replaced by biogas per month/estimated rate of LPG consumption × 100.
3. Results and Discussion
3.1. Estimated Gas Yield from Cow Dung Slurry
3.2. Economic Analysis
3.2.1. Initial Total Investment Cost (Fixed Cost)
3.2.2. Annual Operating Cost (APC)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kozlowski, K.; Pietrzykowski, M.; Czekala, W.; Dach, J.; Kowalczyk-Jusko, A.; Jozwiakowski, K.; Brzoski, M. Energetic and economic analysis of biogas plant with using the dairy industry waste. Energy Rep. 2019, 183, 1023–1031. [Google Scholar] [CrossRef]
- Koberg, M.; Gedanken, A. Optimization of bio-diesel production from oils, cooking oils, microalgae, and castor and jatropha seeds: Probing various heating sources and catalysts. Energy Environ. Sci. 2012, 5, 7460–7469. [Google Scholar] [CrossRef]
- Bhatt, A.; Tao, L. Economic perspective of biogas production via anaerobic digestion. Bioengineering 2020, 7, 74. [Google Scholar] [CrossRef] [PubMed]
- Ogrodowczyk, D.; Olejnik, T.; Kazmierczak, M.; Brzezinski, S.; Baryga, A. Economic analysis for biogas plant working at sugar factory. Biotechnol. Food Sci. 2016, 80, 129–136. [Google Scholar]
- Tufaner, F.; Avsar, Y. Economic analysis of biogas production from small anaerobic digestion systems for cattle manure. Environ. Res. Technol. J. Park Acad. 2019, 2, 6–12. [Google Scholar]
- Al-Wahaibi, A.; Osman, A.; Al-Muhtaseb, A.; Alqaisi, O.; Baawain, M.; Fawzy, S.; Rooney, D. Techno-economic evaluation of biogas production from food waste via anaerobic digestion. Sci. Rep. 2020, 10, 15719. [Google Scholar] [CrossRef] [PubMed]
- Gebrezgabher, S.A.; Meuwissen, M.P.; Prins, B.A.; Lansink, A.G.O. Economic analysis of anaerobic digestion—A case of green power biogas plant in The Netherlands. NJAS Wagening. J. Life Sci. 2010, 57, 109–115. [Google Scholar] [CrossRef]
- National Renewable Energy Laboratory. Feasibility Study of Anaerobic Digestion of Food Waste in St. Benard, Louisina; Produced under Direction of the US Environmental Protection Agency (EPA), NREL/TP-7A30-57082; National Renewable Energy Laboratory: Golden, CO, USA, 2013.
- Obileke, K.; Mamphweli, S.; Meyer, E.; Makaka, G.; Nwokolo, N. Development of mathematical model and validation for methane production using cow dung as substrate in the underground biogas digester. Processes 2021, 9, 643. [Google Scholar] [CrossRef]
- Kabyanga, M.; Balana, B.B.; Mugisha, J.; Walekhwa, P.N.; Smith, J.; Glenk, K. Economic potential of flexible balloon biogas digester among smallholder farmers: A case study from Uganda. Renew. Energy 2018, 120, 392–400. [Google Scholar] [CrossRef]
- Mukumba, P.; Makaka, G.; Mamphweli, S.; Misi, S. A possible design and justification for a biogas plant at Nyazura Adventist High School, Rusape, Zimbabwe. J. Energy S. Afr. 2013, 24, 12–20. [Google Scholar] [CrossRef]
- Al-Maghalseh, M. Techno-economic assessment of biogas energy from animal wastes in central areas of Palestine; Bethleham perpective. Int. J. Energy Appl. Technol. 2018, 5, 119–126. [Google Scholar] [CrossRef]
