Medicinal Herbs Used in Traditional Management of Breast Cancer: Mechanisms of Action
Abstract
:1. Introduction
2. Ginseng
2.1. Different Types of Ginseng and its Preparation
2.2. The in Vitro Anti-Tumor Effects of the Bioactve Compounds of Ginseng
2.3. Effects of Ginseng in Combination with Anti-Cancer Drugs
2.4. Clinical Studies with Ginseng
3. Garlic (Allium Sativum)
3.1. The Bioactive Compounds of Garlic
3.2. In Vitro and in Vivo Studies of the Active Compounds of Ginseng and Their Anti-Cancer Effect
3.3. Clinical Studies with Garlic
4. Black Cohosh (Cimicifuga racemosa)
4.1. The Bioactive Compounds of Black Cohosh
4.2. Clinical Studies with Black Cohosh
5. Tumeric (Curcuma longa)
5.1. The Bioactive Compounds of Curcumin Longa
5.2. In Vitro Studies of the Anti-Cancer Effects of Curcumin
5.3. Effects of Curcumin in Combination with Anti-Cancer Drugs
6. Camellia Sinenis (Green Tea)
6.1. The Bioactive Compounds of Green Tea
6.2. In Vivo and Clinical Studies of the Anti-Cancer Effects of Green Tea
6.3. Effects of Epigallocatechin-3-Gallate in Combination with Anti-Cancer Drugs
7. Echinacea
7.1. Species of Echinacea and Their Bioactive Compounds
7.2. In Vitro and Clinical Studies of Echinacea and Drug-Herbal Interaction
8. Arctium (Burdock)
8.1. The Bioactive Compounds of Burdock
8.2. In Vitro Studies of the Antitumor Activities of Arctium Lappa
8.3. Effects of Arctium Lappa in Combination with Anti-Cancer Drugs
9. Flaxseed (Linum usitatissimum)
9.1. The Bioactive Compounds of Flaxseed
9.2. Experimental In Vitro Studies of the Antitumor Activities of Flaxseed
9.3. Effects of Flaxseed in Combination with Anti-Cancer Drugs
9.4. Clinical Studies of the Anti-Cancer Effects of Flaxseed
10. Black Cumin (Nigella sativa)
10.1. The Bioactive Compounds of Nigella sativa
10.2. Thymoquinone’s Anti-Cancer Effects In Vitro and In Vivo Animal Models
10.3. Pharmacokinetic Characteristics of Thymoquinone and Its Combination with Other Chemotherapeutic Drugs
10.4. Clinical Studies Using Thymoquinone and Nigella sativa
11. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lundqvist, A.; Andersson, E.; Ahlberg, I.; Nilbert, M.; Gerdtham, U. Socioeconomic inequalities in breast cancer incidence and mortality in Europe-a systematic review and meta-analysis. Eur. J. Public Health 2016, 26, 804–813. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azamjah, N.; Soltan-Zadeh, Y.; Zayeri, F. Global trend of breast cancer mortality rate: A 25-year study. Asian Pac. J. Cancer Prev. 2019, 20, 2015–2020. [Google Scholar] [CrossRef] [PubMed]
- Hashmi, A.A.; Hashmi, K.A.; Irfan, M.; Khan, S.M.; Edhi, M.M.; Ali, J.P.; Hashmi, S.K.; Asif, H.; Faridi, N.; Khan, A. Ki67 index in intrinsic breast cancer subtypes and its association with prognostic parameters. BMC Res. Notes 2019, 12, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Ribnikar, D.; Ribeiro, J.M.; Pinto, D.; Sousa, B.; Pinto, A.C.; Gomes, E.; Moser, E.C.; Cardoso, M.J.; Cardoso, F. Breast cancer under age 40: A different approach. Curr. Treat. Options Oncol. 2015, 16, 16. [Google Scholar] [CrossRef] [PubMed]
- Maughan, K.L.; Lutterbie, M.A.; Ham, P.S. Treatment of breast cancer. Am. Fam. Physician. 2010, 81, 1339–1346. [Google Scholar] [PubMed]
- De la Mare, J.A.; Contu, L.; Hunter, M.C.; Moyo, B.; Sterrenberg, J.N.; Dhanani, K.C.H.; Mutsvunguma, L.Z.; Edkins, L.A. Breast cancer: Current developments in molecular approaches to diagnosis and treatment. Recent Pat. Anticancer Drug Discov. 2014, 9, 153–175. [Google Scholar] [CrossRef]
- Peart, O. Breast intervention and breast cancer treatment options. Radiol. Technol. 2015, 86, 535–562. [Google Scholar]
- Prat, A.; Pineda, E.; Adamo, B.; Galván, P.; Fernández, A.; Gaba, L.; Díez, M.; Viladot, M.; Arance, A.; Muñoz, M. Clinical implications of the intrinsic molecular subtypes of breast cancer. Breast 2015, 24, S26–S35. [Google Scholar] [CrossRef] [Green Version]
- Wörmann, B. Breast cancer: Basics, screening, diagnostics and treatment. Grundlagen, Früherkennung, Diagnostik und Therapie. Med. Monatsschr. Pharm. 2017, 40, 55–64. [Google Scholar]
- Bonofiglio, D.; Giordano, C.; De Amicis, F.; Lanzino, M.; Andò, S. Natural products as promising anti-tumoral agents in breast cancer: Mechanisms of action and molecular targets. Mini Rev. Med. Chem. 2016, 16, 596–604. [Google Scholar] [CrossRef]
- Kumar, A.; Jaitak, V. Natural products as multidrug resistance modulators in cancer. Eur. J. Med. Chem. 2019, 176, 268–291. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, C.; Baskaran, K.; Pupulin, A.; Ruvinov, I.; Zaitoon, O.; Grewal, S.; Scaria, B.; Mehaidli, A.; Vegh, C.; Pandey, S. Hibiscus flower extract selectively induces apoptosis in breast cancer cells and positively interacts with common chemotherapeutics. BMC Complement. Altern. Med. 2019, 19, 1–4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baraya, Y.S.; Wong, K.K.; Yaacob, N.S. The Immunomodulatory potential of selected bioactive plant-based compounds in breast cancer: A review. Anticancer Agents Med. Chem. 2017, 17, 770–783. [Google Scholar] [CrossRef] [PubMed]
- Křížová, L.; Dadáková, K.; Kašparovská, J.; Kašparovský, T. Isoflavones. Molecules 2019, 24, 1076. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dietz, B.M.; Hajirahimkhan, A.; Dunlap, T.L.; Bolton, J.L. Botanicals and their bioactive phytochemicals for women’s health. Pharmacol. Rev. 2016, 68, 1026–1073. [Google Scholar] [CrossRef]
- Bak, M.J.; Das Gupta, S.; Wahler, J.; Suh, N. Role of dietary bioactive natural products in estrogen receptor-positive breast cancer. Semin. Cancer Biol. 2016, 40, 170–191. [Google Scholar] [CrossRef] [Green Version]
- Popovich, D.G.; Yeo, C.R.; Zhang, W. Ginsenosides derived from Asian (Panax ginseng), American ginseng (Panax quinquefolius) and potential cytoactivity. Int. J. Biomed. Pharm. Sci. 2012, 6, 56–62. [Google Scholar]
- Yang, L.; Yu, Q.T.; Ge, Y.Z.; Zhang, W.S.; Fan, Y.; Ma, C.W.; Liu, Q.; Qi, L.W. Distinct urine metabolome after Asian ginseng and American ginseng intervention based on GC-MS metabolomics approach. Sci. Rep. 2018, 6, 39045. [Google Scholar] [CrossRef] [Green Version]
- Lü, J.; Yao, Q.; Chen, C. Ginseng compounds: An update on their molecular mechanisms and medical applications. Curr. Vasc. Pharmacol. 2009, 7, 293–302. [Google Scholar] [CrossRef] [Green Version]
- Chang, Y.S.; Seo, E.; Gyllenhaal, C.; Block, K.I. Panax ginseng: A role in cancer therapy? Integr. Cancer Ther. 2003, 2, 13–33. [Google Scholar] [CrossRef]
- Park, J.D. Recent studies on the chemical constituents of Korean Ginseng (Panaxginseng C.A. Meyer). Korea J. Ginseng Sci. 1996, 20, 389–415. [Google Scholar]
- Yokozawa, T.; Kobayashi, T.; Oura, H.; Kawashima, Y. Studies on the mechanism of the hypoglycemic activity of ginsenoside-Rb2 in streptozotocin-diabetic rats. Chem. Pharm. Bull. 1985, 33, 869–872. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xue, J.F.; Liu, Z.J.; Hu, J.F.; Chen, H.; Zhang, J.T.; Chen, N.H. Ginsenoside Rb1 promotes neurotransmitter release by modulating phosphorylation of synapsins through a cAMP-dependent protein kinase pathway. Brain Res. 2006, 1106, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.C.; Zhou, Y.C.; Chen, Y.; Zhu, Y.G.; Fang, F.; Chen, L.M. Ginsenoside Rg1 reduces MPTP induced substantia nigra neuron loss by suppressing oxidative stress. Acta Pharmacol. Sin. 2005, 26, 56–62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harkey, M.R.; Henderson, G.L.; Gershwin, M.E.; Stern, J.S.; Hackman, R.M. Variability in commercial ginseng products: An analysis of 25 preparations. Am. J. Clin. Nutr. 2001, 73, 1101–1106. [Google Scholar] [CrossRef]
- Mizuno, M.; Yamada, J.; Terai, H.; Kozukue, N.; Lee, Y.S.; Tsuchida, H. Differences in immune-modulating effects between wild and cultured Panax ginseng. Biochem. Biophys. Res. Commun. 1994, 200, 1672–1678. [Google Scholar] [CrossRef]
- Nag, S.A.; Nag, J.J.; Qin, W.; Wang, M.H.; Wang, H.; Zhang, R. Ginsenosides as anticancer agents: In vitro and in vivo activities, structure-activity relationships, and molecular mechanisms of action. Front. Pharmacol. 2012, 3, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Riaz, M.; Rahman, N.; Zia-Ul-Haq, M.; Jaffar, H.; Manea, R. Ginseng: A dietary supplement as immune-modulator in various diseases. Trends Food Sci. Technol. 2019, 83, 12–30. [Google Scholar] [CrossRef]
