Glycine Oligomerization by Pulsed Discharge Plasma over Aqueous Solution under Atmospheric Pressure
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experimental Setup and Procedure
3. Results and Discussion
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Bruggman, P.; Leys, C. Non-thermal plasmas in and in contact with liquids. J. Phys. D Appl. Phys. 2009, 42, 053001. [Google Scholar] [CrossRef]
- Hayashi, Y.; Diono, W.; Machmudah, S.; Kanda, H.; Takada, N.; Sasaki, K.; Goto, M. Removal of Water Pollutants by Pulsed Discharge Plasma and Observation of Its Optical Emission Intensity at Atmospheric Pressure. Jpn. J. Appl. Phys. 2013, 52, 11NE02. [Google Scholar] [CrossRef]
- Machala, Z.; Tarabova, B.; Hensel, K.; Spetlikova, E.; Sikurova, L.; Lukes, P. Formation of ROS and RNS in Water Electro-Sprayed through Transient Spark Discharge in Air and their Bactericidal Effects. Plasma Process. Polym. 2013, 10, 649–659. [Google Scholar] [CrossRef]
- Shirai, N.; Uchida, S.; Tochikubo, F. Synthesis of metal nanoparticles by dual plasma electrolysis using atmospheric dc glow discharge in contact with liquid. Jpn. J. Appl. Phys. 2014, 53, 046202. [Google Scholar] [CrossRef]
- Jiang, B.; Zheng, J.; Qiu, S.; Wu, M.; Zhang, Q.; Yan, Z.; Xue, Q. Review on electrical discharge plasma technology for wastewater remediation. Chem. Eng. J. 2014, 236, 348–368. [Google Scholar] [CrossRef]
- Diono, W.; Machmudah, S.; Nagafuchi, K.; Sasaki, M.; Akiyama, H.; Goto, M. Oxidative Decoloration of Dyes by Pulsed Discharge Plasma over a Water Surface under Argon Atmospheric. Trans. Mater. Res. Soc. Jpn. 2013, 38, 61–67. [Google Scholar] [CrossRef][Green Version]
- Ni, G.; Zhao, G.; Jiang, Y.; Li, J.; Meng, Y.; Wang, X. Steam Plasma Jet Treatment of Phenol in Aqueous Solution at Atmospheric Pressure. Plasma Process. Polym. 2013, 10, 353–363. [Google Scholar] [CrossRef]
- Thagard, S.M.; Takashima, K.; Mizuno, A. Chemistry of the positive and negative electrical discharges formed in liquid water and above a gas-liquid surface. Plasma Chem. Plasma Process. 2009, 29, 455–473. [Google Scholar] [CrossRef]
- Takamatsu, T.; Uehara, K.; Sasaki, Y.; Miyahara, H.; Matsumura, Y.; Iwasawa, A.; Ito, N.; Azuma, T.; Kohno, M.; Okino, A. Investigation of reactive species using various gas plasmas. RSC Adv. 2014, 4, 39901–39905. [Google Scholar] [CrossRef]
- Malik, M.A.; Ghaffar, A.; Malik, S.A. Water purification by electrical discharges. Plasma Sour. Sci. Technol. 2001, 10, 82–91. [Google Scholar] [CrossRef]
- Kong, M.G.; Kroesen, G.; Morfill, G.; Nosenko, T.; Shimizu, T.; Dijk, J.; Zimmermann, J.L. Plasma medicine: An introductory review. New J. Phys. 2009, 11, 115012. [Google Scholar] [CrossRef]
- Stoffels, E.; Flikweert, A.J.; Stoffels, W.W.; Kroesen, G.M.W. Plasma needle: A non-destructive atmospheric plasma source for fine surface treatment of (bio)materials. Plasma Sour. Sci. Technol. 2002, 11, 383–388. [Google Scholar] [CrossRef]
- Sato, M. Environmental and biotechnological applications of high-voltage pulsed discharges in water. Plasma Sour. Sci. Technol. 2008, 17, 024021. [Google Scholar] [CrossRef]
- Fridman, G.; Brooks, A.D.; Balasubramanian, M.; Fridman, A.; Gutsol, A.; Vasilets, V.N.; Ayan, H.; Friedman, G. Comparison of Direct and Indirect Effects of Non-Thermal Atmospheric-Pressure Plasma on Bacteria. Plasma Process. Polym. 2007, 4, 370–375. [Google Scholar] [CrossRef]
- Fridman, G.; Peddinghaus, M.; Ayan, H.; Fridman, A.; Balasubramanian, M.; Gutsol, A.; Brooks, A.; Friedman, G. Blood Coagulation and Living Tissue Sterilization by Floating-Electrode Dielectric Barrier Discharge in Air. Plasma Chem. Plasma Process. 2006, 26, 425–442. [Google Scholar] [CrossRef]
