Standardization and Utilization of Lower Limb Single Joint Isometric Force Plate Assessments and Recommendations for Future Research
Abstract
1. Introduction
2. Isometric Hamstring Assessments
| Test Design | Metric (Units) | Absolute Reliability | Relative Reliability | Reference | Metric (Units) | Post | +24 h | +48 h | +72 h | Reference |
|---|---|---|---|---|---|---|---|---|---|---|
| 90:90 | Peak force (N) | ✓ | ✓ | [27,28,29,30,31] | Peak force (N) | ✓ | ? | ✓ | x | [20,31,51] |
| Force 100 ms (N) | ✓ | ✓ | ||||||||
| Force 200 ms (N) | ✓ | ✓ | ||||||||
| RFD 0–100 ms (N/s) | ✓ | x | ||||||||
| RFD 0–200 ms (N/s) | ✓ | x | ||||||||
| 30:30 | Peak force (N) | ✓ | ✓ | [31,33] | Peak force (N) | ✓ | ✓ | x | x | [30,31,33,52] |
| RFD 50–100 ms (N/s) | x | ✓ | RFD 50–100 ms (N/s) | ✓ | ? | ? | ? | [33] | ||
| RFD 100–150 ms (N/s) | x | ✓ | RFD 100–150 ms (N/s) | ✓ | ? | ? | ? | |||
| 90:20 | Peak force (N) | ✓ | ✓ | [13,14,20] | Peak force (N) | ✓ | ? | ✓ | x | [20] |
| Peak torque (N⋅m) | ✓ | ✓ | ||||||||
| RFD 0–50 ms (N/s) | ? | ✓ | Peak torque (N⋅m) | ✓ | ✓ | ✓ | x | [14] | ||
| RTD 0–50 ms (N⋅m/s) | ✓ | ✓ | ✓ | ✓ | ||||||
| RFD 0–100 ms (N/s) | ? | ✓ | ||||||||
| RFD 100–200 ms (N/s) | ? | ✓ | RTD 0–100 ms (N⋅m/s) | ✓ | ✓ | ✓ | ✓ | |||
| Peak RFD (N/s) | ? | ✓ | ||||||||
| RTD 0–50 ms (N⋅m/s) | ✓ | ✓ | RTD 0–250 ms (N⋅m/s) | ✓ | ✓ | ✓ | x | |||
| RTD 0–100 ms (N⋅m/s) | ✓ | ✓ | ||||||||
| RTD 0–250 ms (N⋅m/s) | ✓ | ✓ | Peak RTD (N⋅m/s) | x | x | x | x | |||
| Peak RTD (N⋅m/s) | ✓ | ✓ | ||||||||
| 40:NR | Peak force (N) | ✓ | ✓ | [40] | N/A | N/A | N/A | |||
| Peak torque (N⋅m) | ✓ | ✓ | ||||||||
| Torque 150 ms (N⋅m) | x | x | ||||||||
| 60:75 | Peak torque (N⋅m) | ? | ✓ | [39] | N/A | N/A | N/A | |||
| NR:20 | Peak force (N) | N/A | N/A | [12] | N/A | N/A | N/A | |||
3. Isometric Plantar Flexor Testing
| Standing | Seated | Kneeling | Leg Press | |
|---|---|---|---|---|
| Knee angle (°) | 170–180° | 90° | N/R | 180° |
| Ankle angle (°) | 130° PF | 90-100° PF | 20° DF | 90° PF |
| Absolute reliability | ✓ | ✓ | ✓ | ✓ |
| Relative reliability | ✓ | ✓ | ✓ | ✓ |
| Reference | [24] | [24,60,63] | [22] | [61,62] |
4. Discussion
5. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Linthorne, N. Analysis of standing vertical jumps using a force platform. Am. J. Phys. 2001, 69, 1198–1204. [Google Scholar] [CrossRef]
- Weldon, A.; Duncan, M.J.; Turner, A.; Christie, C.J.; Pang, C.M.C. Contemporary practices of strength and conditioning coaches in professional cricket. Int. J. Sports Sci. Coach. 2020, 16, 585–600. [Google Scholar] [CrossRef]
- Weldon, A.; Duncan, M.J.; Turner, A.; Sampaio, J.; Noon, M.; Wong, D.P.; Lai, V.W. Contemporary practices of strength and conditioning coaches in professional soccer. Biol. Sport 2020, 38, 377–390. [Google Scholar] [CrossRef] [PubMed]
- Merrigan, J.J.; Stone, J.D.; Martin, J.R.; Hornsby, W.G.; Galster, S.M.; Hagen, J.A. Applying Force Plate Technology to Inform Human Performance Programming in Tactical Populations. Appl. Sci. 2021, 11, 6538. [Google Scholar] [CrossRef]
- Hellmers, S.; Fudickar, S.; Lau, S.; Elgert, L.; Diekmann, R.; Bauer, J.M.; Hein, A. Measurement of the Chair Rise Performance of Older People Based on Force Plates and IMUs. Sensors 2019, 19, 1370. [Google Scholar] [CrossRef]
