Artificial Neural Networks (ANNs) for Density and Viscosity Predictions of CO2 Loaded Alkanolamine + H2O Mixtures
Abstract
:1. Introduction
1.1. Weiland’s Density and Viscosity Correlations
1.1.1. Density Correlation
1.1.2. Viscosity Correlation
1.2. Hartono’s Density and Viscosity Correlations
1.2.1. Density Correlation
1.2.2. Viscosity Correlation
2. Materials and Methods
2.1. Material Description and Sample Preparation
2.2. Density Measurements
2.3. Viscosity Measurements
2.4. Experiments
2.5. Activation Function of the ANN
2.6. ANN Training
- (a)
- RMSE (root mean squared error) for test data versus number of hidden neurons.
- (b)
- MSE for (training + validation + test) data versus number of hidden neurons.
- (c)
- Learning curves of ANNs.
3. Results and Discussions
3.1. Density from ANN Based Models and Empirical Correlations
3.2. Viscosity from ANN Based Models and Empirical Correlations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Kidnay, A.J.; Parrish, W.R. Fundamentals of Natural Gas Processing; Taylor & Francis Group: Boca Raton, FL, USA, 2006. [Google Scholar]
- Jayarathna, S.; Weerasooriya, A.; Dayarathna, S.; Eimer, D.A.; Melaaen, M.C. Densities and surface tensions of CO2 loaded aqueous monoethanolamine solution with r=(0.2 to 0.7) at T=(303.15 to 333.15)K. J. Chem. Eng. Data 2013, 58, 986–992. [Google Scholar] [CrossRef]
- Sartori, G.; Savage, D.W. Sterically hindered amines for CO2 removal from gases. Am. Chem. Soc. 1983, 22, 239–249. [Google Scholar]
- Henni, A.; Hromek, J.J.; Tontiwachwuthikul, P.; Chakma, A. Volumetric properties and viscosities for aqueous AMP solutions from 25 °C to 70 °C. J. Chem. Eng. Data 2003, 48, 551–556. [Google Scholar] [CrossRef]
- Li, M.H.; Lai, M.D. Solubility and diffusivity of N2O and CO2 in (Monoethanolamine + N-Methyldiethanolamine + water) and in (Monoethanolamine + 2-Amino-2-methyl-1-propanol+water). J. Chem. Eng. Data 1995, 40, 486–492. [Google Scholar] [CrossRef]
- Weiland, R.H.; Dingman, J.C.; Cronin, D.B.; Browning, G.J. Density and viscosity of some partially carbonated aqueous alkanolamine solutions and their blends. J. Chem. Eng. Data 1998, 43, 378–382. [Google Scholar] [CrossRef]
- Han, J.; Jin, J.; Eimer, D.A.; Melaaen, M.C. Density of water (1) + Monoethanolamine (2) + CO2 (3) from (298.15 to 413.15) K and surface tension of water (1) + Monoethanolamine (2) from (303.15 to 333.15) K. J. Chem. Eng. Data 2012, 57, 1095–1103. [Google Scholar] [CrossRef]
- Redlich, O.; Kister, A.T. Algebraic representation of thermodynamic properties and the classification of solutions. Ind. Eng. Chem. 1948, 40, 345–348. [Google Scholar] [CrossRef]
- Lee, M.J.; Lin, T.K. Density and viscosity for Monoethanolamine+Water, +Ethanol, and+2-Propanol. J. Chem. Eng. Data 1995, 40, 336–339. [Google Scholar] [CrossRef]
- Amundsen, T.G.; Øi, L.E.; Eimer, D.A. Density and viscosity of monoethanolamine + water + carbon dioxide from (25 to 80) °C. J. Chem. Eng. Data 2009, 54, 3096–3100. [Google Scholar] [CrossRef]
- Hartono, A.; Mba, E.O.; Svendsen, H.F. Physical properties of partially CO2 loaded aqueous monoethanolamine (MEA). J. Chem. Eng. Data 2014, 59, 1808–1816. [Google Scholar] [CrossRef]