- Chen, X.J.; Zhang, X.J.; Shui, Y.M.; Wan, J.B.; Ga, J.L. Anticancer activities of Protopanaxadiol- and Protopanaxatriol-Type Ginsenosides and their metabolites. Evid. Based Complement. Altern. Med. 2016, 2016, 5738694. [Google Scholar]
- Lee, H.; Lee, S.; Jeong, D.; Kim, S.J. Ginsenoside Rh2 epigenetically regulates cell-mediated immune pathway to inhibit proliferation of MCF-7 breast cancer cells. J. Ginseng Res. 2018, 42, 455–462. [Google Scholar] [CrossRef]
- Jeong, D.; Ham, J.; Park, S.; Kim, H.W.; Kim, H.; Ji, H.W.; Kim, S.J. Ginsenoside Rh2 suppresses breast cancer cell proliferation by epigenetically regulating the long noncoding RNA C3orf67-AS1. J. Ginseng Res. 2018, 42, 455–462. [Google Scholar] [CrossRef]
- Choi, S.; Kim, T.W.; Singh, S.V. Ginsenoside Rh2-mediated G1 phase cell cycle arrest in human breast cancer cells is caused by p15 Ink4B and p27 Kip1-dependent inhibition of cyclin-dependent kinases. Pharm. Res. 2009, 26, 2280–2288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oh, M.; Choi, Y.H.; Choi, S.; Chung, H.; Kim, K.; Kim, D.K.; Kim, N.D. Anti-proliferating effects of ginsenoside Rh2 on MCF-7 human breast cancer cells. Int. J. Oncol. 1999, 14, 869–875. [Google Scholar] [CrossRef] [PubMed]
- Bi, W.Y.; Fu, B.D.; Shen, H.Q.; Wei, Q.; Zhang, C.; Song, Z.; Qin, Q.Q.; Li, H.P.; Lv, S.; Wu, S.C. Sulfated derivative of 20(S)-ginsenoside Rh2 inhibits inflammatory cytokines through MAPKs and NF-kappa B pathways in LPS-induced RAW264.7 macrophages. Inflammation 2012, 35, 1659–1668. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Lu, M.; Zhou, F.; Sun, H.; Hao, G.; Wu, X.; Wang, G. Key role of nuclear factor-kappaB in the cellular pharmacokinetics of adriamycin in MCF-7/Adr cells: The potential mechanism for synergy with 20(S)-ginsenoside Rh2. Drug Metab. Dispos. 2012, 40, 1900–1908. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, C.-Z.; Aung, H.H.; Zhang, B.; Sun, S.; Li, X.-L.; He, H.; Xie, J.-T.; He, T.-C.; Du, W.; Yuan, C.-S. Chemo-preventive effects of heat-processed Panax quinquefolius root on human breast cancer cells. Anticancer Res. 2008, 28, 2545–2551. [Google Scholar]
- Sujatha, P.; Anantharaju, P.G.; Veeresh, P.M.; Dey, S.; Bovilla, V.R.; Madhunapantula, S.R.V. Diallyl disulfide (DADS) retards the growth of breast cancer cells in vitro and in vivo through apoptosis induction. Biomed. Pharmacol. J. 2017, 10, 1619–1630. [Google Scholar]
- Liu, Q.; Loo, W.T.; Sze, S.C.; Tong, Y. Curcumin inhibits cell proliferation of MDA-MB-231 and BT-483 breast cancer cells mediated by down-regulation of NFkappaB, cyclin D and MMP-1 transcription. Phytomedicine 2009, 16, 916–922. [Google Scholar] [CrossRef] [Green Version]
- Prasad, C.P.; Rath, G.; Mathur, S.; Bhatnagar, D.; Ralhan, R. Potent growth suppressive activity of curcumin in human breast cancer cells: Modulation of Wnt/β-catenin signaling. Chem. Biol. Interact. 2009, 181, 263–271. [Google Scholar] [CrossRef]
- Driggins, S.N.; Myles, E.L.; Gary, T. The anti-prolific effect of Echinacea Pallida on BT-549 cancer cell line. Cancer Res. 2004, 45, 1010. [Google Scholar]
- Hsieh, C.; Kuo, P.; Hsu, Y.; Huang, Y.; Tsai, E.; Hsu, Y. Arctigenin, a dietary phytoestrogen, induces apoptosis of estrogen receptor-negative breast cancer cells through the ROS/p38 MAPK pathway and epigenetic regulation. Free Radic. Biol. Med. 2014, 67, 159–170. [Google Scholar] [CrossRef] [PubMed]
- Maxwell, T.; Chun, S.Y.; Lee, K.S.; Kim, S.; Nam, K.S. The anti-metastatic effects of the phytoestrogen arctigenin on human breast cancer cell lines regardless of the status of ER expression. Int. J. Oncol. 2017, 50, 727–735. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J.; Saggar, J.K.; Corey, P.; Thompson, L.U. Flaxseed and pure secoisolariciresinol diglucoside, but not flaxseed hull, reduce human breast tumor growth (MCF-7) in athymic mice. J. Nutr. 2009, 139, 2061–2066. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rajput, S.; Kumar, B.N.; Dey, K.K.; Pal, I.; Parekh, A.; Mandal, M. Molecular targeting of Akt by thymoquinone promotes G(1) arrest through translation inhibition of cyclin D1 and induces apoptosis in breast cancer cells. Life Sci. 2013, 93, 783–790. [Google Scholar] [CrossRef] [PubMed]
- Dastjerdi, M.N.; Mehdiabady, E.M.; Iranpour, F.G.; Bahramian, H. Effect of thymoquinone on P53 gene expression and consequence apoptosis in breast cancer cell line. Int. J. Prev. Med. 2016, 7, 66. [Google Scholar] [CrossRef] [PubMed]
- Shanmugam, M.K.; Ahn, K.S.; Hsu, A.; Woo, C.C.; Yuan, Y.; Tan, K.H.B.; Chinnathambi, A.; Alahmadi, T.A.; Alharbi, S.A.; Koh, A.P.F.; et al. Thymoquinone inhibits bone metastasis of breast cancer cells through abrogation of the CXCR4 signaling axis. Front Pharmacol. 2018, 9, 1294. [Google Scholar] [CrossRef] [PubMed]
- Ham, J.; Lee, S.; Lee, H.; Jeong, D.; Park, S.; Kim, S.J. Genome-wide methylation analysis identifies NOX4 and KDM5A as key regulators in inhibiting breast cancer cell proliferation by Ginsenoside Rg3. Am. J. Chin. Med. 2018, 46, 1333–1355. [Google Scholar] [CrossRef]
- Zou, M.; Wang, J.; Gao, J.; Han, H.; Fang, Y. Phosphoproteomic analysis of the antitumor effects of ginsenoside Rg3 in human breast cancer cells. Oncol. Lett. 2018, 15, 2889–2898. [Google Scholar] [CrossRef] [Green Version]
- Kim, B.M.; Kim, D.H.; Park, J.H.; Na, H.K.; Surh, Y.J. Ginsenoside Rg3 induces apoptosis of human breast cancer (MDA-MB-231) cells. J. Cancer Prev. 2013, 18, 177–185. [Google Scholar] [CrossRef] [Green Version]
- Kim, B.M.; Kim, D.H.; Park, J.H.; Surh, Y.J.; Na, H.K. Ginsenoside Rg3 inhibits constitutive activation of NF-κB signaling in human breast cancer (MDA-MB-231) cells: ERK and Akt as potential upstream Targets. J. Cancer Prev. 2014, 19, 23–30. [Google Scholar] [CrossRef]
- Tang, H.; Ren, Y.; Zhang, J.; Ma, S.; Gao, F.; Wu, Y. Correlation of insulin-like growth factor-1 (IGF-1) to angiogenesis of breast cancer in IGF-1-deficient mice. Ai Zheng Aizheng Chin. J. Cancer 2007, 26, 1215–1220. [Google Scholar]
- Chen, X.; Qian, L.; Jiang, H.; Chen, J.H. Ginsenoside Rg3 inhibits CXCR4 expression and related migrations in a breast cancer cell line. Int. J. Clin. Oncol. 2011, 16, 519–523. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, D.; Zhao, J. The role of chemokine receptor CXCR4 in breast cancer metastasis. Am. J. Cancer Res. 2013, 3, 46–57. [Google Scholar] [PubMed]
- Yang, L.Q.; Wang, B.; Gan, H.; Fu, S.T.; Zhu, X.X.; Wu, Z.N.; Zhan, D.W.; Gu, R.L.; Dou, G.F.; Meng, Z.Y. Enhanced oral bioavailability and anti-tumour effect of paclitaxel by 20 (s)-ginsenoside Rg3 in vivo. Biopharm. Drug Dispos. 2012, 33, 425–436. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Kang, X.; Yang, B.; Wang, J.; Yang, F. Antiangiogenic effect of capecitabine combined with ginsenoside Rg3 on breast cancer in mice. Cancer Biother. Radiopharm. 2008, 23, 647–654. [Google Scholar] [CrossRef]
- Hernández Muñoz, G.; Pluchino, S. Cimicifuga racemosa for the treatment of hot flushes in women surviving breast cancer. Maturitas 2003, 44, 59–65. [Google Scholar] [CrossRef]
- Quispe-Soto, E.T.; Calaf, G.M. Effect of curcumin and paclitaxel on breast carcinogenesis. Int. J. Oncol. 2016, 49, 2569–2577. [Google Scholar] [CrossRef]
- Vinod, B.S.; Antony, J.; Nair, H.H.; Puliyappadamba, V.T.; Saikia, M.; Narayanan, S.S.; Bevin, A.; Anto, R.J. Mechanistic evaluation of the signaling events regulating curcumin-mediated chemo-sensitization of breast cancer cells to 5-fluorouracil. Cell Death Dis. 2013, 4, e505. [Google Scholar] [CrossRef] [Green Version]
- Schroeder, E.K.; Kelsey, N.A.; Doyle, J.; Breed, E.; Bouchard, R.J.; Loucks, F.A.; Harbison, R.A.; Linseman, D.A. Green tea epigallocatechin 3-gallate accumulates in mitochondria and displays a selective anti-apoptotic effect against inducers of mitochondrial oxidative stress in neurons. Antioxid. Redox Signal. 2009, 11, 469–480. [Google Scholar] [CrossRef]
- Goey, A.K.L.; Meijerman, I.; Rosing, H.; Burgers, J.A.; Mergui-Roelvink, M.; Keessen, M.; Marchetti, S.; Beijnen, J.H.; Schellens, J.H.M. The effect of Echinacea purpurea on the pharmacokinetics of docetaxel. Br. J. Clin. Pharmacol. 2013, 76, 467–474. [Google Scholar] [CrossRef] [Green Version]
- Ghafari, F.; Rajabi, M.R.; Mazoochi, T.; Taghizadeh, M.; Nikzad, H.; Atlasi, M.A.; Taherian, A. Comparing apoptosis and necrosis effects of Arctium Lappa root extract and doxorubicin on MCF7 and MDA-MB-231 cell lines. Asian Pac. J. Cancer Prev. 2017, 18, 795–802. [Google Scholar] [PubMed]
