The Effect of Corrosion on Crude Oil Distillation Plants
Abstract
:1. Introduction
- -
- Preventively, by taking specimens from the column material and determining in the laboratory the rate of corrosion of the metal;
- -
- Actively, by performing non-destructive measurement (in points) of wall thickness, determining the corrosion rate, and entering the repair of the installation (with high economic consequences due to the reduction in the current repair period, sometimes from 5 years to 2 years).
2. Materials and Methods
3. Results
4. Conclusions
- Selection of the most resistant metal material for the corrosive environment in certain working conditions;
- Design of machinery or installations with regard to mechanical strength and corrosion resistance;
- Making welds and joints by ensuring compatibility between different metal materials;
- Injection of corrosion inhibitors.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Akinyemi, O.O.A.; Nwaokocha, C.N.; Adesanya, A. Evaluation of corrosion cost of crude oil processing industry. J. Eng. Sci. Technol. 2012, 7, 517–528. [Google Scholar]
- Chambers, B.; Srinivasan, S.; Yap, K.M.; Yunovich, M. Corrosion in Crude Distillation Unit Overhead Operations: A Comprehensive Review. In Proceedings of the CORROSION 2011, Houston, TX, USA, 13–17 March 2011; Paper No. 11360. Available online: https://onepetro.org/NACECORR/proceedings-abstract/CORR11/All-CORR11/NACE-11360/119776 (accessed on 1 January 2022).
- Bhowmik, P.K.; Hossain, M.D.E.; Shamim, J.A. Corrosion and its control in crude oil refining process. In Proceedings of the 6th International Mechanical Engineering Conference & 14th Annual Paper Meet (6IMEC & 14APM), Dhaka, Bangladesh, 28–29 September 2012. [Google Scholar]
- NACE International. Crude Distillation Unit Distillation Tower Overhead System Corrosion; NACE International Publication 34109 (Task Group 342); NACE International: Houston, TX, USA, 2009. [Google Scholar]
- Groysman, A. Corrosion Problems and Solutions in Oil Refining and Petrochemical Industry; Springer: Cham, Switzerland, 2017; pp. 1–14. [Google Scholar]
- Blumer, A.F. Crude Still Overhead System Corrosion. Corrosion 1949, 5, 135–147. [Google Scholar] [CrossRef]
- Chambers, B.; Yap, K.; Srinivasan, S.; Yunovich, M. Corrosion in Crude Distillation Unit Overhead Operations: A Comprehensive Review. In CORROSION Conference; Paper No. 11360.; NACE International: Houston, TX, USA, 2011. [Google Scholar]
- Keera, S.T.; Eissa, E.A.; Taman, A.R. Corrosion of copper metal in distillation process. Anti-Corros. Methods Mater. 1998, 45, 252–255. [Google Scholar] [CrossRef]
- Mostafaei, A.; Peighambari, S.M.; Nasirpouri, F. Failure analysis of monel packing in atmospheric distillation tower under the service in the presence of corrosive gases. Eng. Fail. Anal. 2013, 28, 241–251. [Google Scholar] [CrossRef]
- Popoola, L.T.; Grema, A.S.; Latinwo, G.K.; Gutti, B.; Balogun, A.S. Corrosion problems during oil and gas production and its mitigation. Int. J. Ind. Chem. 2013, 4, 35. [Google Scholar] [CrossRef] [Green Version]
- Wood, M.H.; Arellano, A.V.; Van Wijk, L. Corrosion Related Accidents in Petroleum Refineries; European Commission Joint Research Centre: 2013; Report no. EUR, 26331; Publications Office of the European Union: Luxembourg, 2013. [Google Scholar]