- Kalghatgi, S.; Fridman, A.; Clifford, J.A.; Friedman, G. DNA damage in mammalian cells by non-thermal atmospheric pressure microsecond pulsed dielectric barrier discharge plasma is not mediated by ozone. Plasma Process. Polym. 2012, 9, 726–732. [Google Scholar] [CrossRef]
- Ke, Z.; Huang, Q.; Su, X.; Jiang, J.; Wang, X.; Yu, Z. A paradigm study for assessment of phenylalanine’s damage under arc-discharge irradiation. Nucl. Instrum. Methods Phys. Res. Sect. B 2010, 268, 1618–1625. [Google Scholar] [CrossRef]
- Takai, E.; Kitamura, T.; Kuwabara, J.; Ikata, S.; Yoshizawa, S.; Shiraki, K.; Kawasaki, H.; Arakawa, R.; Kitano, K. Chemical modification of amino acids by atmospheric-pressure cold plasma in aqueous solution. J. Phys. D Appl. Phys. 2014, 47, 285403. [Google Scholar] [CrossRef]
- Ke, Z.; Yu, Z.; Huang, Q. Assessment of Damage of Glutathione by Glow Discharge Plasma at the Gas-Solution Interface through Raman Spectroscopy. Plasma Process. Polym. 2013, 10, 181–188. [Google Scholar] [CrossRef]
- Miller, S.L. The mechanism of synthesis of amino acids by electric discharges. Biochim. Biophys. Acta 1957, 23, 480–489. [Google Scholar] [CrossRef]
- Miller, S.L. Organic Compound Synthes on the Primitive Eart. Science 1959, 130, 245–251. [Google Scholar] [CrossRef] [PubMed]
- Cleaves, H.J.; Chalmers, J.H.; Lazcano, A.; Miller, S.L.; Baba, J.L. A reassessment of prebiotic organic synthesis in neutral planetary atmospheres. Orig. Life Evol. Biosph. 2008, 38, 105–115. [Google Scholar] [CrossRef] [PubMed]
- Griffiths, P.R.; Schumann, P.J.; Lippincott, E.R. Origin of terrestrial polypeptides: A theory based on data from discharge-tube experiments. Space Life Sci. 1973, 4, 278–290. [Google Scholar] [CrossRef] [PubMed]
- Shapiro, R. Prebiotic cytosine synthesis: A critical analysis and implications for the origin of life. Proc. Natl. Acad. Sci. USA 1999, 96, 4396–4401. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, K.; Tsuchiya, M. Abiotic formation of amino acids and imidazole by proton irradiation of simulated primitive earth atmospheres. Orig. Life Evol. Biosph. 1990, 20, 99–109. [Google Scholar] [CrossRef]
- Takahashi, J.; Hosokawa, T.; Saito, T.; Utsumi, Y. Abiotic synthesis of amino acids by X-ray irradiation of simple inorganic gases. Appl. Phys. Lett. 1999, 74, 877. [Google Scholar] [CrossRef]
- Sagan, C.; Khare, B.N. Long-Wavelength Ultraviolet Photoproduction of Amino Acids on the Primitive Earth. Science 1971, 173, 417–420. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Jikuya, M.; Yoshida, S.; Namihira, T.; Katsuki, S.; Akiyama, H. Positive- and negative-pulsed streamer discharges generated by a 100-ns pulsed-power in atmospheric air. IEEE Trans. Plasma Sci. 2007, 35, 1098–1103. [Google Scholar] [CrossRef]
- Yoshinaga, K.; Okada, S.; Wang, D.; Namihira, T.; Katsuki, S.; Akiyama, H. Effect of Polarity and Rise Time of Applied Pulsed Voltage on Streamer Discharge Phenomena. Acta Phys. Pol. A 2009, 115, 1050. [Google Scholar] [CrossRef]
- Peritis, K.N.; Chaimbault, P.; Elfakir, C.; Dreux, M. Ion-pair reversed-phase liquid chromatography for determination of polar underivatized amino acids using perfluorinated carboxylic acids as ion pairing agent. J. Chromatogr. A 1999, 833, 147–155. [Google Scholar] [CrossRef]
- Petritis, K.; Elfakir, C.; Dreux, M. A comparative study of commercial liquid chromatographic detectors for the analysis of underivatized amino acids. J. Chromatogr. A 2002, 961, 9–21. [Google Scholar] [CrossRef]