- Chen, J.; Hui, E.; Ip, T.; Thompson, L.U. Dietary flaxseed enhances the inhibitory effect of tamoxifen on the growth of estrogen-dependent human breast cancer (mcf-7) in nude mice. Clin. Cancer Res. 2004, 10, 7703–7711. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mason, J.K.; Fu, M.; Chen, J.; Thompson, L.U. Flaxseed oil enhances the effectiveness of trastuzumab in reducing the growth of HER2-overexpressing human breast tumors (BT-474). J. Nutr. Biochem. 2015, 26, 16–23. [Google Scholar] [CrossRef] [PubMed]
- Ganji-Harsini, S.; Khazaei, M.; Rashidi, Z.; Ghanbari, A. Thymoquinone could increase the efficacy of tamoxifen induced apoptosis in human breast cancer cells: An in vitro study. Cell J. 2016, 18, 245–254. [Google Scholar]
- Arafa, E.A.; Zhu, Q.; Shah, Z.I.; Wani, G.; Barakat, B.M.; Racoma, I.; El-Mahdy, M.A.; Wani, A.A. Thymoquinone up-regulates PTEN expression and induces apoptosis in doxorubicin-resistant human breast cancer cells. Mutat. Res. 2011, 706, 28–35. [Google Scholar] [CrossRef] [Green Version]
- Bashmail, H.A.; Alamoudi, A.A.; Noorwali, A.; Hegazy, G.A.; Ajabnoor, G.M.; Al-Abd, A.M. Thymoquinone enhances paclitaxel anti-breast cancer activity via inhibiting tumor-associated stem cells despite apparent mathematical antagonism. Molecules 2020, 25, 426. [Google Scholar] [CrossRef] [Green Version]
- Khan, A.; Aldebasi, Y.H.; Alsuhaibani, S.A.; Khan, M.A. Thymoquinone augments cyclophosphamide-mediated inhibition of cell proliferation in breast cancer cells. Asian Pac. J. Cancer Prev. 2019, 20, 1153–1160. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Wang, Z.; Huang, Y.; O’Barr, S.A.; Wong, R.A.; Yeung, S.; Chow, M.S. Ginseng and anticancer drug combination to improve cancer chemotherapy: A critical review. Evid. Based Complement. Altern. Med. 2014, 2014, 168940. [Google Scholar] [CrossRef]
- Cui, Y.; Shu, X.O.; Gao, Y.T.; Cai, H.; Tao, M.H.; Zheng, W. Association of ginseng use with survival and quality of life among breast cancer patients. Am. J. Epidemiol. 2006, 163, 645–653. [Google Scholar] [CrossRef]
- Bao, P.P.; Lu, W.; Cui, Y.; Zheng, Y.; Gu, K.; Chen, Z.; Zheng, W.; Shu, X.O. Ginseng and Ganoderma lucidum use after breast cancer diagnosis and quality of life: A report from the Shanghai Breast Cancer Survival Study. PLoS ONE 2012, 7, e39343. [Google Scholar] [CrossRef] [Green Version]
- Block, E. Garlic and Other Alliums: The Lore and the Science; Royal Society of Chemistry: London, UK, 2010. [Google Scholar]
- Amagase, H. Clarifying the real bioactive constituents of garlic. J. Nutr. 2006, 136, 716S–725S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kourounakis, P.N.; Rekka, E.A. Effect on active oxygen species of alliin and Allium sativum (garlic) powder. Res. Commun. Chem. Pathol. Pharmacol. 1991, 74, 249–252. [Google Scholar] [PubMed]
- Gorinstein, S.; Drzewiecki, J.; Leontowicz, H.; Leontowicz, M.; Najman, K.; Jastrzebski, Z.; Zachwieja, Z.; Barton, H.; Shtabsky, B.; Katrich, E.; et al. Comparison of the bioactive compounds and antioxidant potentials of fresh and cooked Polish, Ukrainian, and Israeli garlic. J. Agric. Food Chem. 2005, 53, 2726–2732. [Google Scholar] [CrossRef] [PubMed]
- Thomson, M.; Ali, M. Garlic allium sativum: A review of its potential use as an anti-cancer agent. Curr. Cancer Drug Targets 2003, 3, 67–81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dahanukar, S.A.; Thatte, U.M. Current status of ayurveda in phytomedicine. Phytomedicine 1997, 4, 359–368. [Google Scholar] [CrossRef]
- Milner, J.A. Garlic: Its anti-carcinogenic and anti-tumorigenic properties. Nutr. Rev. 1996, 54, S82–S86. [Google Scholar] [CrossRef]
- Knowles, L.M.; Milner, J.A. Possible mechanism by which allyl sulfides suppress neoplastic cell proliferation. J. Nutr. 2001, 131, 1061S–1066S. [Google Scholar] [CrossRef] [Green Version]
- Bayan, L.; Koulivand, P.H.; Gorji, A. Garlic: A review of potential therapeutic effects. Avicenna J. Phytomed. 2014, 4, 1–14. [Google Scholar]
- Omar, S.H.; Al-Wabel, N.A. Organosulfur compounds and possible mechanism of garlic in cancer. Saudi Pharm. J. 2010, 18, 51–58. [Google Scholar] [CrossRef] [Green Version]
- Tsubura, A.; Lai, Y.C.; Kuwata, M.; Uehara, N.; Yoshizawa, K. Anticancer effects of garlic and garlic-derived compounds for breast cancer control. Anticancer Agents Med. Chem. 2011, 11, 249–253. [Google Scholar] [CrossRef]
- Modem, S.; Dicarlo, S.E.; Reddy, T.R. Fresh garlic extract induces growth arrest and morphological differentiation of MCF7 breast cancer cells. Genes Cancer 2012, 3, 177–186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghazanfari, T.; Yaraee, R.; Rahmati, B.; Hakimzadeh, H.; Shams, J.; Jalali-Nadoushan, M.R. In vitro cytotoxic effect of garlic extract on malignant and nonmalignant cell lines. Immunopharmacol. Immunotoxicol. 2011, 33, 603–608. [Google Scholar] [CrossRef] [PubMed]
- Bagul, M.; Kakumanu, S.; Wilson, T.A. Crude garlic extract inhibits cell proliferation and induces cell cycle arrest and apoptosis of cancer cells in vitro. J. Med. Food 2015, 18, 731–737. [Google Scholar] [CrossRef] [PubMed]
- Hirsch, K.; Danilenko, M.; Giat, J.; Miron, T.; Rabinkov, A.; Wilchek, M.; Mirelman, J.; Levy, J.; Sharoni, Y. Effect of purified allicin, the major ingredient of freshly crushed garlic, on cancer cell proliferation. Nutr Cancer 2000, 38, 245–254. [Google Scholar] [CrossRef] [PubMed]
- Malki, A.; El-Saadani, M.; Sultan, A.S. Garlic constituent diallyl trisulfide induced apoptosis in MCF7 human breast cancer cells. Cancer Biol. Ther. 2009, 8, 2175–2185. [Google Scholar] [CrossRef] [Green Version]
- Fleischauer, A.T.; Arab, L. Garlic and cancer: A critical review of the epidemiologic literature. J. Nutr. 2001, 131, 1032S–1040S. [Google Scholar] [CrossRef] [Green Version]
- Alizadeh-Navaei, R.; Shamshirian, A.; Hedayatizadeh-Omran, A.; Ghadimi, R.; Janbabai, G. Effect of garlic in gastric cancer prognosis: A systematic review and meta-analysis. World Cancer Res. J. 2018, 5, e1184. [Google Scholar]
- Desai, G.; Schelske-Santos, M.; Nazario, C.M.; Rosario-Rosado, R.V.; Mansilla-Rivera, I.; Ramírez-Marrero, F.; Nie, J.; Myneni, A.A.; Zhang, Z.F.; Freudenheim, J.L.; et al. Onion and garlic intake and breast cancer, a case-control study in Puerto Rico. Nutr. Cancer. 2019, 12, 1–10. [Google Scholar] [CrossRef]
- Challier, B.; Perarnau, J.M.; Viel, J.F. Garlic, onion and cereal fibre as protective factors for breast cancer: A French case-control study. Eur. J. Epidemiol. 1998, 14, 737–747. [Google Scholar] [CrossRef]
- Galeone, C.; Pelucchi, C.; Levi, F.; Negri, E.; Franceschi, S.; Talamini, R.; Giacosa, A.; La Vecchia, C. Onion and garlic use and human cancer. Am. J. Clin. Nutr. 2006, 84, 1027–1032. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.Y.; Kwon, O. Garlic intake and cancer risk: An analysis using the Food and Drug Administration’s evidence-based review system for the scientific evaluation of health claims. Am. J. Clin. Nutr. 2009, 89, 257–264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, M.; Holman, C.D.; Huang, J.P.; Xie, X. Green tea and the prevention of breast cancer: A case-control study in Southeast China. Carcinogenesis 2007, 28, 1074–1788. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakachi, K.; Suemasu, K.; Suga, K.; Takeo, T.; Imai, K.; Higashi, Y. Influence of drinking green tea on breast cancer malignancy among Japanese patients. Jpn. J. Cancer Res. Gann 1998, 89, 254–261. [Google Scholar] [CrossRef] [PubMed]
- Lowcock, E.C.; Cotterchio, M.; Boucher, B.A. Consumption of flaxseed, a rich source of lignans, is associated with reduced breast cancer risk. Cancer Causes Control 2013, 24, 813–816. [Google Scholar] [CrossRef]
- Thompson, L.U.; Chen, J.M.; Li, T.; Strasser-Weippl, K.; Goss, P.E. Dietary flaxseeds alters tumor biological markers in postmenopausal breast cancer. Clin. Cancer Res. 2005, 11, 3828–3835. [Google Scholar] [CrossRef] [Green Version]
- Rafati, M.; Ghasemi, A.; Saeedi, M.; Habibi, E.; Salehifar, E.; Mosazadeh, M.; Maham, M. Nigella sativa L. for prevention of acute radiation dermatitis in breast cancer: A randomized, double-blind, placebo-controlled, clinical trial. Complement. Ther. Med. 2019, 47, 102205. [Google Scholar] [CrossRef]
- Predny, M.L.; De Angelis, P.; Chamberlain, J.L. Black Cohosh (Actaea racemosa): An Annotated Bibliography; General Technical Report SRS-97; Department of Agriculture Forest Service, Southern Research Station: Asheville, NC, USA, 2006; p. 99.