- Hsu, C.H.; Li, M.H. Densities of aqueous blended amines. J. Chem. Eng. Data 1997, 42, 502–507. [Google Scholar] [CrossRef]
- Mandal, B.P.; Kundu, M.; Bandyopadhyay, S.S. Density and viscosity of aqueous solution of (N-Methyldiethanolamine + Monoethanolamine), (N-Methyldiethanolamine + Diethanolamine), (2-Amino-2-methyl-1-propanol + Monoethanolamine), and (2-Amino-2-methyl-1-propanol + Diethanolamine). J. Chem. Eng. Data 2003, 48, 703–707. [Google Scholar] [CrossRef]
- Islam, M.N.; Islam, M.M.; Yeasmin, M.N. Viscosity of aqueous solution of 2-methoxyethanol, 2-ethoxyethanol, and ethanolamine. J. Chem. Thermodyn. 2004, 36, 889–893. [Google Scholar] [CrossRef]
- Zhang, J.; Fennell, P.S.; Trusler, J.P.M. Density and viscosity of partially carbonated aqueous tertiary alkanolamine solutions at temperatures between (298.15 and 353.15) K. J. Chem. Eng. Data 2015, 60, 2392–2399. [Google Scholar] [CrossRef] [Green Version]
- Garg, S.; Shariff, A.M.; Shaikh, M.S.; Lal, B.; Aftab, A.; Faiqa, N. A neural network approach to predict the density of aqueous MEA solution. Aust. J. Basic Appl. Sci. 2015, 9, 415–422. [Google Scholar]
- Pouryousefi, F.; Idem, R.; Supap, T.; Tontiwachwuthikul, P. Artificial neural networks for accurate prediction of physical properties of aqueous quaternary systems of carbon dioxide (CO2)-loaded 4-(Diethylamino)-2-butanol and Methyldiethanolamine blended with Monoethanolamine. Ind. Eng. Chem. Res. 2016, 55, 11614–11621. [Google Scholar] [CrossRef]
- Haratipour, P.; Baghban, A.; Mohammadi, A.H.; Nazhad, S.H.H.; Bahadori, A. On the estimation of viscosities and densities of CO2-loaded MDEA, MDEA+AMP, MDEA+DIPA, MDEA+MEA, and MDEA+DEA aqueous solutions. J. Mol. Liq. 2017, 242, 146–159. [Google Scholar] [CrossRef]
- Pierantozzi, M.; Di Nicola, G.; Latini, G.; Coccia, G. Artificial neural network modelling of liquid thermal conductivity for alcohols. Phys. Chem. Liq. 2018, 56, 363–380. [Google Scholar] [CrossRef]
- Rocabruno-Valdés, C.I.; Ramírez-Verduzco, L.F.; Hernández, J.A. Artificial neural network models to predict density, dynamic viscosity, and cetane number of biodiesel. Fuel 2015, 147, 9–17. [Google Scholar] [CrossRef]
- Barradas Filho, A.O.; Barros, A.K.D.; Labidi, S.; Viegas, I.M.A.; Marques, D.B.; Romariz, A.R.S.; de Sousa, R.M.; Marques, A.L.B.; Marques, E.P. Application of artificial neural networks to predict viscosity, iodine value and induction period of biodiesel focused on the study of oxidative stability. Fuel 2015, 145, 127–135. [Google Scholar] [CrossRef]
- Chhantyal, K. Sensor Data Fusion Based Modelling of Drilling Fluid Return Flow through Open Channels; University of South-Eastern Norway: Porsgrunn, Norway, 2018. [Google Scholar]
- Karunarathne, S.S.; Eimer, D.A.; Øi, L.E. Density, viscosity and free energy of activation for viscous flow of monoethanol amine (1) + H2O (2) + CO2 (3) mixtures. Fluids 2020, 5, 13. [Google Scholar] [CrossRef] [Green Version]
- Karunarathne, S.S.; Eimer, D.A.; Øi, L.E. Density, viscosity and free energy of activation for viscous flow of CO2 loaded AMP, MEA and H2O mixtures. J. Mol. Liq. 2019. under review. [Google Scholar]