- Taberner, M.; Cohen, D.D. Physical preparation of the football player with an intramuscular hamstring tendon tear—Clinical perspective with video demonstrations. Br. J. Sports Med. 2018, 52, 1275–1278. [Google Scholar] [CrossRef]
- Taberner, M.; van Dyk, N.; Allen, T.; Neil, J.; Richter, C.; Drust, B.; Betancur, E.; Cohen, D.D. Physical preparation and return to performance of an elite female football player following ACL reconstruction: A journey to the FIFA Women’s World Cup. BMJ Open Sport Exerc. Med. 2020, 6, e000843. [Google Scholar] [CrossRef] [PubMed]
- Badby, A.J.; Ripley, N.J.; McMahon, J.J.; Mundy, P.; Comfort, P. Scoping review of methods of monitoring acute changes in lower body neuromuscular function via force plates. PLoS ONE 2025, 20, e0322820. [Google Scholar] [CrossRef]
- Merrigan, J.J.; Stone, J.D.; Galster, S.M.; Hagen, J.A. Analyzing Force-Time Curves: Comparison of Commercially Available Automated Software and Custom MATLAB Analyses. J. Strength Cond. Res. 2022, 36, 2387–2402. [Google Scholar] [CrossRef]
- Merrigan, J.J.; Stone, J.D.; Hornsby, W.G.; Hagen, J.A. Identifying Reliable and Relatable Force–Time Metrics in Athletes—Considerations for the Isometric Mid-Thigh Pull and Countermovement Jump. Sports 2020, 9, 4. [Google Scholar] [CrossRef]
- Barber, R.; Fahey, J.T.; Comfort, P.; Ripley, N.J. Normalization of rapid force to peak force in an isometric hamstring assessment using force plates. Apunt. Sports Med. 2024, 59, 100450. [Google Scholar] [CrossRef]
- Driggers, A.R.; Fry, A.C.; Chochrane-Snyman, K.C.; Wagle, J.P.; McBride, J.M. Effectiveness of Single Leg Isometric Bridge and Nordic Hamstring Exercise Testing for Prediction of Hamstring Injury Risk in Professional Baseball Players. Am. J. Sports Med. 2025, 53, 1–9. [Google Scholar] [CrossRef]
- Rasp, D.M.; Paternoster, F.K.; Kern, J.; Schwirtz, A. Precise instruction and consideration of the vertical and horizontal force component increases validity and reliability of the 90:20 Isometric Posterior Chain Test. PLoS ONE 2024, 19, e0312843. [Google Scholar] [CrossRef]
- Cosio, P.L.; Moreno-Simonet, L.; Fernández, D.; Lloret, M.; Padulles, X.; Padulles, J.M.; Farran-Codina, A.; Rodas, G.; Cadefau, J.A. Football (soccer) match-derived hamstring muscles residual fatigue can be monitored using early rate of torque development. Eur. J. Appl. Physiol. 2025, 125, 1449–1461. [Google Scholar] [CrossRef]
- Lee, M.; Lancaster, M.; Tulloch, L.; O’Leary, B.; Power, E.; Howes, D.; Sourbuts, B.; Berry, A.; Maher, F.; O’Neill, S. Normative isometric plantarflexion strength values for professional level, male rugby union athletes. Phys. Ther. Sport 2023, 61, 114–121. [Google Scholar] [CrossRef]
- Ripley, N.J.; Fahey, J.T.; Comfort, P.; McMahon, J.J.; Jones, P.A.; Bramah, C. Normative Single Joint Isometric Hamstring Strength Scores From Professional Soccer Players During Preseason. J. Strength Cond. Res. 2025, 39, e1329–e1336. [Google Scholar] [CrossRef] [PubMed]
- Ekstrand, J.; Bengtsson, H.; Waldén, M.; Davison, M.; Khan, K.M.; Hägglund, M. Hamstring injury rates have increased during recent seasons and now constitute 24% of all injuries in men’s professional football: The UEFA Elite Club Injury Study from 2001/02 to 2021/22. Br. J. Sports Med. 2023, 57, 292–298. [Google Scholar] [CrossRef] [PubMed]