- Eaton, P.; Kaur, H.; Gray, M. Factors Affecting Salt Hydrolysis in Heavy Crude. In Proceedings of the Eurocorr/2009, Nice, France, 6–10 September 2009. Paper No. 8295. [Google Scholar]
- El-Yazgi, A.A.; Hardie, D. Stress corrosion cracking of duplex and super duplex stainless steels in sour environments. Corros. Sci. 1998, 40, 909–930. [Google Scholar] [CrossRef]
- Waheed, M.A.; Oni, A.O. Performance improvement of a crude oil distillation unit. Appl. Therm. Eng. 2015, 75, 315–324. [Google Scholar] [CrossRef]
- Landrum, R.J. Fundamentals of Designing for Corrosion Control; NACE: Houston, TX, USA, 1989; 352p. [Google Scholar]
- Joosten, M.W.; Kost, J.; Hembree, J.; Achour, M. Organic Acid Corrosion in Oil and Gas Production. In Proceedings of the NACE CORROSION 2002 Conference, Denver, CO, USA, 7–11 April 2002; Paper no. 02294. NACE International: Houston, TX, USA, 2002; Volume 13, p. 7. [Google Scholar]
- Andersen, T.R.; Halvorsen, A.M.K.; Valle, A.; Kojen, G.P.; Dugstad, A. The Influence of Condensation Rate and Acetic Acid Concentration on TOL-Corrosion in Multiphase Pipelines. In Proceedings of the NACE CORROSION 2007 Conference, Nashville, TN, USA, 11–15 March 2007; Paper no. 07312. NACE International: Houston, TX, USA, 2007. [Google Scholar]
- George, K.; Nešić, S.; Waard, C. Electrochemical Investigation and Modeling of CO2 Corrosion of Mild Steel in the Presence of Acetic Acid. In Proceedings of the CORROSION 2004, New Orleans, LA, USA, 28 March–1 April 2004; Paper no. 04379. NACE International: Houston, TX, USA, 2004. [Google Scholar]
- Groysman, A. Corrosion for Everybody; Springer: Dordrecht, The Netherlands, 2010; 368p. [Google Scholar]
- Groysman, A. Corrosion in Systems for Transportation and Storage of Petroleum Products and Biofuels; Springer: Dordrecht, The Netherlands, 2014; 297p. [Google Scholar]
- Braden, V.; Petersen, P.; Malpiedi, M.; Bowerbank, L.; Gorman, J. Crude Unit Overhead Corrosion Control. In Proceedings of the CORROSION Conference, San Diego, CA, USA, 22–27 March 1998; Paper No. 98585. NACE International: Houston, TX, USA, 1998. [Google Scholar]
- Fan, D.; Fort, W.; Shargay, C.; Turner, J.; Messer, B. Design Considerations to Minimize Ammonium Chloride Corrosion in Hydrotreatment Reactions. In Proceedings of the CORROSION 2001, Houston, TX, USA, 11–16 March 2001; p. 01543. [Google Scholar]
- Kapusta, S.; Ooms, A.; Buijis, J.; Fan, D.; Fort, W., 3rd. Systematic Approach to Controlling Fouling and Corrosion in Crude Unit Overheads and Hydrotreater Reactor Effluents; Corrosion/01; Paper No. 01535; NACE International: Houston, TX, USA, 2001. [Google Scholar]
- Lordo, S.; Eisenhawer, A. Sensitivity analysis for modeling overhead chloride salt deposition and corrosion issues. J. Phys. Conf. Ser. 2006, 1378, 022089. [Google Scholar]
- Saab, M.; Dias, O.C.; Faqeer, F.M. Damage Mechanisms and Corrosion Control in a Crude Unit Overhead Line; Corrosion/05; Paper No. 05566; NACE International: Houston, TX, USA, 2005. [Google Scholar]
- ASTM D6304-20; Standard Test Method for Determination of Water in Petroleum Products, Lubricating Oils, and Additives by Coulometric Karl Fischer Titration. ASTM International: West Conshohocken, PA, USA, 2020. Available online: https://webstore.ansi.org/Standards/ASTM/ASTMD630420 (accessed on 1 January 2022).
