Dry Reforming in a Milli-Scale Reactor Driven by Simulated Sunlight
Abstract
:1. Introduction
2. Materials and Methods
2.1. Catalyst Preparation
2.2. Reactor Design
2.3. Solar Simulator and Thermal Test
2.4. Experimental Apparatus and Design
3. Results and Discussion
3.1. Carbon Balance and Hydrogen Balance
3.2. Conversion
3.2.1. Effect of Mean Residence Time (MRT) and Temperature on CO2 Conversion
3.2.2. Effect of MRT and Temperature on CO:H2 Ratio
3.3. Energy Efficiency
3.4. Catalyst Morphology
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pakhare, D.; Spivey, J. A review of dry (CO2) reforming of methane over noble metal catalysts. Chem. Soc. Rev. 2014, 43, 7813–7837. [Google Scholar] [CrossRef] [PubMed]
- Godini, H.R.; Xiao, S.; Kim, M.; Goerke, O.; Song, S.; Wozny, G. Dual-membrane reactor for methane oxidative coupling and dry methane reforming: Reactor integration and process intensification. Chem. Eng. Process. 2013, 74, 153–164. [Google Scholar] [CrossRef]
- Usman, M.; Wan Daud, W.M.A.; Abbas, H.F. Dry reforming of methane: Influence of process parameters—A review. Renew. Sustain. Energy Rev. 2015, 45, 710–744. [Google Scholar] [CrossRef]
- Hao, Z.G.; Zhu, Q.S.; Jiang, Z.; Hou, B.L.; Li, H.Z. Characterization of aerogel Ni/Al2O3 catalysts and investigation on their stability for CH4-CO2 reforming in a fluidized bed. Fuel Process. Technol. 2009, 90, 113–121. [Google Scholar] [CrossRef]
- Wang, H.Y.; Ruckenstein, E. Carbon dioxide reforming of methane to synthesis gas over supported rhodium catalysts: The effect of support. Appl. Catal. A Gen. 2000, 204, 143–152. [Google Scholar] [CrossRef]
- Sutthiumporn, K.; Maneerung, T.; Kathiraser, Y.; Kawi, S. CO2 dry-reforming of methane over La0.8Sr0.2Ni0.8M0.2O3 perovskite (M = Bi, Co, Cr, Cu, Fe): Roles of lattice oxygen on C–H activation and carbon suppression. Int. J. Hydrogen Energy 2012, 37, 11195–11207. [Google Scholar] [CrossRef]
- Kathiraser, Y.; Oemar, U.; Saw, E.T.; Li, Z.; Kawi, S. Kinetic and mechanistic aspects for CO2 reforming of methane over Ni based catalysts. Chem. Eng. J. 2015, 278, 62–78. [Google Scholar] [CrossRef]
- Mahammadunnisa, S.; Reddy, P.; Ramaraju, B.; Subrahmanyam, C. Catalytic Nonthermal Plasma Reactor for Dry Reforming of Methane. Energy Fuels 2013, 27, 4441–4447. [Google Scholar] [CrossRef]
- Brooks, K.P.; Davis, J.M.; Fischer, C.M.; King, D.L.; Pederson, L.R.; Rawlings, G.C.; Stenkamp, V.S.; TeGrotenhuis, W.; Wegeng, R.S.; Whyatt, G.A. Fuel reformation: Microchannel reactor design. Microreactor Technol. Process. Intensif. 2005, 914, 238–257. [Google Scholar]
- King, D.L.; Brooks, K.; Fischer, C.; Pederson, L.; Rawlings, G.; Stenkamp, V.S.; TeGrotenhuis, W.; Wegeng, R.; Whyatt, G. Fuel reformation: Catalyst requirements in microchannel architectures. Microreactor Technol. Process. Intensif. 2005, 914, 119–128. [Google Scholar]
- Wang, Y.; Vander Wiel, D.P.; Tonkovich, A.L.Y.; Fitzgerald, S.P.; Marco, J.L.; LaMont, M.J.; Wegeng, R.S. Engineered catalysts for fuel-processing applications in microchannel reactors. Abstracts Pap. Am. Chem. Soc. 2000, 219, U530. [Google Scholar]
- Peela, N.R.; Kunzru, D. Oxidative steam reforming of ethanol over Rh based catalysts in a micro-channel reactor. Int. J. Hydrogen Energy 2011, 36, 3384–3396. [Google Scholar] [CrossRef]
- Zhai, X.; Cheng, Y.; Zhang, Z.; Jin, Y.; Cheng, Y. Steam reforming of methane over Ni catalyst in micro-channel reactor. Int. J. Hydrogen Energy 2011, 36, 7105–7113. [Google Scholar] [CrossRef]