- Maniar, N.; Carmichael, D.S.; Hickey, J.T.; Timmins, R.G.; San Jose, A.J.; Dickson, J.; Opar, D. Incidence and prevalence of hamstring injuries in field-based team sports: A systematic review and meta-analysis of 5952 injuries from over 7 million exposure hours. Br. J. Sports Med. 2023, 57, 109–116. [Google Scholar] [CrossRef]
- Cuthbert, M.; Comfort, P.; Ripley, N.; McMahon, J.J.; Evans, M.; Bishop, C. Unilateral vs. bilateral hamstring strength assessments: Comparing reliability and inter-limb asymmetries in female soccer players. J. Sports Sci. 2021, 39, 1481–1488. [Google Scholar] [CrossRef] [PubMed]
- Matinlauri, A.; Alcaraz, P.E.; Freitas, T.T.; Mendiguchia, J.; Abedin-Maghanaki, A.; Castillo, A.; Martinez-Ruiz, E.; Carlos-Vivas, J.; Cohen, D.D. A comparison of the isometric force fatigue-recovery profile in two posterior chain lower limb tests following simulated soccer competition. PLoS ONE 2019, 14, e0206561. [Google Scholar] [CrossRef]
- Knezevic, O.M.; Mirkov, D.M.; Kadija, M.; Milovanovic, D.; Jaric, S. Evaluation of Isokinetic and Isometric Strength Measures for Monitoring Muscle Function Recovery After Anterior Cruciate Ligament Reconstruction. J. Strength Cond. Res. 2014, 28, 1722–1731. [Google Scholar] [CrossRef]
- McMahon, J.J.; Ripley, N.J.; Comfort, P.; Robles-Palazon, F.J.; Fahey, J.T.; Badby, A.J.; Bramah, C. The Kneeling Isometric Plantar Flexor Test: Preliminary Reliability and Feasibility in Professional Youth Football. J. Funct. Morphol. Kinesiol. 2023, 8, 164. [Google Scholar] [CrossRef] [PubMed]
- Mattiussi, A.M.; Shaw, J.S.; Price, P.; Brown, D.B.; Cohen, D.D.; Lineham, J.; Pedlar, C.R.; Tallent, J.; Atack, A. The association of range of motion, lower limb strength, and load during jump landings in professional ballet dancers. J. Biomech. 2024, 168, 112119. [Google Scholar] [CrossRef]
- Mattiussi, A.M.; Shaw, J.W.; Cohen, D.D.; Price, P.; Brown, D.D.; Pedlar, C.R.; Tallent, J. Reliability, variability, and minimal detectable change of bilateral and unilateral lower extremity isometric force tests. J. Sport Exerc. Sci. 2022, 6, 191–199. [Google Scholar] [CrossRef]
- Bishop, C.; Turner, A.; Jordan, M.; Harry, J.; Loturco, I.; Lake, J.; Comfort, P. A Framework to Guide Practitioners for Selecting Metrics During the Countermovement and Drop Jump Tests. Strength Cond. J. 2022, 44, 95–103. [Google Scholar] [CrossRef]
- Comfort, P.; Dos’Santos, T.; Beckham, G.K.; Stone, M.; Guppy, S.; Haff, G. Standardization and Methodological Considerations for the Isometric Midthigh Pull. Strength Cond. J. 2019, 41, 57–79. [Google Scholar] [CrossRef]
- Ripley, N.; Fahey, J.T.; Cuthbert, M.; McMahon, J.; Comfort, P. Rapid force generation during unilateral isometric hamstring assessment: Reliability and relationship to maximal force. Sports Biomech. 2023, 1–12. [Google Scholar] [CrossRef]
- Ripley, N.; McMahon, J.J.; Comfort, P. Effect of sampling frequency on a unilateral isometric hamstring strength assessment using force plates. J. Sci. Sport Exerc. 2024, 1–9. [Google Scholar] [CrossRef]
- Ripley, N.J.; Barber, R.; Fahey, J.T.; Comfort, P. Early Versus Late Rapid Force Production During Single-Joint Isometric Hamstring Assessment Using Force Plates. J. Strength Cond. Res. 2024, 38, 2074–2078. [Google Scholar] [CrossRef]
- Constantine, E.; Taberner, M.; Richter, C.; Willett, M.; Cohen, D.D. Isometric Posterior Chain Peak Force Recovery Response Following Match-Play in Elite Youth Soccer Players: Associations with Relative Posterior Chain Strength. Sports 2019, 7, 218. [Google Scholar] [CrossRef]