- Arachchige, U.S.P.R.; Aryal, N.; Eimer, D.A.; Melaaen, M.C. Viscosities of pure and aqueous solutions of Monoethanolamine (MEA), Diethanolamine (DEA), and N-Methyldiethanolamine (MDEA). In Proceedings of the Annual Transactions of the Nordic Rheology Society, Copenhagen, Denmark, 12–14 June 2013. [Google Scholar]
Material | CAS Reg. No. | Purity a | Source | Purification |
---|---|---|---|---|
AMP | 124-68-5 | BioUltra, ≥0.99 (GC) b | Sigma-Aldrich | no |
MEA | 141-43-5 | ≥0.995 | Sigma-Aldrich | no |
CO2 | 124-38-9 | ≥0.9999 | AGA Norge AS | no |
N2 | 7727-37-9 | ≥0.9999 | AGA Norge AS | no |
Mixture | CO2 Loading (mol CO2/mol Amine) |
---|---|
30 mass% MEA + 70 mass% H2O | 0, 0.095, 0.175, 0.328, 0.445, 0.543 |
40 mass% MEA + 60 mass% H2O | 0, 0.105, 0.215, 0.325, 0.436, 0.548 |
50 mass% MEA + 50 mass% H2O | 0, 0.092, 0.186, 0.290, 0.395, 0.495 |
21 mass% AMP + 9 mass% MEA + 70 mass% H2O | 0, 0.107, 0.210, 0.308, 0.400, 0.518 |
24 mass% AMP + 6 mass% MEA + 70 mass% H2O | 0, 0.083, 0.165, 0.314, 0.418, 0.508 |
27 mass% AMP + 3 mass% MEA + 70 mass% H2O | 0, 0.072, 0,152, 0.246, 0.461, 0.511 |
Mixture | No. of Data | |
---|---|---|
Density | Viscosity | |
MEA + H2O | 72 | |
MEA + H2O + CO2 | 119 | 126 |
AMP + MEA + H2O + CO2 | 198 | 144 |
Liquid Mixture | No. of Neurons in the Hidden Layer | Training Data | Validation Data | Test Data | |||
---|---|---|---|---|---|---|---|
AARD% | R2 | AARD% | R2 | AARD% | R2 | ||
MEA + H2O + CO2 | 6 | 0.08 | 0.999 | 0.1 | 0.999 | 0.12 | 0.999 |
AMP + MEA + H2O + CO2 | 9 | 0.006 | 0.999 | 0.007 | 0.999 | 0.01 | 0.999 |
Liquid Mixture | No. of Neurons in the Hidden Layer | Training Data | Validation Data | Test Data | |||
---|---|---|---|---|---|---|---|
AARD% | R2 | AARD% | R2 | AARD% | R2 | ||
MEA + H2O | 14 | 0.35 | 1.0 | 0.33 | 1.0 | 2.4 | 0.998 |
MEA + H2O + CO2 | 12 | 0.27 | 1.0 | 0.24 | 0.999 | 0.75 | 0.999 |
AMP + MEA + H2O + CO2 | 14 | 0.27 | 1.0 | 0.21 | 1.0 | 0.51 | 0.999 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karunarathne, S.S.; Chhantyal, K.; Eimer, D.A.; Øi, L.E. Artificial Neural Networks (ANNs) for Density and Viscosity Predictions of CO2 Loaded Alkanolamine + H2O Mixtures. ChemEngineering 2020, 4, 29. https://doi.org/10.3390/chemengineering4020029
Karunarathne SS, Chhantyal K, Eimer DA, Øi LE. Artificial Neural Networks (ANNs) for Density and Viscosity Predictions of CO2 Loaded Alkanolamine + H2O Mixtures. ChemEngineering. 2020; 4(2):29. https://doi.org/10.3390/chemengineering4020029
Chicago/Turabian StyleKarunarathne, Sumudu S., Khim Chhantyal, Dag A. Eimer, and Lars E. Øi. 2020. "Artificial Neural Networks (ANNs) for Density and Viscosity Predictions of CO2 Loaded Alkanolamine + H2O Mixtures" ChemEngineering 4, no. 2: 29. https://doi.org/10.3390/chemengineering4020029
APA StyleKarunarathne, S. S., Chhantyal, K., Eimer, D. A., & Øi, L. E. (2020). Artificial Neural Networks (ANNs) for Density and Viscosity Predictions of CO2 Loaded Alkanolamine + H2O Mixtures. ChemEngineering, 4(2), 29. https://doi.org/10.3390/chemengineering4020029