- Chen, S.N.; Li, W.K.; Fabricant, D.S.; Santarsiero, B.D.; Mesecar, A.; Fitzloff, J.F.; Fong, H.S.; Farnsworth, N.R. Isolation, structure elucidation, and absolute configuration of 26-deoxyactein from Cimicifuga racemosa and clarification of nomenclature associated with 27-deoxyactein. J. Nat. Prod. 2002, 65, 601–605. [Google Scholar] [CrossRef]
- Shao, Y.; Harris, A.; Wang, M.; Zhang, H.; Cordell, G.A.; Bowman, M.; Lemmo, E. Triterpene glycosides from Cimicifuga racemosa. J. Nat. Prod. 2000, 63, 905–910. [Google Scholar] [CrossRef]
- Jiang, B.; Kronenberg, F.; Nuntanakorn, P.; Qiu, M.H.; Kennelly, E.J. Evaluation of the botanical authenticity and phytochemical profile of black cohosh products by high-performance liquid chromatography with selected ion monitoring liquid chromatography-mass spectrometry. J. Agric. Food Chem. 2006, 54, 3242–3253. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.N.; Fabricant, D.S.; Lu, Z.Z.; Zhang, H.J.; Fong, H.S.; Farnsworth, N.R. Cimiracemates A-D phenylpropanoid esters from the rhizomes of Cimicifuga racemosa. Phytochemistry 2002, 61, 409–413. [Google Scholar] [CrossRef]
- Jarry, H.; Harnischfeger, G.; Düker, E.M. Studies on the endocrine efficacy of the constituents of Cimicifuga racemosa: 2. In vitro binding of constituents to estrogen receptors. Planta Med. 1985, 51, 316–319. [Google Scholar] [CrossRef] [PubMed]
- Kligler, B. Black cohosh. Am. Fam. Physician 2003, 68, 114–116. [Google Scholar] [PubMed]
- Baber, R.; Hickey, M.; Kwik, M. Therapy for menopausal symptoms during and after treatment for breast cancer: Safety considerations. Drug Saf. 2005, 28, 1085–1100. [Google Scholar] [CrossRef] [PubMed]
- Carroll, D.G. Non-hormonal therapies for hot flashes in menopause. Am. Fam. Physician 2006, 73, 457–464. [Google Scholar]
- Vermes, G.; Banhidy, F.; Acs, N. The effects of Remifemin on subjective symptoms of menopause. Adv. Ther. 2005, 22, 148–154. [Google Scholar] [CrossRef]
- Geller, S.E.; Shulman, L.P.; van Breemen, R.B.; Banuvar, S.; Zhou, Y.; Epstein, G.; Hedayat, S.; Nikolic, D.; Krause, E.C.; Piersen, C.E.; et al. Safety and efficacy of black cohosh and red clover for the management of vasomotor symptoms: A randomized controlled trial. Menopause (New York, N.Y.) 2009, 16, 1156–1166. [Google Scholar] [CrossRef] [Green Version]
- Nuntanakorn, P.; Jiang, B.; Yang, H.; Cervantes-Cervantes, M.; Kronenberg, F.; Kennelly, E.J. Analysis of polyphenolic compounds and radical scavenging activity of four American Actaea species. Phytochem. Anal. 2007, 18, 219–228. [Google Scholar] [CrossRef]
- Wuttke, W.; Seidlová-Wuttke, D. Black cohosh (Cimicifuga racemosa) is a non-estrogenic alternative to hormone replacement therapy. Clin. Phytosci. 2015, 1, 12. [Google Scholar] [CrossRef] [Green Version]
- Hoda, D.; Perez, D.G.; Loprinzi, C.L. Hot flashes in breast cancer survivors. Breast J. 2003, 9, 431–438. [Google Scholar] [CrossRef] [Green Version]
- Ruhlen, R.L.; Sun, G.Y.; Sauter, E.R. Black cohosh: Insights into its mechanism(s) of action. Integr. Med. Insights 2008, 3, 21–32. [Google Scholar] [CrossRef] [Green Version]
- Rostock, M.; Fischer, J.; Mumm, A.; Stammwitz, U.; Saller, R.; Bartsch, H.H. Black cohosh (Cimicifuga racemosa) in tamoxifen-treated breast cancer patients with climacteric complaints—A prospective observational study. Gynecol. Endocrinol. 2011, 27, 844–848. [Google Scholar] [CrossRef] [PubMed]
- Pockaj, B.A.; Loprinzi, C.L.; Sloan, J.A.; Novotny, P.J.; Barton, D.L.; Hagenmaier, A.; Zhang, H.; Lambert, G.H.; Reeser, K.A.; Wisbey, J.A. Pilot evaluation of black cohosh for the treatment of hot flashes in women. Cancer Investig. 2004, 22, 515–521. [Google Scholar] [CrossRef] [PubMed]
- Pockaj, B.A.; Gallagher, J.G.; Loprinzi, C.L.; Stella, P.J.; Barton, D.L.; Sloan, J.A.; Lavasseur, B.I.; Rao, R.M.; Fitch, T.R.; Rowland, K.M.; et al. Phase III double-blind, randomized, placebo-controlled crossover trial of black cohosh in the management of hot flashes: NCCTG Trial N01CC1. J. Clin. Oncol. 2006, 24, 2836–2841. [Google Scholar] [CrossRef]
- Jacobson, J.S.; Troxel, A.B.; Evans, J.; Klaus, L.; Vahdat, L.; Kinne, D.; Lo, K.M.; Rosenman, E.; Kaufman, A.; Neugut, A.I.; et al. Randomized trial of black cohosh for the treatment of hot flashes among women with a history of breast cancer. J. Clin. Oncol. 2001, 19, 2739–2745. [Google Scholar] [CrossRef] [PubMed]
- Priyadarsini, K.I. The chemistry of curcumin: From extraction to therapeutic agent. Molecules 2014, 19, 20091–20112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amalraj, A.; Pius, A.; Gopi, S.; Gopi, S. Biological activities of curcuminoids, other biomolecules from turmeric and their derivatives—A review. J. Tradit. Complement. Med. 2017, 7, 205–233. [Google Scholar] [CrossRef] [Green Version]
- Krup, V.; Prakash, H.L.; Harini, A. Pharmacological activities of turmeric (Curcuma longa Linn): A review. J. Tradit. Med. Clin. Naturop. 2013, 2, 133. [Google Scholar] [CrossRef]
- Gupta, S.C.; Patchva, S.; Aggarwal, B.B. Therapeutic roles of curcumin: Lessons learned from clinical trials. AAPS J. 2013, 15, 195–218. [Google Scholar] [CrossRef] [Green Version]
- Rai, M.; Pandit, R.; Gaikwad, S.; Yadav, A.; Gade, A. Potential applications of curcumin and curcumin nanoparticles: From traditional therapeutics to modern nanomedicine. Nanotechnol. Rev. 2015, 4, 161–172. [Google Scholar]
- Patel, S.S.; Acharya, A.; Ray, R.S.; Agrawal, R.; Raghuwanshi, R.; Jain, P. Cellular and molecular mechanisms of curcumin in prevention and treatment of disease. Crit. Rev. Food Sci. Nutr. 2020, 60, 887–939. [Google Scholar] [CrossRef]
- Liu, C.; Zhu, L.; Fukuda, K.; Ouyang, S.; Chen, X.; Wang, C.; Zhang, C.J.; Martin, B.; Gu, C.; Qin, L.; et al. The flavonoid cyanidin blocks binding of the cytokine interleukin-17A to the IL-17RA subunit to alleviate inflammation in vivo. Sci. Signal. 2017, 10, eaaf8823. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zong, H.; Wang, F.; Fan, Q.X.; Wang, L.X. Curcumin inhibits metastatic progression of breast cancer cell through suppression of urokinase-type plasminogen activator by NF-kappa B signaling pathways. Mol. Biol. Rep. 2012, 39, 4803–4808. [Google Scholar] [CrossRef] [PubMed]
- Van den Eijnden, M.J.; Strous, J.G. Autocrine growth hormone: Effects on growth hormone receptor trafficking and signaling. Mol. Endocrinol. 2007, 21, 2832–2846. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coker-Gurkan, A.; Bulut, D.; Genc, R.; Arisan, E.D.; Obakan-Yerlikaya, P.; Palavan-Unsal, N. Curcumin prevented human autocrine growth hormone (GH) signaling mediated NF-κB activation and miR-183-96-182 cluster stimulated epithelial mesenchymal transition in T47D breast cancer cells. Mol. Biol. Rep. 2019, 46, 355–369. [Google Scholar] [CrossRef] [PubMed]
- Coker-Gurkan, A.; Celik, M.; Ugur, M.; Arisan, E.D.; Obakan-Yerlikaya, P.; Durdu, Z.B.; Palavan-Unsal, N. Curcumin inhibits autocrine growth hormone-mediated invasion and metastasis by targeting NF-κB signaling and polyamine metabolism in breast cancer cells. Amino Acids 2018, 50, 1045–1069. [Google Scholar] [CrossRef]
- Porta, C.; Paglino, C.; Mosca, A. Targeting PI3K/Akt/mTOR signaling in cancer. Front. Oncol. 2014, 4, 64. [Google Scholar] [CrossRef] [Green Version]
- Guan, F.; Ding, Y.; Zhang, Y.; Zhou, Y.; Li, M.; Wang, C. Curcumin suppresses proliferation and migration of MDA-MB-231 breast cancer cells through autophagy-dependent Akt degradation. PLoS ONE 2016, 11, e0146553. [Google Scholar] [CrossRef] [Green Version]
- Papaliagkas, V.; Anogianaki, A.; Anogianakis, G.; Ilonidis, G. The proteins and the mechanisms of apoptosis: A mini-review of the fundamentals. Hippokratia 2007, 11, 108–113. [Google Scholar]
- Akkoç, Y.; Berrak, Ö.; Arısan, E.D.; Obakan, P.; Çoker-Gürkan, A.; Palavan-Ünsal, N. Inhibition of PI3K signaling triggered apoptotic potential of curcumin which is hindered by Bcl2 through activation of autophagy in MCF-7 cells. Biomed. Pharmacother. 2015, 71, 161–171. [Google Scholar] [CrossRef]
- Lai, H.W.; Chien, S.Y.; Kuo, S.J.; Tseng, L.M.; Lin, H.Y.; Chi, C.W.; Chen, D.R. The potential utility of curcumin in the treatment of HER-2-Overexpressed breast cancer: An in vitro and in vivo comparison study with Herceptin. Evid. Based Complement. Altern. Med. 2012, 2012, 486568. [Google Scholar] [CrossRef] [Green Version]