- McCall, A.; Nedelec, M.; Carling, C.; Le Gall, F.; Berthoin, S.; Dupont, G. Reliability and sensitivity of a simple isometric posterior lower limb muscle test in professional football players. J. Sports Sci. 2015, 33, 1298–1304. [Google Scholar] [CrossRef]
- Moreno-Perez, V.; Mendez-Villanueva, A.; Soler, A.; Del Coso, J.; Courel-Ibanez, J. No relationship between the nordic hamstring and two different isometric strength tests to assess hamstring muscle strength in professional soccer players. Phys. Ther. Sport 2020, 46, 97–103. [Google Scholar] [CrossRef]
- Bettariga, F.; Bishop, C.; Martorelli, L.; Turner, A.; Lazzarini, S.G.; Algeri, C.; Maestroni, L. Acute Effects of a Fatiguing Protocol on Peak Force and Rate of Force Development of the Hamstring Muscles in Soccer Players. J. Sci. Sport Exerc. 2024, 7, 177–185. [Google Scholar] [CrossRef]
- Hopkins, W. Measures of Reliability in Sports Medicine and Science Measurement Error & Reliability. Sports Med. 2000, 30, 1–15. [Google Scholar]
- Koo, T.K.; Li, M.Y. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef] [PubMed]
- Green, B.; Bourne, M.; van Dyk, N.; Pizzari, T. Recalibrating the risk of hamstring strain injury (HSI)—A 2020 systematic review and meta-analysis of risk factors for index and recurrent HSI in sport. Br. J. Sports Med. 2020, 54, 1081–1088. [Google Scholar] [CrossRef] [PubMed]
- Green, B.; Bourne, M.N.; Pizzari, T. Isokinetic strength assessment offers limited predictive validity for detecting risk of future hamstring strain in sport: A systematic review and meta-analysis. Br. J. Sports Med. 2018, 52, 329–336. [Google Scholar] [CrossRef]
- Alt, T.; Etzel, J.P.; Knicker, A.J.; Strüder, H.K. The effects of fixation and contraction mode on prone isokinetic knee flexor tests. Isokinet. Exerc. Sci. 2019, 27, 143–151. [Google Scholar] [CrossRef]
- Wild, J.J.; Bezodis, I.N.; North, J.S.; Bezodis, N.E. Characterising initial sprint acceleration strategies using a whole-body kinematics approach. J. Sport Sci. 2022, 40, 203–214. [Google Scholar] [CrossRef]
- Goodwin, J.E.; Bull, A.M. Novel Assessment of Isometric Hip Extensor Function: Reliability, Joint Angle Sensitivity, and Concurrent Validity. J. Strength Cond. Res. 2022, 36, 2762–2770. [Google Scholar] [CrossRef]
- Kellis, E.; Blazevich, A.J. Hamstrings force-length relationships and their implications for angle-specific joint torques: A narrative review. BMC Sports Sci. Med. Rehabil. 2022, 14, 1–34. [Google Scholar] [CrossRef]
- Logan, S.; Hunter, I.; Ty Hopkins, J.; Feland, B.; Parcell, A.C. Ground reaction force differences between running shoes, racing flats, and distance spikes in runners. J. Sport Sci. Med. 2010, 9, 147–153. [Google Scholar]
- Ling, W.; Chen, F.C.; McDonough, A.L. Evaluation of the Cushion Setting on Performance of a Biodex II Dynamometer. Arch. Phys. Med. Rehabil. 1999, 80, 350–354. [Google Scholar] [CrossRef] [PubMed]
- Maffiuletti, N.A.; Aagaard, P.; Blazevich, A.J.; Folland, J.; Tillin, N.A.; Duchateau, J. Rate of force development: Physiological and methodological considerations. Eur. J. Appl. Physiol. 2016, 116, 1091–1116. [Google Scholar] [CrossRef]