- ASTM D4929-19a; Standard Test Method for Determination of Organic Chloride Content in Crude Oil. ASTM International: West Conshohocken, PA, USA, 2019. Available online: https://www.astm.org/SUBSCRIPTION/REDLINE_PAGES/D1266.htm (accessed on 1 January 2022).
- ASTM D1266-18; Standard Test Method for Sulfur in Petroleum Products (Lamp Method). ASTM International: West Conshohocken, PA, USA, 2018. Available online: https://webstore.ansi.org/Standards/ASTM/ASTMD492919a (accessed on 1 January 2022).
- ASTM D7946-19; Standard Test Method for Initial pH (i-pH)-Value of Petroleum Products. ASTM International: West Conshohocken, PA, USA, 2019. Available online: https://www.en-standard.eu/d7946-19-standard-test-method-for-initial-ph-i-ph-value-of-petroleum-products/ (accessed on 1 January 2022).
- ASTM D5863-00a; Standard Test Methods for Determination of Nickel, Vanadium, Iron, and Sodium in Crude Oils and Residual Fuels by Flame Atomic Absorption Spectrometry. ASTM International: West Conshohocken, PA, USA, 2016. Available online: https://webstore.ansi.org/Standards/ASTM/ASTMD586300a2016 (accessed on 1 January 2022).
Reaction | Approximate Starting Temperature °C (°F) | Approximate Degree of Hydrolysis at 340 °C (650 °F) |
---|---|---|
NaCl+ H2O→NaOH+ HCl | ≥500 (≥930) | 2% |
CaCl2+ H2O→Ca(OH)2+2HCl | 210 (410) | 10% |
MgCl2+2H2O→Mg(OH)2+2HCl | 120 (248) | 90% |
pH | Fe3+, ppm | Cu2+, ppm | S2−, ppm | Cl−, g/1000 mL |
---|---|---|---|---|
4,3 | 3.3 | 0 | 0 | 0.0366 |
4.5 | 8.2 | 0 | 0 | 0.0567 |
5.1 | 30.5 | 0.015 | 0 | 0.0494 |
6.4 | 0 | trace | 0 | 0.0298 |
7.3 | 0 | 0.0014 | 92.0 | 0.0308 |
8.4 | 0 | 0 | 47.5 | 0.0535 |
9.2 | 0 | 0 | 0 | 0.0714 |
pH | Fe3+, ppm | Cu2+, ppm | S2−, ppm | Cl−, g/1000 mL |
---|---|---|---|---|
4.3 | 5.3 | 0 | 0 | 0.0855 |
4.5 | 7.4 | 0 | 0 | 0.1473 |
5.1 | 34.3 | 0 | 0 | 0.1435 |
6.4 | 0 | 0 | 0 | 0.0822 |
7.3 | 0 | 0.0025 | 80.95 | 0.0354 |
8.4 | 0 | 0 | 12.88 | 0.1199 |
9.2 | 0 | 0 | 0 | 0.2148 |
Material Column | Collection Area | Corrosion Rates, g/m2 h | Penetration Corrosion Rates, mm/an |
---|---|---|---|
OL37 steel | Reflux vessel | 0.18890 | 0.2022 |
OL37 steel | Reflux vessel pipe | 0.18455 | 0.1934 |
OL37 steel | Gasoline plate | 0.24908 | 0.2564 |
OL37 steel | Vapor exhaust pipe | 0.26598 | 0.2804 |
Brass | Reflux vessel | 0.12994 | 0.1474 |
Brass | Reflux vessel pipe | 0.15043 | 0.1494 |
Brass | Gasoline plate | 0.58467 | 0.5939 |
Brass | Vapor exhaust pipe | 0.43057 | 0.4536 |