- Loh, H.Y.; Norman, B.P.; Lai, K.S.; Rahman, N.; Alitheen, N.; Osman, M.A. The regulatory role of MicroRNAs in breast cancer. Int. J. Mol. Sci. 2019, 20, 4940. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Hang, Y.; Liu, J.; Hou, Y.; Wang, N.; Wang, M. Anticancer effect of curcumin inhibits cell growth through miR-21/PTEN/Akt pathway in breast cancer cell. Oncol. Lett. 2017, 13, 4825–4831. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Xie, W.; Xie, C.; Huang, C.; Zhu, J.; Liang, Z.; Deng, F.; Zhu, M.; Zhu, W.; Wu, R.; et al. Curcumin modulates miR-19/PTEN/AKT/p53 axis to suppress bisphenol A-induced MCF-7 breast cancer cell proliferation. Phytother. Res. 2014, 28, 1553–1560. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Cao, Y.; Sun, J.; Zhang, Y. Curcumin reduces the expression of Bcl-2 by upregulating miR-15a and miR-16 in MCF-7 cells. Med. Oncol. 2010, 27, 1114–1118. [Google Scholar] [CrossRef]
- Norouzi, S.; Majeed, M.; Pirro, M.; Generali, D.; Sahebkar, A. Curcumin as an adjunct therapy and microRNA modulator in breast cancer. Curr. Pharm. Des. 2018, 24, 171–177. [Google Scholar] [CrossRef]
- Zhan, Y.; Chen, Y.; Liu, R.; Zhang, H.; Zhang, Y. Potentiation of paclitaxel activity by curcumin in human breast cancer cell by modulating apoptosis and inhibiting EGFR signaling. Arch. Pharm. Res. 2014, 37, 1086–1095. [Google Scholar] [CrossRef]
- Bayet-Robert, M.; Morvan, D. Metabolomics reveals metabolic targets and biphasic responses in breast cancer cells treated by curcumin alone and in association with docetaxel. PLoS ONE 2013, 8, e57971. [Google Scholar] [CrossRef]
- Ponce-Cusi, R.; Ponce-Cusi, R. Apoptotic activity of 5-fluorouracil in breast cancer cells transformed by low doses of ionizing α-particle radiation. Int. J. Oncol. 2016, 48, 774–782. [Google Scholar] [CrossRef] [Green Version]
- Zou, J.; Zhu, L.; Jiang, X.; Wang, Y.; Wang, Y.; Wang, X.; Chen, B. Curcumin increases breast cancer cell sensitivity to cisplatin by decreasing FEN1 expression. Oncotarget 2018, 9, 11268. [Google Scholar] [CrossRef] [Green Version]
- Wen, C.; Fu, L.; Huang, J.; Dai, Y.; Wang, B.; Xu, G.; Wu, L.; Zhou, H. Curcumin reverses doxorubicin resistance via inhibition the efflux function of ABCB4 in doxorubicin-resistant breast cancer cells. Mol. Med. Rep. 2019, 19, 5162–5168. [Google Scholar] [CrossRef] [Green Version]
- Jiang, M.; Huang, O.; Zhang, X.; Xie, Z.; Shen, A.; Liu, H.; Geng, M.; Shen, K. Curcumin induces cell death and restores tamoxifen sensitivity in the antiestrogen-resistant breast cancer cell lines MCF-7/LCC2 and MCF-7/LCC9. Molecules 2013, 18, 701–720. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mock, C.D.; Jordan, B.C.; Selvam, C. Recent advances of curcumin and its analogues in breast cancer prevention and treatment. RSC Adv. 2015, 5, 75575–75588. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nejati-Koshki, K.; Akbarzadeh, A.; Pourhasan-Moghaddam, M.; Abhari, A.; Dariushnejad, H. Inhibition of leptin and leptin receptor gene expression by silibinin-curcumin combination. Asian Pac. J. Cancer Prev. 2014, 14, 6595–6599. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Graham, H.N. Green tea composition, consumption, and polyphenol chemistry. Prev. Med. 1992, 21, 334–350. [Google Scholar] [CrossRef]
- Corcoran, M.P.; McKay, D.L.; Blumberg, J.B. Flavonoid basics: Chemistry, sources, mechanisms of action, and safety. J. Nutr. Gerontol. Geriatr. 2012, 31, 176–189. [Google Scholar] [CrossRef]
- Cabrera, C.; Artacho, R.; Gimenez, R. Beneficial effects of green tea: A review. J. Am. Coll. Nutr. 2006, 25, 79–99. [Google Scholar] [CrossRef]
- Sano, M.; Tabata, M.; Suzuki, M.; Degawa, M.; Miyase, T.; Maeda-Yamamoto, M. Simultaneous determination of twelve tea catechins by high-performance liquid chromatography with electrochemical detection. Analyst 2001, 126, 816–820. [Google Scholar] [CrossRef]
- Fernandez, P.L.; Martin, M.J.; Gonzalez, A.G.; Pablos, F. HPLC determination of catechins and caffeine in tea. Differentiation of green, black and instant teas. Analyst 2000, 125, 421–425. [Google Scholar] [CrossRef]
- Chacko, S.M.; Thambi, P.T.; Kuttan, R.; Nishigaki, I. Beneficial effects of green tea: A literature review. Chin. Med. 2010, 5, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Koo, M.W.; Cho, C.H. Pharmacological effects of green tea on the gastrointestinal system. Eur. J. Pharmacol. 2004, 500, 177–185. [Google Scholar] [CrossRef]
- Zaveri, N.T. Green tea and its polyphenolic catechins: Medicinal uses in cancer and non-cancer applications. Life Sci. 2006, 78, 2073–2080. [Google Scholar] [CrossRef] [PubMed]
- Legeay, S.; Rodier, M.; Fillon, L.; Faure, S.; Clere, N. Epigallocatechin gallate: A review of its beneficial properties to prevent metabolic syndrome. Nutrients 2015, 7, 5443–5468. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, D.; Nichols, H.B.; Troester, M.; Cai, J.; Bensen, J.T.; Sandler, D.P. Tea consumption and breast cancer risk in a cohort of women with family history of breast cancer. Int. J. Cancer 2019, 147, 876–886. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.Y.; Liao, Y.H.; Lin, Y.; Liu, Q.; Xie, X.M.; Tang, L.Y.; Ren, Z.F. Effects of tea consumption and the interactions with lipids on breast cancer survival. Breast Cancer Res. Treat. 2019, 176, 679–686. [Google Scholar] [CrossRef]
- Li, M.; Tse, L.A.; Chan, W.C.; Kwok, C.H.; Leung, S.L.; Wu, C.; Yu, W.C.; Yu, I.T.; Yu, C.H.; Wang, F.; et al. Evaluation of breast cancer risk associated with tea consumption by menopausal and estrogen receptor status among Chinese women in Hong Kong. Cancer Epidemiol. 2016, 40, 73–78. [Google Scholar] [CrossRef]
- Boggs, D.A.; Palmer, J.R.; Stampfer, M.J.; Spiegelman, D.; Adams-Campbell, L.L.; Rosenberg, L. Tea and coffee intake in relation to risk of breast cancer in the Black Women’s Health Study. Cancer Causes Control 2010, 21, 1941–1948. [Google Scholar] [CrossRef] [Green Version]
- Wu, A.H.; Butler, L.M. Green tea and breast cancer. Mol. Nutr. Food Res. 2011, 55, 921–930. [Google Scholar] [CrossRef]
- Gianfredi, V.; Nucci, D.; Abalsamo, A.; Acito, M.; Villarini, M.; Moretti, M.; Realdon, S. Green tea consumption and risk of breast cancer and recurrence—A systematic review and meta-analysis of observational studies. Nutrients 2018, 10, 1886. [Google Scholar] [CrossRef] [Green Version]
- Ogunleye, A.A.; Xue, F.; Michels, K.B. Green tea consumption and breast cancer risk or recurrence: A meta-analysis. Breast Cancer Res. Treat. 2010, 119, 477–484. [Google Scholar] [CrossRef]
- Seely, D.; Mills, E.J.; Wu, P.; Verma, S.; Guyatt, H.H. The effects of green tea consumption on incidence of breast cancer and recurrence of breast cancer: A systematic review and meta-analysis. Integr. Cancer Ther. 2005, 4, 144–155. [Google Scholar] [CrossRef]
- Najafi, N.; Salehi, M.; Ghazanfarpour, M.; Hoseini, Z.S.; Khadem-Rezaiyan, M. The association between green tea consumption and breast cancer risk: A systematic review and meta-analysis. Phytother. Res. 2018, 32, 1855–1864. [Google Scholar] [CrossRef]
- Luo, J.; Gao, Y.T.; Chow, W.H.; Shu, X.O.; Li, H.; Yang, G.; Cai, Q.; Rothman, N.; Cai, H.; Shrubsole, M.J.; et al. Urinary polyphenols and breast cancer risk: Results from the Shanghai Women’s Health Study. Breast Cancer Res. Treat. 2010, 120, 693–702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iwasaki, M.; Inoue, M.; Sasazuki, S.; Miura, T.; Sawada, N.; Yamaji, T.; Shimazu, T.; Willett, W.C.; Tsugane, S. Plasma tea polyphenol levels and subsequent risk of breast cancer among Japanese women: A nested case-control study. Breast Cancer Res. Treat. 2010, 124, 827–834. [Google Scholar] [CrossRef] [PubMed]
- Nazari, S.S.; Mukherjee, P. An overview of mammographic density and its association with breast cancer. Breast Cancer 2018, 25, 259–267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, A.H.; Ursin, G.; Koh, W.P.; Wang, R.; Yuan, J.M.; Khoo, K.S.; Yu, M.C. Green tea, soy, and mammographic density in Singapore Chinese women. Cancer Epidemiol. Biomark. Prev. 2008, 17, 3358–3365. [Google Scholar] [CrossRef] [Green Version]
- Samavat, H.; Ursin, G.; Emory, T.H.; Lee, E.; Wang, R.; Torkelson, C.J.; Dostal, A.M.; Swenson, K.; Le, C.T.; Yang, C.S.; et al. A randomized controlled trial of green tea extract supplementation and mammographic density in postmenopausal women at increased risk of breast cancer. Cancer Prev. Res. 2017, 12, 710–718. [Google Scholar] [CrossRef] [Green Version]
- Miller, R.J.; Jackson, K.G.; Dadd, T.; Nicol, B.; Dick, J.L.; Mayes, A.E.; Brown, A.L.; Minihane, A.M. A preliminary investigation of the impact of catechol-O-methyltransferase genotype on the absorption and metabolism of green tea catechins. Eur. J. Nutr. 2012, 51, 47–55. [Google Scholar] [CrossRef]