- Demeure, K.; Gabelica, V.; De Pauw, E.A. New advances in the understanding of the in-source decay fragmentation of peptides in MALDI-TOF-MS. J. Am. Soc. Mass Spectrom. 2010, 21, 1906–1917. [Google Scholar] [CrossRef] [PubMed]
- Morand, K.; Talbo, G.; Mann, M. Oxidation of peptides during electrospray ionization. Rapid Commun. Mass Spectrom. 1993, 7, 738–743. [Google Scholar] [CrossRef] [PubMed]
- Kitadai, N.; Yokoyama, T.; Nakashima, S. Hydration-dehydration interactions between glycine and anhydrous salts: Implications for a chemical evolution of life. Geochim. Cosmochim. Acta 2011, 75, 6285–6299. [Google Scholar] [CrossRef]
- Cox, J.S.; Seward, T.M. The reaction kinetics of alanine and glycine under hydrothermal conditions. Geochim. Cosmochim. Acta 2007, 71, 2264–2284. [Google Scholar] [CrossRef]
- Flores, J.J.; Ponnamperuma, C. Polymerization of amino acids under primitive earth conditions. J. Mol. Evol. 1972, 2, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Otake, T.; Taniguchi, T.; Furukawa, Y.; Kawamura, F.; Nakazawa, H.; Kakegawa, T. Stability of amino acids and their oligomerization under high-pressure conditions: Implications for prebiotic chemistry. Astrobiology 2011, 11, 799–813. [Google Scholar] [CrossRef] [PubMed]
- Sahni, M.; Locke, B.R. The effects of reaction conditions on liquid-phase hydroxyl radical production in gas–liquid pulsed-electrical-discharge reactors. Plasma Process. Polym. 2006, 3, 668–681. [Google Scholar] [CrossRef]
- Chen, Q.; Shirai, H. Diagnostics of atmospheric pressure microplasma with a liquid electrode. Eur. Phys. J. D 2012, 66, 161. [Google Scholar] [CrossRef]
- Shirai, N.; Nakazawa, M.; Ibuka, S.; Ishii, S. Atmospheric DC Glow Microplasmas Using Miniature Gas Flow and Electrolyte Cathode. Jpn. J. Appl. Phys. 2009, 48, 036002. [Google Scholar] [CrossRef]
- Sakata, K.; Kitadai, N.; Yokoyama, T. Effects of pH and temperature on dimerization rate of glycine: Evaluation of favorable environmental conditions for chemical evolution of life. Geochim. Cosmochim. Acta 2010, 74, 6841–6851. [Google Scholar] [CrossRef]
- Zamaraev, K.I.; Romanikov, V.N.; Salganik, R.I.; Wlassoff, W.A.; Khramtsov, V.V. Modeling of the prebiotic synthesis of oligopeptides: Silicate catalysts help to overcome the critical stage. Orig. Life Evol. Biosph. 1997, 27, 325–337. [Google Scholar] [CrossRef] [PubMed]
Experiments | Treatment Time | Conversion of Glycine |
---|---|---|
Discharge plasma (18.6 kV) | 250 s | 73.1% |
Heating (80 °C) | 24 h | 0.0% |
UV irradiation | 24 h | 0.4% |
OH radical (Fenton reaction) | 10 min | 3.4% |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hayashi, Y.; Diono, W.; Takada, N.; Kanda, H.; Goto, M. Glycine Oligomerization by Pulsed Discharge Plasma over Aqueous Solution under Atmospheric Pressure. ChemEngineering 2018, 2, 17. https://doi.org/10.3390/chemengineering2020017
Hayashi Y, Diono W, Takada N, Kanda H, Goto M. Glycine Oligomerization by Pulsed Discharge Plasma over Aqueous Solution under Atmospheric Pressure. ChemEngineering. 2018; 2(2):17. https://doi.org/10.3390/chemengineering2020017
Chicago/Turabian StyleHayashi, Yui, Wahyu Diono, Noriharu Takada, Hideki Kanda, and Motonobu Goto. 2018. "Glycine Oligomerization by Pulsed Discharge Plasma over Aqueous Solution under Atmospheric Pressure" ChemEngineering 2, no. 2: 17. https://doi.org/10.3390/chemengineering2020017
APA StyleHayashi, Y., Diono, W., Takada, N., Kanda, H., & Goto, M. (2018). Glycine Oligomerization by Pulsed Discharge Plasma over Aqueous Solution under Atmospheric Pressure. ChemEngineering, 2(2), 17. https://doi.org/10.3390/chemengineering2020017