- Patinvoh, R.; Arulappan, J.; Johansson, F.; Taherzadeh, M. Biogas digesters from plastics and brick to textile bioreactor—A review. J. Energy Environ. Sustain. 2017, 4, 31–35. [Google Scholar]
- Zhang, L.; Tsui, T.; Loh, K.; Dai, Y.; Tong, Y. Effects of plastics on reactor performance and microbial communities during acidogenic fermentation of food waste for production of volatile fatty acids. Bioresour. Technol. 2021, 337, 125481. [Google Scholar] [CrossRef] [PubMed]
- Obileke, K.; Mamphweli, S.; Meyer, E.; Makaka, G.; Nwokolo, N. Design, and fabrication of a plastic biogas digester for the production of biogas from cow dung. J. Eng. 2020, 2020, 1848714. [Google Scholar] [CrossRef]
- Nijaguna, B.T. Biogas Technology; New Age International Publishers: Kemalpasa, Turkey, 2002. [Google Scholar]
- Obileke, K.; Mamphweli, S.; Makaka, G.; Nwokolo, N. Slurry utilization and impact of mixing ratio in biogas production. Chem. Eng. Technol. 2017, 40, 1742–1749. [Google Scholar] [CrossRef]
- Wresta, A.; Andriani, D.; Saepudin, A.; Sudibyo, H. Economic analysis of cow manure biogas as energy source for electricity power generation in small ranch. Energy Procedia 2015, 68, 122–131. [Google Scholar] [CrossRef]
- Egevet. Hayvancilik San ve Ticaret Limited Sirketi, Kaba Yem Kalitesi–Türkiye’de Inek Performansini Arttiran En Önemli Faktör. 2008. Available online: http://www.egevet.com.tr/kaba_yem_kalitesi_turkiyede_inek_performansini_artiran_en_onemli_faktor.htm (accessed on 22 April 2022).
- Behzadi, A.; Houshfar, E.; Gholamain, E.; Ashjae, M.; Habibollahzade, A. Multi-criteria optimization and comparative performance analysis of a power plant fed by municipal solid waste using a gasifier or digester. Energy Convers. Manag. 2018, 171, 863–874. [Google Scholar] [CrossRef]
- Choudhury, A.; Shelford, T.; Felton, G.; Lansing, S. Evaluation of hydrogen sulphide scrubbing systems for anaerobic digesters on two US dairy farms. Energies 2019, 12, 4605. [Google Scholar] [CrossRef] [Green Version]
Parameters Reported | Values |
---|---|
Amount of fresh cow dung (24% dry matter) | 9000 kg/month |
Amount of cow dung (dry matter) | 6589.2 kg/month |
Quantity of biogas produced | 10,500 L/kg/month |
Methane content present in the biogas | 60% |
Amount of methane produced | 630 mL/g |
Total amount of methane from the cow dung | 4151.2 m3/month |
Number of Cows Considered | Quantity of Cow Dung per Day (kg) | Volume of Biogas Digester (m3) | Estimated Daily Cooking Demand (m2/day) | Amount of Biogas per Day (m3) | Amount of Electricity Generated (kWh) | Quantity of Cow Dung (kg/day) | Quantity of Water Added (L/day) |
---|---|---|---|---|---|---|---|
16 | 300 | 2.15 | 0.2 | 0.35 | 0.324 | 26 | 52 |
Volume of Biogas Digester (m3) | Amount of Dung Fed Daily (kg) | Expected Gas Yield per Day (m3) | Expected Energy Generated (kWh) | Cost of Energy Expected (USD) |
---|---|---|---|---|
2.15 | 26 | 1.57 | 9.42 | 1.54 |
Material Used | Quantity | Unit Price (USD) | Total Cost (USD) |
---|---|---|---|
Cost of fabrication of the biogas digester | 1 | 208.90 | 208.90 |
Portland cement (50 kg) | 9 | 5.42 | 48.83 |
13 mm concrete stone | 1.2 m3 | 271.34 | 325.61 |