- Zheng, F.; Diver, R.; Caldwell, D.D.; Fritz, B.G.; Cameron, R.J.; Humble, P.H.; TeGrotenhuis, W.E.; Dagle, R.A.; Wegeng, R.S. Integrated solar thermochemical reaction system for steam methane reforming. Energy Procedia 2015, 69, 1192–1200. [Google Scholar] [CrossRef]
- Brown, D.; Tegrotenhuis, W.; Wegeng, R.; Mankins, J. Solar Powered Steam-methane Reformer Economics. Energy Procedia 2014, 49, 1916–1921. [Google Scholar] [CrossRef]
- Wegeng, R.; Diver, R.; Humble, P. Second Law Analysis of a Solar Methane Reforming System. Energy Procedia 2014, 49, 1248–1258. [Google Scholar] [CrossRef]
- De Falco, M.; Caputo, G.; Frattari, S.; Gironi, F.; Annesini, M.C. Solar steam reforming for enriched methane production: Reactor configurations modeling and comparison. Int. J. Hydrogen Energy 2014, 39, 13979–13990. [Google Scholar] [CrossRef]
- Yu, T.; Yuan, Q.; Lu, J.; Ding, J.; Lu, Y. Thermochemical storage performances of methane reforming with carbon dioxide in tubular and semi-cavity reactors heated by a solar dish system. Appl. Energy 2017, 185, 1994–2004. [Google Scholar] [CrossRef]
- Klein, H.H.; Karni, J.; Rubin, R. Dry methane reforming without a metal catalyst in a directly irradiated solar particle reactor. J. Sol. Energy Eng. 2009, 131, 21001. [Google Scholar] [CrossRef]
- Michalsky, R.; Neuhaus, D.; Steinfeld, A. Carbon Dioxide Reforming of Methane using an Isothermal Redox Membrane Reactor. Energy Technol. 2015, 3, 784–789. [Google Scholar] [CrossRef] [Green Version]
- Anikeev, V.I.; Bobrin, A.S.; Ortner, J.; Schmidt, S.; Funken, K.H.; Kuzin, N.A. Catalytic thermochemical reactor/receiver for solar reforming of natural gas: Design and performance. Sol. Energy 1998, 63, 97–104. [Google Scholar] [CrossRef]
- Diver, R.B.; Fish, J.D. Solar test of an integrated sodium reflux heat pipe receiver/reactor for thermochemical energy transport. Sol. Energy 1992, 48, 21–30. [Google Scholar] [CrossRef]
- L’Estrange, T.; Truong, E.; Rymal, C.; Rasouli, E.; Narayanan, V.; Apte, S.; Drost, K. High Flux Microscale Solar Thermal Receiver for Supercritical Carbon Dioxide Cycles. In Proceedings of the ASME 2015 13th International Conference on Nanochannels, Microchannels, and Minichannels, San Francisco, CA, USA, 6–9 July 2015; p. V001T03A009. [Google Scholar]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Lei, F.; Freiberg, L.; Bagherisereshki, E.; Inbamrung, P.; Intarasiri, S.; Jovanovic, G.; Yokochi, A.F.T.; Árnadóttir, L.; AuYeung, N. Dry Reforming in a Milli-Scale Reactor Driven by Simulated Sunlight. ChemEngineering 2018, 2, 50. https://doi.org/10.3390/chemengineering2040050
Wang Y, Lei F, Freiberg L, Bagherisereshki E, Inbamrung P, Intarasiri S, Jovanovic G, Yokochi AFT, Árnadóttir L, AuYeung N. Dry Reforming in a Milli-Scale Reactor Driven by Simulated Sunlight. ChemEngineering. 2018; 2(4):50. https://doi.org/10.3390/chemengineering2040050
Chicago/Turabian StyleWang, Yige, Fuqiong Lei, Lucas Freiberg, Elham Bagherisereshki, Piyanut Inbamrung, Saowaluk Intarasiri, Goran Jovanovic, Alexandre F. T. Yokochi, Líney Árnadóttir, and Nick AuYeung. 2018. "Dry Reforming in a Milli-Scale Reactor Driven by Simulated Sunlight" ChemEngineering 2, no. 4: 50. https://doi.org/10.3390/chemengineering2040050
APA StyleWang, Y., Lei, F., Freiberg, L., Bagherisereshki, E., Inbamrung, P., Intarasiri, S., Jovanovic, G., Yokochi, A. F. T., Árnadóttir, L., & AuYeung, N. (2018). Dry Reforming in a Milli-Scale Reactor Driven by Simulated Sunlight. ChemEngineering, 2(4), 50. https://doi.org/10.3390/chemengineering2040050