Test Temperatures, °C | Antacid Additive Content (% Alkyl Phenol, % Undistilled Polyamide) | Corrosion Rates, g/m2 h, Alkyl Phenol Additive | Corrosion Efficacy Reduces, %, Alkyl Phenol Additive | Corrosion Rates, g/m2 h, Undistilled Polyamide Additive | Corrosion Efficacy Reduces, %, Undistilled Polyamide Additive |
---|---|---|---|---|---|
25 | 0.00 | 0.3000 | - | 0.3000 | - |
25 | 0.05 | 0.0182 | 93.93 | 0.0193 | 93.57 |
25 | 0.10 | 0.0133 | 95.57 | 0.0154 | 94.87 |
25 | 0.20 | 0.0080 | 97.33 | 0.0120 | 96.00 |
40 | 0.00 | 1.7000 | - | 1.7000 | - |
40 | 0.05 | 0.1900 | 88.82 | 0.1600 | 90.59 |
40 | 0.10 | 0.1500 | 91.18 | 0.1400 | 91.76 |
40 | 0.20 | 0.1100 | 93.53 | 0.0900 | 94.71 |
70 | 0.00 | 16.000 | - | 16.000 | - |
70 | 0.05 | 1.4500 | 90.94 | 1.3300 | 91.69 |
70 | 0.10 | 0.9900 | 93.81 | 0.9400 | 94.13 |
70 | 0.20 | 0.8500 | 94.69 | 0.7300 | 95.44 |
Test Temperatures, °C | Antacid Additive Content (% Alkyl Phenol, % Undistilled Polyamide) | Corrosion Rates, g/m2 h, Alkyl Phenol Additive | Corrosion Efficacy Reduces, %, Alkyl Phenol Additive | Corrosion Rates, g/m2 h, Undistilled Polyamide Additive | Corrosion Efficacy Reduces, %, Undistilled Polyamide Additive |
---|---|---|---|---|---|
25 | 0.00 | 0.7000 | - | 0.700 | - |
25 | 0.05 | 0.0510 | 92.71 | 0.061 | 91.29 |
25 | 0.10 | 0.0418 | 94.03 | 0.053 | 92.43 |
25 | 0.20 | 0.0215 | 96.93 | 0.042 | 94.00 |
40 | 0.00 | 2.9800 | - | 2.980 | - |
40 | 0.05 | 0.1510 | 94.93 | 0.320 | 89.26 |
40 | 0.10 | 0.1672 | 94.39 | 0.210 | 92.95 |
40 | 0.20 | 0.1530 | 94.87 | 0.156 | 94.77 |
70 | 0.00 | 36.000 | - | 36.00 | - |
70 | 0.05 | 5.9300 | 83.53 | 6.400 | 82.22 |
70 | 0.10 | 3.9310 | 89.08 | 2.700 | 92.50 |
70 | 0.20 | 2.9450 | 91.82 | 2.530 | 92.97 |
Test Temperatures, °C | Antacid Additive Content (% Alkyl Phenol, % Undistilled Polyamide) | Corrosion Rates, g/m2 h, Alkyl Phenol Additive | Corrosion Efficacy Reduces, %, Alkyl Phenol Additive | Corrosion Rates, g/m2 h, Undistilled Polyamide Additive | Corrosion Efficacy Reduces, %, Undistilled Polyamide Additive |
---|---|---|---|---|---|
25 | 0.00 | 1.500 | - | 1.500 | - |
25 | 0.05 | 0.130 | 91.33 | 0.092 | 93.87 |
25 | 0.10 | 0.082 | 94.53 | 0.072 | 95.20 |
25 | 0.20 | 0.071 | 95.27 | 0.053 | 96.47 |
40 | 0.00 | 10.22 | - | 10.22 | - |
40 | 0.05 | 0.630 | 93.84 | 0.820 | 91.98 |
40 | 0.10 | 0.501 | 95.10 | 0.640 | 93.74 |
40 | 0.20 | 0.220 | 97.85 | 0.530 | 94.81 |
70 | 0.00 | 68.20 | - | 68.20 | - |
70 | 0.05 | 14.20 | 79.18 | 15.30 | 77.57 |
70 | 0.10 | 9.20 | 86.51 | 9.500 | 86.07 |
70 | 0.20 | 6.90 | 89.88 | 6.450 | 90.54 |