- Wu, A.H.; Tseng, C.C.; Van Den Berg, D.; Yu, M.C. Tea intake, COMT genotype, and breast cancer in Asian-American women. Cancer Res. 2003, 63, 7526–7529. [Google Scholar]
- Shrubsole, M.J.; Lu, W.; Chen, Z.; Shu, X.O.; Zheng, Y.; Dai, Q.; Cai, Q.; Gu, K.; Ruan, Z.X.; Gao, Y.-T.; et al. Drinking green tea modestly reduces breast cancer risk. J. Nutr. 2009, 139, 310–316. [Google Scholar] [CrossRef] [Green Version]
- Tyagi, T.; Treas, J.N.; Mahalingaiah, P.K.; Singh, K.P. Potentiation of growth inhibition and epigenetic modulation by combination of green tea polyphenol and 5-aza-2′-deoxycytidine in human breast cancer cells. Breast Cancer Res. Treat. 2015, 149, 655–668. [Google Scholar] [CrossRef]
- Lewis, K.A.; Jordan, H.R.; Tollefsbol, T.O. Effects of SAHA and EGCG on growth potentiation of triple-negative breast cancer cells. Cancers 2018, 11, 23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, Y.; Tang, J.; Du, Y.; Ding, J.; Liu, J.Y. The green tea polyphenol EGCG potentiates the antiproliferative activity of sunitinib in human cancer cells. Tumour Biol. 2016, 37, 8555–8566. [Google Scholar] [CrossRef] [PubMed]
- Goldhaber-Fiebert, S.; Kemper, K. Echinacea: E. angustifolia, E. pallida, and E. purpurea. Center Holist. Pediatr. Educ. Res. 1999, 1–24. [Google Scholar]
- Brown, P.; Chan, M.; Paley, L.; Betz, J.M. Determination of major phenolic compounds in Echinacea spp. Raw materials and finished products by High-Performance Liquid Chromatography with ultraviolet detection: Single laboratory validation matrix extension. J. AOAC Int. 2011, 94, 1400–1410. [Google Scholar] [CrossRef] [Green Version]
- Kumar, K.M.; Sudha, R.S. Pharmacological importance of Echinacea purpurea. Int. J. Pharma. Bio Sci. 2011, 2, 304–314. [Google Scholar]
- Manayi, A.; Vazirian, M.; Saeidnia, S. Echinacea purpurea: Pharmacology, phytochemistry and analysis methods. Pharmacogn. Rev. 2015, 9, 63–72. [Google Scholar]
- Werneke, U.; Earl, J.; Seydel, C.; Horn, O.; Crichton, P.; Fannon, D. Potential health risks of complementary alternative medicines in cancer patients. Br. J. Cancer 2004, 90, 408–413. [Google Scholar] [CrossRef]
- Ma, H.; Carpenter, C.L.; Sullivan-Halley, J.; Bernstein, L. The roles of herbal remedies in survival and quality of life among long-term breast cancer survivors—Results of a prospective study. BMC Cancer 2011, 11, 222. [Google Scholar] [CrossRef] [Green Version]
- Bright-Gbebry, M.; Makambi, K.H.; Rohan, J.P.; Llanos, A.A.; Rosenberg, L.; Palmer, J.R.; Adams-Campbell, L.L. Use of multivitamins, folic acid and herbal supplements among breast cancer survivors: The black women’s health study. BMC Complement. Altern. Med. 2011, 11, 30. [Google Scholar] [CrossRef] [Green Version]
- Chica, A.; Adinolfi, B.; Pellati, F.; Orlandini, G.; Benvenuti, S.; Nieri, P. Cytotoxic activity and G1 cell cycle arrest of a Dienynone from Echinacea pallida. Planta Med. 2010, 76, 444–446. [Google Scholar] [CrossRef]
- Modearai, M.; Gertsch, J.; Suter, A.; Heinrich, M.; Kortenkamp, A. Cytochrome P450 inhibitory action of Echinacea preparations differs widely and co-varies with alkylamide content. J. Pharm. Pharmacol. 2007, 59, 567–573. [Google Scholar] [CrossRef] [PubMed]
- Beshay, N.M.Z.; Ayman, O.S.E. Induction of several cytochrome P450 genes by doxorubicin in H9c2 cells. Vasc. Pharmacol. 2008, 49, 166–172. [Google Scholar]
- Huntimer, E.D.; Halaweish, F.T.; Chase, C.C.L. Proliferative activity of Echinacea angustifolia root extracts on cancer cells: Interference with doxorubicin cytotoxicity. Chem. Biodivers. 2006, 3, 695–703. [Google Scholar] [CrossRef] [PubMed]
- Coelho de Souza, G.; Haas, A.P.S.; von Poser, G.L.; Schapoval, E.E.S.; Elisabetsky, E. Ethnopharmacological studies of antimicrobial remedies in the south of Brazil. J. Ethnopharmacol. 2004, 90, 135–143. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Vinyallonga, S.; Arakaki, M.; Garcia-Jacas, N.; Susanna, A.; Gitzendanner, M.A.; Soltis, D.E.; Soltis, P. Isolation and characterization of novel microsatellite markers for Arctium minus (Compositae). Am. J. Bot. 2010, 97, e4–e6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miglani, A.; Manchanda, R.K. Observational study of Arctium lappa in the treatment of acne vulgaris. Homeopathy 2014, 103, 203–207. [Google Scholar] [CrossRef]
- De Almeida, A.B.; Sanchez-Hidalgo, M.; Martin, A.R.; Luiz-Ferreira, A.; Trigo, J.R.; Vilegas, W.; dos Santos, L.C.; Souza-Brito, A.R.; de la Lastra, C.A. Anti-inflammatory intestinal activity of Arctium lappa L. (Asteraceae) in TNBS colitis model. J. Ethnopharmacoly 2013, 146, 300–310. [Google Scholar] [CrossRef] [Green Version]
- Ahangarpour, A.; Heidari, H.; Oroojan, A.A.; Mirzavandi, F.; Nasr, K.E.; Mohammadi, Z.D. Antidiabetic, hypolipidemic and hepatoprotective effects of Arctium lappa root’s hydro-alcoholic extract on nicotinamide-streptozotocin induced type 2 model of diabetes in male mice. Avicenna J. Phytomed. 2017, 7, 169–179. [Google Scholar]
- European Medicines Agency. Community Herbal Monograph on Actium lappa L.; Radix: London, UK, 2011; Available online: https://www.ema.europa.eu/documents/herbal-monograph/final-community-herbal-monograph-arctium-lappa-l-radix_en.pdf (accessed on 4 April 2020).
- Wang, D.; Bădărau, A.S.; Swamy, M.K.; Shaw, S.; Maggi, F.; da Silva, L.E.; López, V.; Yeung, A.; Mocan, A.; Atanasov, A.G. Arctium species secondary metabolites chemodiversity and bioactivities. Front. Plant Sci. 2019, 10, 834. [Google Scholar] [CrossRef]
- Su, S.; Cheng, X.; Wink, M. Natural lignans from Arctium lappa modulate P-glycoprotein efflux function in multidrug resistant cancer cells. Phytomedicine 2015, 22, 301–307. [Google Scholar] [CrossRef]
- Lou, Z.; Li, C.; Kou, X.; Yu, F.; Wang, H.; Smith, G.M.; Zhu, S. Antibacterial, antibiofilm effect of burdock (Arctium lappa L.) leaf fraction and its efficiency in meat preservation. J. Food Protect. 2016, 79, 1404–1409. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Lou, Z.X.; Rahman, M.R.T.; Al-Hajj, N.Q.; Wang, H. Chemical composition and anti-biofilm activity of burdock (Arctium lappa L. Asteraceae) leaf fractions against Staphylococcus aureus. Trop. J. Pharm. Res. 2014, 13, 1933–1939. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.M.; Chen, K.S.; Schliemann, W.; Strack, D. Isolation and identification of arctiin and arctigenin in leaves of burdock (Arctium lappla L.) by polyamide column chromatography in combination with HPLC-ESI/MS. Phytochem. Anal. 2005, 16, 86–89. [Google Scholar] [CrossRef] [PubMed]
- Lou, C.; Zhu, Z.; Zhao, Y.; Zhu, R.; Zhao, H. Arctigenin, a lignan from Arctium lappa L., inhibits metastasis of human breast cancer cells through the downregulation of MMP-2/-9 and heparanase in MDA-MB-231 cells. Oncol. Rep. 2017, 37, 179–184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Susanti, S.; Iwasaki, H.; Inafuku, M.; Taira, N.; Oku, H. Mechanism of arctigenin-mediated specific cytotoxicity against human lung adenocarcinoma cell lines. Phytomedicine 2013, 21, 39–46. [Google Scholar] [CrossRef]
- Huang, K.; Li, L.A.; Meng, Y.G.; You, Y.Q.; Fu, X.Y.; Song, L. Arctigenin promotes apoptosis in ovarian cancer cells via the iNOS/NO/STAT3/survivin signalling. Basic Clin. Pharmacol. Toxicol. 2014, 115, 507–511. [Google Scholar] [CrossRef] [Green Version]
- Predes, F.S.; Ruiz, A.L.T.G.; Carvalho, J.E.; Foglio, M.A.; Dolder, H. Antioxidative and in vitro antiproliferative activity of Arctium lappa root extracts. BMC Compl. Altern. Med. 2011, 11, 25. [Google Scholar] [CrossRef] [Green Version]
- Feng, T.; Cao, W.; Shen, W.; Zhang, L.; Gu, X.; Guo, Y.; Tsai, H.I.; Liu, X.; Li, J.; Zhang, J.; et al. Arctigenin inhibits STAT3 and exhibits anticancer potential in human triple-negative breast cancer therapy. Oncotarget 2017, 8, 329–344. [Google Scholar] [CrossRef] [Green Version]
- Dribnenki, J.C.P.; McEachern, S.F.; Chen, Y.; Green, A.G.; Rashid, K.Y. 2149 Solin (low linolenic flax). Can. J. Plant Sci. 2007, 87, 297–299. [Google Scholar] [CrossRef]
- Goyal, A.; Sharma, V.; Upadhyay, N.; Gill, S.; Sihag, M. Flax and flaxseed oil: An ancient medicine modern functional food. J. Food Sci. Technol. 2014, 51, 1633–1653. [Google Scholar] [CrossRef] [Green Version]
- Tourre, A.; Xueming, X. Flaxseed lignans: Source, biosynthesis, metabolism, antioxidant activity, bio-active components, and health benefits. Comp. Rev. Food Sci. Food Saf. 2010, 9, 261–269. [Google Scholar] [CrossRef]
- Gebauer, S.K.; Psota, T.L.; Harris, W.S.; Kris-Etherton, P.M. n-3 fatty acid dietary recommendations and food sources to achieve essentiality and cardiovascular benefits. Am. J. Clin. Nutr. 2006, 83, 1526S–1535S. [Google Scholar] [CrossRef] [PubMed]