- Halperin, I.; Williams, K.J.; Martin, D.T.; Chapman, D.W. The Effects of Attentional Focusing Intructions on Force Production During Isometric Midthigh Pull. J. Strength Cond. Res. 2016, 30, 919–923. [Google Scholar] [CrossRef] [PubMed]
- McCormick, B.J.; MacMahon, C.; Talpey, S.W.; James, L.P. The Influence of Instruction on Isometric Mid-Thigh Pull Force-Time Variables. Int. J. Strength Cond. 2022, 2, 1–9. [Google Scholar] [CrossRef]
- Guppy, S.; Kotani, Y.; Brady, C.J.; Connolly, S.; Comfort, P.; Haff, G.G. The Reliability and Magnitude of Time-Dependent Force-Time Characteristics During the Isometric Midthigh Pull Are Affected by Both Testing Protocol and Analysis Choices. J. Strength Cond. Res. 2022, 36, 1191–1199. [Google Scholar] [CrossRef]
- Suarez, D.G.; Carroll, K.M.; Slaton, J.A.; Rochau, K.G.; Davis, M.W.; Stone, M.H. Utility of a Shortened Isometric Midthigh Pull Protocol for Assessing Rapid Force Production in Athletes. J. Strength Cond. Res. 2022, 36, 1819–1825. [Google Scholar] [CrossRef]
- Sahaly, R.; Vandewalle, H.; Driss, T.; Monod, H. Maximal voluntary force and rate of force development in humans—Importance of instruction. Eur. J. Appl. Physiol. 2001, 85, 345–350. [Google Scholar] [CrossRef]
- Rasp, D.M.; Paternoster, F.K.; Hanika, F.; Schwirtz, A. Comparison of two procedures of the 90:20 isometric posterior chain test regarding the detection of hamstring muscle fatigue in soccer. Sport Sci. Health 2025, 1, 1–11. [Google Scholar] [CrossRef]
- Franceschi, A.; Robinson, M.A.; Owens, D.J.; Brownlee, T.; Connolly, D.R.; Coutts, A.J.; Bravo, D.F.; Enright, K. Post-Match Recovery Responses in Italian SerieA Youth Soccer Players: Effects of Manipulating Training Load 48 h After Match Play. Eur. J. Sport Sci. 2025, 25, e12297. [Google Scholar] [CrossRef]
- Springham, M.; Singh, N.; Stewart, P.; Matthews, J.; Jones, I.; Norton-Sherwood, C.; May, D.; Sharma, S.T.; Salter, J.; Strudwick, A.J.; et al. Acute neuromuscular and perceptual responses to U-18 English Premier League academy football match play. Eur. J. Sport Sci. 2024, 24, 1405–1413. [Google Scholar] [CrossRef] [PubMed]
- Dos’Santos, T.; Jones, P.A.; Comfort, P.; Thomas, C. Effect of Different Onset Thresholds on Isometric Midthigh Pull Force-Time Variables. J. Strength Cond. Res. 2017, 31, 3463–3473. [Google Scholar] [CrossRef]
- Dos’Santos, T.; Jones, P.A.; Kelly, J.; McMahon, J.J.; Comfort, P.; Thomas, C. Effect of Sampling Frequency on Isometric Midthigh-Pull Kinetics. Int. J. Sports Physiol. Perform. 2019, 14, 525–530. [Google Scholar] [CrossRef]
- Ripley, N.; Fahey, J.T.; Comfort, P. The Effect of Different Onset Thresholds on Isometric Hamstring Force-Time Variables Using Force Plates. J. Appl. Sport Sci. 2025, 9, 24–39. [Google Scholar] [CrossRef]
- Guppy, S.N.; Brady, C.J.; Kotani, Y.; Connolly, S.; Comfort, P.; Lake, J.P.; Haff, G.G. A comparison of manual and automatic force-onset identification methodologies and their effect on force-time characteristics in the isometric midthigh pull. Sports Biomech. 2024, 23, 1663–1680. [Google Scholar] [CrossRef]
- Bettariga, F.; Bishop, C.; Martorelli, L.; Turner, A.; Lazzarini, S.G.; Algeri, C.; Maestroni, L. Authors’ Response: To “Letter to the Editor: ‘Acute Effects of a Fatiguing Protocol on Peak Force and Rate of Force Development of the Hamstring Muscles in Soccer Players’”. J. Sci. Sport Exerc. 2024, 6, 189–191. [Google Scholar] [CrossRef]