Test Temperature, °C | Equation Type | Corrosion Rate Regression Equation (y) Depending on the Amount of Additive Used (x,% Alkyl Phenol) | R2 | Corrosion Rate Regression Equation (y) Depending on the Amount of Additive Used (% Undistilled Polyamide) | R2 |
---|---|---|---|---|---|
25 | Exponential | y = 0.1083e−15.62x | 0.8548 | y = 0.1052e−13.55x | 0.8163 |
25 | Linear | y = −1.1825x + 0.1883 | 0.4953 | y = −1.1626x + 0.1884 | 0.4871 |
25 | Polynomial (grad 2) | y = 17.825x2 − 4.8749x + 0.2775 | 0.8995 | y = 17.815x2 − 4.8527x + 0.2775 | 0.8978 |
25 | Polynomial (grad 3) | y = −275.4x3 + 96.69x2 − 9.782x + 0.3 | 1 | y = −275.33x3 + 96.66x2 − 9.7587x + 0.3 | 1 |
40 | Exponential | y = 0.7529e−11.71x | 0.7996 | y = 0.7216e−12.49x | 0.809 |
40 | Linear | y = −6.4743x + 1.104 | 0.508 | y = −6.5314x + 1.094 | 0.5041 |
40 | Polynomial (grad 2) | y = 95.364x2 − 26.228x + 1.5808 | 0.9038 | y = 96.273x2 − 26.474x + 1.5754 | 0.8974 |
40 | Polynomial (grad 3) | y = −1456.7x3 + 512.5x2 − 52.183x + 1.7 | 1 | y = −1523.3x3 + 532.5x2 − 53.617x + 1.7 | 1 |
70 | Exponential | y = 6.3134e−12.57x | 0.8086 | y = 6.2226e−13.23x | 0.8201 |
70 | Linear | y = −61.549x + 10.208 | 0.4969 | y = −61.989x + 10.174 | 0.4976 |
70 | Polynomial (grad 2) | y = 932.09x2 − 254.62x + 14.868 | 0.9062 | y = 934.64x2 − 255.59x + 14.847 | 0.9038 |
70 | Polynomial (grad 3) | y = −13830x3 + 4892.5x2 − 501.05x + 16 | 1 | y = −14,090x3 + 4969.5x2 − 506.65x + 16 | 1 |
Test Temperature, °C | Equation Type | Corrosion Rate Regression Equation (y) Depending on the Amount of Additive Used (x,% Alkyl Phenol) | R2 | Corrosion Rate Regression Equation (y) Depending on the Amount of Additive Used (% Undistilled Polyamide) | R2 |
---|---|---|---|---|---|
25 | Exponential | 0.2804e−15.03x | 0.8508 | 0.2763e−11.76x | 0.7857 |
25 | Linear | y = −2.753x + 0.4445 | 0.5039 | y = −2.6583x + 0.4466 | 0.4906 |
25 | Polynomial (grad 2) | y = 40.628x2 − 11.169x + 0.6476 | 0.898 | y = 40.382x2 − 11.023x + 0.6485 | 0.8972 |
25 | Polynomial (grad 3) | y = −640.43x3 + 224.02x2 − 22.58x + 0.7 | 1 | y = −629.33x3 + 220.6x2 − 22.237x + 0.7 | 1 |
40 | Exponential | 0.9201e−11.8x | 0.7661 | y = 1.2954e−12.86x | 0.826 |
40 | Linear | y = −11.296x + 1.8512 | 0.467 | y = −11.546x + 1.9268 | 0.5124 |
40 | Polynomial (grad 2) | y = 178.94x2 − 48.363x + 2.7459 | 0.888 | y = 169.82x2 − 46.723x + 2.7759 | 0.9105 |
40 | Polynomial (grad 3) | y = −2860.7x3 + 998.15x2 − 99.336x + 2.98 | 1 | y = −2494.7x3 + 884.2x2 − 91.173x + 2.98 | 1 |
70 | Exponential | 18.539e−11.05x | 0.8144 | 18.277e−12.18x | 0.8502 |