- Pellizzon, M.A.; Billheimer, J.T.; Bloedon, L.T.; Szapary, P.O.; Rader, D.J. Flaxseed reduces plasma cholesterol levels in hypercholesterolemic mouse models. J. Am. Coll. Nutr. 2007, 26, 66–75. [Google Scholar] [CrossRef] [PubMed]
- Simopoulos, A.P. Human requirement for omega-3 polyunsaturated fatty acids. Poul. Sci. 2000, 79, 961–970. [Google Scholar] [CrossRef] [PubMed]
- Gogus, U.; Smith, C. n-3 Omega fatty acids: A review of current knowledge. Int. J. Food Sci. Technol. 2010, 45, 417–436. [Google Scholar] [CrossRef]
- Chen, J.; Stavro, P.M.; Thompson, L.U. Dietary flaxseed inhibits human breast cancer growth and metastasis and downregulates expression of insulin-like growth factor and epidermal growth factor receptor. Nutr. Cancer 2002, 43, 187–192. [Google Scholar] [CrossRef]
- Bergman, J.M.; Thompson, L.U.; Dabrosin, C. Flaxseed and its lignans inhibit estradiol-induced growth, angiogenesis, and secretion of vascular endothelial growth factor in human breast cancer xenografts in vivo. Clin. Cancer Res. 2007, 13, 1061–1067. [Google Scholar] [CrossRef] [Green Version]
- Truan, J.S.; Chen, J.M.; Thompson, L.U. Comparative effects of sesame seed lignan and flaxseed lignan in reducing the growth of human breast tumors (MCF-7) at high levels of circulating estrogen in athymic mice. Nutr. Cancer 2012, 64, 65–71. [Google Scholar] [CrossRef]
- Puhalla, S.; Brufsky, A.; Davidson, N. Adjuvant endocrine therapy for premenopausal women with breast cancer. Breast 2009, 18 (Suppl. 3), S122–S130. [Google Scholar] [CrossRef]
- VandeCreek, L.; Rogers, E.; Lester, J. Use of alternative therapies among breast cancer outpatients compared with the general population. Altern. Ther. Health Med. 1999, 5, 71–76. [Google Scholar]
- Chen, J.; Power, K.; Mann, J.; Cheng, A.; Thompson, L.U. Dietary flaxseed interaction with tamoxifen induced tumor regression in athymic mice with MCF-7 xenografts by downregulating the expression of estrogen related gene products and signal transduction pathways. Nutr. Cancer 2007, 58, 162–170. [Google Scholar] [CrossRef] [PubMed]
- Saggar, J.K.; Chen, J.; Corey, P.; Thompson, L.U. Dietary flaxseed lignan or oil combined with tamoxifen treatment affects MCF-7 tumor growth through estrogen receptor- and growth factor-signaling pathways. Mol. Nutr. Food Res. 2009, 54, 415–425. [Google Scholar] [CrossRef] [PubMed]
- Cotterchio, M.; Boucher, B.A.; Kreiger, N.; Mills, C.A.; Thompson, L.U. Dietary phytoestrogen intake—Lignans and isoflavones—And breast cancer risk (Canada). Cancer Causes Control 2008, 19, 259–272. [Google Scholar] [CrossRef]
- Flower, G.; Fritz, H.; Balneaves, L.G.; Verma, S.; Skidmore, B.; Fernandes, R.; Kennedy, D.; Cooley, K.; Wong, R.; Sagar, S.; et al. Flax and breast cancer: A systematic review. Integr. Cancer Ther. 2013, 13, 181–192. [Google Scholar] [CrossRef] [PubMed]
- Buck, K.; Zaineddin, A.K.; Vrieling, A.; Linseisen, J.; Chang-Claude, J. Meta-analyses of lignans and enterolignans in relation to breast cancer risk. Am. J. Clin. Nutr. 2010, 92, 141–153. [Google Scholar] [CrossRef] [PubMed]
- Velentzis, L.S.; Cantwell, M.M.; Cardwell, C.; Keshtgar, M.R.; Leathem, A.J.; Woodside, J.V. Lignans and breast cancer risk in pre- and post-menopausal women: Meta-analyses of observational studies. Br. J. Cancer 2009, 100, 1492–1498. [Google Scholar] [CrossRef] [Green Version]
- Khankari, N.K.; Bradshaw, P.T.; Steck, S.E.; He, K.; Olshan, A.F.; Shen, J. Polyunsaturated fatty acid interactions and breast cancer incidence: A population-based case-control study on Long Island, New York. Ann. Epidemiol. 2015, 25, 929–935. [Google Scholar] [CrossRef] [Green Version]
- Thanos, J.; Cotterchio, M.; Boucher, B.A.; Kreiger, N.; Thompson, L.U. Adolescent dietary phytoestrogen intake and breast cancer risk (Canada). Cancer Causes Control 2006, 17, 1253–1261. [Google Scholar] [CrossRef]
- Touillaud, M.S.; Thiébaut, A.C.M.; Fournier, A.; Niravong, M.; Boutron-Ruault, M.C.; Clavel-Chapelon, F. Dietary lignan intake and postmenopausal breast cancer risk by estrogen and progesterone receptor status. J. Natl. Cancer Inst. 2007, 99, 475–486. [Google Scholar] [CrossRef]
- Buck, K.; Vrieling, A.; Zaineddin, A.K.; Becker, S.; Hüsing, A.; Kaaks, R.; Linseisen, J.; Flesch-Janys, D.; Chang-Claude, J. Serum enterolactone and prognosis of postmenopausal breast cancer. J. Clin. Oncol. 2011, 29, 3730–3738. [Google Scholar] [CrossRef]
- Zeleniuch-Jacquotte, A.; Adlercreutz, H.; Shore, R.E.; Koenig, K.L.; Kato, I.; Arslan, A.A.; Toniolo, P. Circulating enterolactone and risk of breast cancer: A prospective study in New York. Br. J. Cancer 2004, 91, 99–105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yarnell, E.; Abascal, K. Nigella sativa: Holy herb of the Middle East. Altern. Complement. Ther. 2011, 17, 99–105. [Google Scholar] [CrossRef]
- Al-Jassir, M.S. Chemical composition and microflora of black cumin (Nigella sativa L.) seeds growing in Saudi Arabia. Food Chem. 1992, 45, 239–242. [Google Scholar] [CrossRef]
- Nickavar, B.; Mojab, F.; Javidnia, K.; Amoli, M.A. Chemical composition of the fixed and volatile oils of Nigella sativa L. from Iran. Z. Naturforschung C 2003, 58, 629–631. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bettaieb, I.; Bourgou, S.; Sriti, J.; Msaada, K.; Limam, F.; Marzouk, B. Essential oils and fatty acids composition of Tunisian and Indian cumin (Cuminum cyminum L.) seeds: A comparative study. J. Sci. Food Agric. 2011, 91, 2100–2107. [Google Scholar] [CrossRef]
- Ali, B.H.; Blunden, G. Pharmacological and toxicological properties of Nigella sativa. Phytother. Res. 2003, 17, 299–305. [Google Scholar] [CrossRef]
- Boskabady, M.H.; Shirmohammadi, B. Effect of Nigella sativa on isolated guinea pig trachea. Arch. Iran. Med. 2002, 5, 103–107. [Google Scholar]
- Tavakkoli, A.; Ahmadi, A.; Razavi, B.M.; Hosseinzadeh, H. Black seed (Nigella sativa) and its constituent thymoquinone as an antidote or a protective agent against natural or chemical toxicities. Iran. J. Pharm. Res. 2017, 16, 2–23. [Google Scholar]
- Badary, O.A.; Taha, R.A.; Gamal el-Din, A.M.; Abdel-Wahab, M.H. Thymoquinone is a potent superoxide anion scavenger. Drug Chem. Toxicol. 2003, 26, 87–98. [Google Scholar] [CrossRef]
- Wong, R.S. Apoptosis in cancer: From pathogenesis to treatment. J. Exp. Clin. Cancer Res. 2011, 30, 87. [Google Scholar] [CrossRef] [Green Version]
- Sundaravadivelu, S.; Raj, S.K.; Kumar, B.S.; Arumugamand, P.; Ragunathan, P.P. Reverse screening bioinformatics approach to identify potential anti breast cancer targets using thymoquinone from neutraceuticals black Cumin il. Anticancer Agents Med. Chem. 2019, 19, 599–609. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, A.; Mishra, R.K.; Vyawahare, A.; Kumar, A.; Rehman, M.U.; Qamar, W.; Khan, A.Q.; Khan, R. Thymoquinone (2-Isoprpyl-5-methyl-1, 4-benzoquinone) as a chemo-preventive/anticancer agent: Chemistry and biological effects. Saudi Pharm. J. 2019, 27, 1113–1126. [Google Scholar] [CrossRef] [PubMed]
- Motaghed, M.; Al-Hassan, F.M.; Hamid, S.S. Cellular responses with thymoquinone treatment in human breast cancer cell line MCF-7. Pharmacogn. Res. 2013, 5, 200–206. [Google Scholar]
- Dilshad, A.; Abulkhair, O.; Nemenqani, D.; Tamimi, W. Antiproliferative properties of methanolic extract of Nigella sativa against the MDA-MB-231 cancer cell line. Asian Pac. J. Cancer Prev. 2012, 13, 5839–5842. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alhazmi, M.I.; Hasan, T.N.; Shafi, G.; Al-Assaf, A.H.; Alfawaz, M.A.; Alshatwi, A.A. Roles of p53 and caspases in induction of apoptosis in MCF-7 breast cancer cells treated with a methanolic extract of Nigella sativa seeds. Asian Pac. J. Cancer Prev. 2014, 15, 9655–9660. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woo, C.C.; Loo, S.Y.; Gee, V.; Yap, C.W.; Sethi, G.; Kumar, A.P.; Tan, K.H.B. Anticancer activity of thymoquinone in breast cancer cells: Possible involvement of PPAR-γ pathway. Biochem. Pharmacol. 2011, 82, 464–475. [Google Scholar] [CrossRef]
- Jin, X.; Mu, P. Targeting breast cancer metastasis. Breast Cancer Basic Clin. Res. 2015, 9, 23–34. [Google Scholar] [CrossRef] [Green Version]
- Korak, T.; Ergül, E.; Sazci, A. Nigella sativa and cancer: A review focusing on breast cancer, inhibition of metastasis and enhancement of natural killer cell cytotoxicity. Curr. Pharm. Biotechnol. 2020. [Google Scholar] [CrossRef]
- Imran, M.; Rauf, A.; Khan, I.A.; Khan, I.A.; Shahbaz, M.; Qaisrani, T.B.; Fatmawati, S.; Abu-Izneid, T.; Imran, A.; Rahman, K.U.; et al. Thymoquinone: A novel strategy to combat cancer: A review. Biomed. Pharmacother. 2018, 106, 390–402. [Google Scholar] [CrossRef]