- Arampazis, A.; Karamanidis, K.; Stafilidis, S.; Morey-Klapsing, G.; DeMonte, G.; Bruggemann, G.-P. Effect of different ankle- and knee-joint positions on gastrocnemius medialis fascicle length and EMG activity during isometric plantar flexion. J. Biomech. 2006, 39, 1891–1902. [Google Scholar] [CrossRef]
- Rhodes, D.; Jeffery, J.; Brook-Sutton, D.; Alexander, J. Test-Retest Reliability of the Isometric Soleus Strength Test in Elite Male Academy Footballers. Int. J. Sports Phys. Ther. 2022, 17, 286–292. [Google Scholar] [CrossRef]
- O’Neill, S.; Weeks, A.; Nørgaard, J.E.; Jorgensen, M.G. Validity and intrarater reliability of a novel device for assessing Plantar flexor strength. PLoS ONE 2023, 18, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Warneke, K.; Keiner, M.; Lohmann, L.H.; Hillebrecht, M.; Wirth, K.; Schiemann, S. The Influence of Maximum Strength Performance in Seated Calf Raises on Counter Movement Jump and Squat Jump in Elite Junior Basketball Players. SportMont 2022, 2, 3–8. [Google Scholar] [CrossRef]
- Warneke, K.; Wohlann, T.; Lohmann, L.H.; Wirth, K.; Schiemann, S. Acute effects of long-lasting stretching and strength training on maximal strength and flexibility in the calf muscle. Ger. J. Exerc. Sport Res. 2023, 53, 148–154. [Google Scholar] [CrossRef]
- Glaied, M.; Whiteley, R. Excellent Reliability for an Instrumented Test of Ankle Plantarflexion Force. Int. J. Sports Phys. Ther. 2025, 20, 263–274. [Google Scholar] [CrossRef]
- Leabeater, A.J.; Clarke, A.C.; James, L.; Huynh, M.; Driller, M.W. Under the Gun: Percussive Massage Therapy and Physical and Perceptual Recovery in Active Adults. J. Athl. Train. 2024, 59, 310–316. [Google Scholar] [CrossRef]
- Dorn, T.W.; Schanche, A.G.; Pandy, M.G. Muscular strategy shift in human running: Dependence of running speed on hip and ankle muscle performance. J. Exp. Biol. 2012, 215, 1944–1956. [Google Scholar] [CrossRef] [PubMed]
- O’Neill, S.; Barry, S.; Watson, P. Plantar exor strength and endurance de cits associated with mid-portion Achilles tendinopathy: The role of soleus. Phys. Ther. Sport 2019, 37, 69–76. [Google Scholar] [CrossRef]
- Winter, D.A.; Sidwall, H.G.; Hobson, D.A. Measurement and reduction of noise in kinematics of locomotion. J. Biomech. 1974, 7, 157–159. [Google Scholar] [CrossRef]
- Beckham, G.K.; Suchomel, T.; Mizuguchi, S. Force Plate Use in Performance Monitoring and Sport Science. New Stud. Athl. 2014, 29, 25–37. [Google Scholar]
- Smith, L.; Jones, P. The influence of common testing floor surfaces on force plate data: Implications for standardisation. bioRxiv 2025. [Google Scholar] [CrossRef]
- Hori, N.; Newton, R.U.; Kawamori, N.; McGuigan, M.; Kraemer, W.J.; Nosaka, K. Reliability of Performance Measurements Derived from Ground Reaction Force Data During Countermovement Jump and the Influence of Sampling Frequency. J. Strength Cond. Res. 2009, 23, 874–882. [Google Scholar] [CrossRef]
- Ives, J.C.; Wigglesworth, J.K. Sampling rate effects on surface EMG timing and amplitude measures. Clin. Biomech. 2003, 18, 543–552. [Google Scholar] [CrossRef]
- Nyquist, H. Certain topics in telegraph transmission theory. Trans. Am. Inst. Electr. Eng. 1928, 47, 617–644. [Google Scholar] [CrossRef]
- Street, G.; McMillan, S.; Board, W.; Rasmussen, M.; Heneghan, M.J. Sources of Error in Determining Countermovement Jump Height with the Impulse Method. J. Appl. Biomech. 2001, 17, 43–54. [Google Scholar] [CrossRef]