70 | Linear | y = −136.77x + 24.169 | 0.5386 | y = −140.42x + 24.194 | 0.5505 |
70 | Polynomial (grad 2) | y = 1923.2x2 − 535.16x + 33.785 | 0.9211 | y = 1976.8x2 − 549.9x + 34.078 | 0.9424 |
70 | Polynomial (grad 3) | y = −27,067x3 + 9674.2x2 − 1017.4x + 36 | 1 | y = −23,490x3 + 8703.5x2 − 968.45x + 36 | 1 |
Test Temperature, °C | Equation Type | Corrosion Rate Regression Equation (y) Depending on the Amount of Additive Used (x,% Alkyl Phenol) | R2 | Corrosion Rate Regression Equation (y) Depending on the Amount of Additive Used (% Undistilled Polyamide) | R2 |
---|---|---|---|---|---|
25 | Exponential | y = 0.5804e−13.16x | 0.8203 | y = 0.5221e−14.14x | 0.8273 |
25 | Linear | y = −5.8109x + 0.9542 | 0.4978 | y = −5.844x + 0.9406 | 0.4885 |
25 | Polynomial (grad 2) | y = 87.991x2 − 24.038x + 1.3942 | 0.9077 | y = 89.282x2 − 24.338x + 1.387 | 0.898 |
25 | Polynomial (grad 3) | y = −1293.7x3 + 458.45x2 − 47.088x + 1.5 | 1 | y = −1381x3 + 484.75x2 − 48.945x + 1.5 | 1 |
40 | Exponential | y = 3.9527e−16.69x | 0.8723 | y = 3.8688e−12.48x | 0.8003 |
40 | Linear | y = −40.542x + 6.4402 | 0.5017 | y = −39.194x + 6.482 | 0.4903 |
40 | Polynomial (grad 2) | y = 601.02x2 − 165.04x + 9.4453 | 0.8977 | y = 598.09x2 − 163.08x + 9.4725 | 0.9003 |
40 | Polynomial (grad 3) | y = −9468.7x3 + 3312.5x2 − 333.75x + 10.22 | 1 | y = −9136.7x3 + 3214.5x2 − 325.88x + 10.22 | 1 |
70 | Exponential | y = 38.563e−10.24x | 0.8184 | y = 40.53e−10.69x | 0.8436 |
70 | Linear | y = −256.4x + 47.06 | 0.5618 | y = −260.43x + 47.65 | 0.583 |
70 | Polynomial (grad 2) | y = 3468.2x2 − 974.81x + 64.401 | 0.9311 | y = 3385.9x2 − 961.8x + 64.58 | 0.937 |
70 | Polynomial (grad 3) | y = −46,433x3 + 16,765x2 − 1802.2x + 68.2 | 1 | y = −44,250x3 + 16,057x2 − 1750.2x + 68.2 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chis, T.; Sterpu, A.E.; Săpunaru, O.V. The Effect of Corrosion on Crude Oil Distillation Plants. ChemEngineering 2022, 6, 41. https://doi.org/10.3390/chemengineering6030041
Chis T, Sterpu AE, Săpunaru OV. The Effect of Corrosion on Crude Oil Distillation Plants. ChemEngineering. 2022; 6(3):41. https://doi.org/10.3390/chemengineering6030041
Chicago/Turabian StyleChis, Timur, Ancaelena Eliza Sterpu, and Olga Valerica Săpunaru. 2022. "The Effect of Corrosion on Crude Oil Distillation Plants" ChemEngineering 6, no. 3: 41. https://doi.org/10.3390/chemengineering6030041
APA StyleChis, T., Sterpu, A. E., & Săpunaru, O. V. (2022). The Effect of Corrosion on Crude Oil Distillation Plants. ChemEngineering, 6(3), 41. https://doi.org/10.3390/chemengineering6030041