Clinker sp bricks All-purpose sand | 1850 1.84 m3 | 159.70 19.99 | 295.44 36.79 |
UG rodding eye | 1 | 4.52 | 4.52 |
110 mm PVC pipe | 1 | 9.05 | 9.05 |
Polyfilla exterior crack filler | 1 | 5.43 | 5.43 |
Concrete reinforcing mesh | 1 | 22.61 | 22.61 |
Sealant | 1 | 3.62 | 3.62 |
Supa lay hold | 1 | 19.90 | 19.90 |
Brick force rolls (m2) | 8 | 1.25 | 9.99 |
Gas pipe Thermal wool fiber | 1 1 | 18.10 211.93 | 18.10 211.93 |
Others | 1 | 55.21 | 55.21 |
Labor | 2 | 173.74 | 347.48 |
Total | 1623.41 |
Economic Indicators | Values | Units |
---|---|---|
Total initial investment cost | 1623.41 | USD |
Total income | 1160.87 | USD |
Cost of energy | 0.27 | USD |
Cost of maintenance | 324.68 | USD |
Profitability (ROI) | 67.7 | % |
Payback period | 2 | years |
Net present value | 1783.10 | USD |
Internal rate of return Discount rate | 8.5 3.6 | % % |
Annuity | 444.49 | USD |
Cost of annuity | 587.77 | USD |
Cost Components | Cost (USD) |
---|---|
Additional cost of waste (maize silage and inoculum etc.) | 63.88 |
Cost of water | N/A |
Cost of electricity | 35.13 |
Cost of maintenance and repair | 324.68 |
Total | 423.70 |
Parameters | Values | Units |
---|---|---|
Volume of biogas digester | 2.15 | m3 |
Annual biogas production | 140 | m3 |
LPG equivalent value of biogas | 60 | kg |
Investment/fixed cost | 1623.41 | USD |
Annual operating cost | 423.70 | USD |
Indicators | Values | Unit/Time |
---|---|---|
Methane gas content | 0.085 | (USD/m3) |
Discounted payback period (DPP) | 2 | years |
NPV | 1783.10 | (USD) |
Internal rate of return (IRR) | 8.5 | % |
Project lifetime | 10 | years |
Amount of LPG in one cylinder (constant) | 5 kg/cylinder |
Density of LPG | 0.54 kg/L at 15 °C |
LPG volume in one cylinder (L/cylinder) | 9.26 L/cylinder |
LPG volume in one cylinder (m3/cylinder) | 0.00926 m3/cylinder |
Expansion rate of LPG (constant) | 270 |
Amount of gas after expansion | 2.500 m3/cylinder |
Number of cylinders replaced by biogas per month | 1.66 cylinders/month |
Estimated rate of consumption of LPG per month for cooking only | 5 cylinder/month |
Consumption reduction rate | 33.2% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Obileke, K.; Makaka, G.; Nwokolo, N.; Meyer, E.L.; Mukumba, P. Economic Analysis of Biogas Production via Biogas Digester Made from Composite Material. ChemEngineering 2022, 6, 67. https://doi.org/10.3390/chemengineering6050067
Obileke K, Makaka G, Nwokolo N, Meyer EL, Mukumba P. Economic Analysis of Biogas Production via Biogas Digester Made from Composite Material. ChemEngineering. 2022; 6(5):67. https://doi.org/10.3390/chemengineering6050067
Chicago/Turabian StyleObileke, KeChrist, Golden Makaka, Nwabunwanne Nwokolo, Edson L. Meyer, and Patrick Mukumba. 2022. "Economic Analysis of Biogas Production via Biogas Digester Made from Composite Material" ChemEngineering 6, no. 5: 67. https://doi.org/10.3390/chemengineering6050067
APA StyleObileke, K., Makaka, G., Nwokolo, N., Meyer, E. L., & Mukumba, P. (2022). Economic Analysis of Biogas Production via Biogas Digester Made from Composite Material. ChemEngineering, 6(5), 67. https://doi.org/10.3390/chemengineering6050067