- Owen, N.; Watkins, J.; Kilduff, L.; Bevan, H.; Bennett, M. Development of a criterion method to determine peak mechanical power output in a countermovement jump. J. Strength Cond. Res. 2014, 28, 1552–1558. [Google Scholar] [CrossRef] [PubMed]
- Crenna, F.; Rossi, G.B.; Berardengo, M. Filtering Biomechanical Signals in Movement Analysis. Sensors 2021, 21, 4580. [Google Scholar] [CrossRef]
- Dos’Santos, T.; Lake, J.; Jones, P.A.; Comfort, P. Effect of Low-Pass Filtering on Isometric Midthigh Pull Kinetics. J. Strength Cond. Res. 2018, 32, 983–989. [Google Scholar] [CrossRef] [PubMed]
- Ladlow, P.; Suffield, C.; Greeves, J.P.; Comfort, P.; Hughes, J.; Cassidy, R.P.; Bennett, A.N.; Coppack, R.J. How ‘STRONG’ is the British Army? BMJ Mil. Health 2024, 170, 283–286. [Google Scholar] [CrossRef] [PubMed]


| Construct validity of isometric hamstring and plantar flexor strength assessments with a comparison to gold standard assessments (i.e., isokinetic dynamometry). |
| Effect of specific cueing on maximal or rapid force and the orientation of force production in isometric hamstring and plantar flexor assessments. |
| Relationship between isometric hamstring and plantar strength assessments and performance (e.g., sprint, jump, and sport performance). |
| Sensitivity of measurements of isometric hamstrings and plantar flexor assessments in monitoring acute fatigue and tracking longitudinal changes in force-generating characteristics. |
| Return to play or performance assessment criteria for lower limb injuries (e.g., hamstring or ACL) using isometric hamstring and plantar flexor assessments (i.e., phase progression thresholds). |
| Normative data for isometric hamstring and plantar assessments across populations (e.g., sport, general population, and tactical populations). |
| Prospective and retrospective assessment of lower limb injuries with consideration of isometric hamstring and plantar flexor strength or asymmetry (e.g., whether low isometric hamstring strength is related to future or previous hamstring injuries). |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ripley, N.; Fahey, J.; Williams, J.; Smith, L.; Ross, S.; Bramah, C.; Comfort, P. Standardization and Utilization of Lower Limb Single Joint Isometric Force Plate Assessments and Recommendations for Future Research. Standards 2025, 5, 30. https://doi.org/10.3390/standards5040030
Ripley N, Fahey J, Williams J, Smith L, Ross S, Bramah C, Comfort P. Standardization and Utilization of Lower Limb Single Joint Isometric Force Plate Assessments and Recommendations for Future Research. Standards. 2025; 5(4):30. https://doi.org/10.3390/standards5040030
Chicago/Turabian StyleRipley, Nicholas, Jack Fahey, James Williams, Laura Smith, Steven Ross, Christopher Bramah, and Paul Comfort. 2025. "Standardization and Utilization of Lower Limb Single Joint Isometric Force Plate Assessments and Recommendations for Future Research" Standards 5, no. 4: 30. https://doi.org/10.3390/standards5040030
APA StyleRipley, N., Fahey, J., Williams, J., Smith, L., Ross, S., Bramah, C., & Comfort, P. (2025). Standardization and Utilization of Lower Limb Single Joint Isometric Force Plate Assessments and Recommendations for Future Research. Standards, 5(4), 30. https://doi.org/10.3390/standards5040030