- Ait Mbarek, L.; Ait Mouse, H.; Elabbadi, N.; Bensalah, M.; Gamouh, A.; Aboufatima, R.; Benharre, A.; Chait, A.; Kamal, M.; Dalal, A.; et al. Anti-tumor properties of blackseed (Nigella sativa L.) extracts. Braz. J. Med. Biol. Res. 2007, 40, 839–847. [Google Scholar] [CrossRef]
- Khan, M.A.; Tania, M.; Wei, C.; Mei, Z.; Fu, S.; Cheng, J.; Xu, J.; Fu, J. Thymoquinone inhibits cancer metastasis by downregulating TWIST1 expression to reduce epithelial to mesenchymal transition. Oncotarget 2015, 6, 19580–19591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baharetha, H.M.; Nassar, Z.D.; Aisha, A.F.; Ahamed, M.B.; Al-Suede, F.S.; Abd Kadir, M.O.; Ismail, Z.; Majid, A.M. Proapoptotic and antimetastatic properties of supercritical CO2 extract of Nigella sativa Linn. against breast cancer cells. J. Med. Food 2013, 16, 1121–1130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.R.; Mun, J.Y.; Jeong, M.S.; Lee, H.H.; Roh, Y.G.; Kim, W.T.; Kim, M.H.; Heo, J.; Choi, Y.H.; Kim, S.J.; et al. Thymoquinone-induced tristetraprolin inhibits tumor growth and metastasis through destabilization of MUC4 mRNA. Int. J. Mol. Sci. 2019, 20, 2614. [Google Scholar] [CrossRef] [Green Version]
- Shanmugam, M.K.; Arfuso, F.; Kumar, A.P.; Wang, L.; Goh, B.C.; Ahn, K.S.; Bishayee, A.; Sethi, G. Modulation of diverse oncogenic transcription factors by thymoquinone, an essential oil compound isolated from the seeds of Nigella sativa Linn. Pharmacol. Res. 2018, 129, 357–364. [Google Scholar] [CrossRef] [PubMed]
- Mollazadeh, H.; Afshari, A.R.; Hosseinzadeh, H. Review on the potential therapeutic roles of Nigella sativa in the treatment of patients with cancer: Involvement of Apoptosis: Black cumin and cancer. J. Pharmacopunct. 2017, 20, 158–172. [Google Scholar]
- Linjawi, S.A.; Khalil, W.K.; Hassanane, M.M.; Ahmed, E.S. Evaluation of the protective effect of Nigella sativa extract and its primary active component thymoquinone against DMBA-induced breast cancer in female rats. Arch. Med. Sci. 2015, 11, 220–229. [Google Scholar] [CrossRef] [PubMed]
- Kabil, N.; Bayraktar, R.; Kahraman, N.; Mokhlis, H.A.; Calin, G.A.; Lopez-Berestein, G.; Ozpolat, B. Thymoquinone inhibits cell proliferation, migration, and invasion by regulating the elongation factor 2 kinase (eEF-2K) signaling axis in triple-negative breast cancer. Breast Cancer Res. Treat. 2018, 171, 593–605. [Google Scholar] [CrossRef]
- Woo, C.C.; Hsu, A.; Kumar, A.P.; Sethi, G.; Tan, K.H. Thymoquinone inhibits tumor growth and induces apoptosis in a breast cancer xenograft mouse model: The role of p38 MAPK and ROS. PLoS ONE 2013, 8, e75356. [Google Scholar] [CrossRef] [Green Version]
- Ong, Y.S.; Yazan, L.S.; Ng, W.K.; Noordin, M.M.; Sapuan, S.; Foo, J.B.; Tor, Y.S. Acute and subacute toxicity profiles of thymoquinone-loaded nanostructured lipid carrier in BALB/c mice. Int. J. Nanomed. 2016, 11, 5905–5915. [Google Scholar] [CrossRef] [Green Version]
- Suddek, G.M. Protective role of thymoquinone against liver damage induced by tamoxifen in female rats. Can. J. Physiol. Pharmacol. 2014, 92, 640–644. [Google Scholar] [CrossRef]
- Goyal, S.N.; Prajapati, C.P.; Gore, P.R.; Patil, C.R.; Mahajan, U.B.; Sharma, C.; Talla, S.P.; Ojha, S.K. Therapeutic potential and pharmaceutical development of thymoqui none: A multi-targeted molecule of natural origin. Front. Pharmacol. 2017, 8, 656. [Google Scholar] [CrossRef] [PubMed]
- Pathan, S.A.; Jain, G.K.; Zaidi, S.M.A.; Akhter, S.; Vohora, D.; Chander, P.; Kole, P.L.; Ahmad, F.J.; Khar, R.K. Stability-indicating ultra-performance liquid chromatography method for the estimation of thymoquinone and its application in biopharmaceutical studies. Biomed. Chromatogr. 2011, 25, 613–620. [Google Scholar] [CrossRef] [PubMed]
- Alkharfy, K.M.; Ahmad, A.; Khan, R.M.; Al-Shagha, W.M. Pharmacokinetic plasma behaviors of intravenous and oral bioavailability of thymoquinone in a rabbit model. Eur. J. Drug Metab. Pharmacokinet. 2015, 40, 319–323. [Google Scholar] [CrossRef] [PubMed]
- Poonia, N.; Kharb, R.; Lather, V.; Pandita, D. Nanostructured lipid carriers: Versatile oral delivery vehicle. Future Sci. OA 2016, 2, FSO135. [Google Scholar] [CrossRef] [Green Version]
- Silva, A.C.; Santos, D.; Ferreira, D.; Lopes, C.M. Lipid-based nano-carriers as an alternative for oral delivery of poorly water-soluble drugs: Peroral and mucosal routes. Curr. Med. Chem. 2012, 19, 4495–4510. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Ahir, M.; Patra, P.; Mukherjee, S.; Ghosh, S.; Mazumdar, M.; Chattopadhyay, S.; Das, T.; Chattopadhyay, D.; Adhikary, A. PEGylated-thymoquinone-nanoparticle mediated retardation of breast cancer cell migration by deregulation of cytoskeletal actin polymerization through miR-34a. Biomaterials 2015, 51, 91–107. [Google Scholar] [CrossRef]
- Ng, W.K.; Yazan, L.S.; Yap, L.H.; Wan Nor Hafiza, W.A.; How, C.W.; Abdullah, R. Thymoquinone-loaded nanostructured lipid carrier exhibited cytotoxicity towards breast cancer cell lines (MDA-MB-231 and MCF-7) and cervical cancer cell lines (HeLa and SiHa). Biomed Res. Int. 2015, 2015, 263131. [Google Scholar] [CrossRef] [Green Version]
- Ong, Y.S.; Yazan, L.S.; Ng, W.K.; Abdullah, R.; Mustapha, N.M.; Sapuan, S.; Foo, J.B.; Tor, Y.S.; How, C.W.; Abd Rahman, N.; et al. Thymoquinone loaded in nanostructured lipid carrier showed enhanced anticancer activity in 4T1 tumor-bearing mice. Nanomedicine 2019, 13, 1567–1582. [Google Scholar] [CrossRef] [Green Version]
- Dehghani, H.; Hashemi, M.; Entezari, M.; Mohsenifar, A. The comparison of anticancer activity of thymoquinone and nanothymoquinone on human breast adenocarcinoma. Iran. J. Pharm. Res. 2015, 14, 539–546. [Google Scholar]
- Periasamy, V.S.; Athinarayanan, J.; Alshatwi, A.A. Anticancer activity of an ultrasonic nanoemulsion formulation of Nigella sativa L. essential oil on human breast cancer cells. Ultrason. Sonochem. 2016, 31, 449–455. [Google Scholar] [CrossRef]
- Aygun, A.; Gülbagca, F.; Ozer, L.Y.; Ustaoglu, B.; Altunoglu, Y.C.; Baloglu, M.C.; Atalar, M.N.; Alma, M.H.; Sen, F. Biogenic platinum nanoparticles using black cumin seed and their potential usage as antimicrobial and anticancer agent. J. Pharm. Biomed. Anal. 2020, 179, 112961. [Google Scholar] [CrossRef] [PubMed]
- Rohini, B.; Akther, T.; Waseem, M.; Khan, J.; Kashif, M.; Hemalatha, S. AgNPs from Nigella sativa control breast cancer: An in vitro study. J. Environ. Pathol. Toxicol. Oncol. 2019, 38, 185–194. [Google Scholar] [CrossRef] [PubMed]
- Effenberger-Neidnicht, K.; Schobert, R. Combinatorial effects of thymoquinone on the anti-cancer activity of doxorubicin. Cancer Chemother. Pharmacol. 2011, 67, 867–874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahmoud, S.S.; Torchilin, V.P. Hormetic/cytotoxic effects of Nigella sativa seed alcoholic and aqueous extracts on MCF-7 breast cancer cells alone or in combination with doxorubicin. Cell Biochem. Biophys. 2013, 66, 451–460. [Google Scholar] [CrossRef]
- Harper, N.W.; Hodges, K.B.; Stewart, R.L.; Wu, J.; Huang, B.; O’Connor, K.L.; Romond, E.H. Adjuvant treatment of triple-negative metaplastic breast cancer with weekly paclitaxel and platinum chemotherapy: Retrospective case review from a single institution. Clin. Breast Cancer 2019, 19, e495–e500. [Google Scholar] [CrossRef]
- Şakalar, Ç.; İzgi, K.; İskender, B.; Sezen, S.; Aksu, H.; Çakır, M.; Kurt, B.; Turan, A.; Canatan, H. The combination of thymoquinone and paclitaxel shows anti-tumor activity through the interplay with apoptosis network in triple-negative breast cancer. Tumour Biol. 2016, 37, 4467–4477. [Google Scholar] [CrossRef]
- Perroud, H.A.; Alasino, C.M.; Rico, M.J.; Mainetti, L.E.; Queralt, F.; Pezzotto, S.M.; Rozados, V.R.; Scharovsky, O.G. Metastatic breast cancer patients treated with low-dose metronomic chemotherapy with cyclophosphamide and celecoxib: Clinical outcomes and biomarkers of response. Cancer Chemother. Pharmacol. 2016, 77, 365–374. [Google Scholar] [CrossRef] [Green Version]
- Al-Mutairi, A.; Rahman, A.; Rao, M.S. Low doses of thymoquinone and ferulic acid in combination effectively inhibit proliferation of cultured MDA-MB 231 breast adenocarcinoma cells. Nutr. Cancer 2020, 1–8. [Google Scholar] [CrossRef]
- Talib, W.H. Regressions of breast carcinoma syngraft following treatment with piperine in combination with thymoquinone. Sci. Pharm. 2017, 85, 27. [Google Scholar] [CrossRef] [Green Version]
- Al-Amri, A.A.; Bamoasa, A.O. Phase I safety and clinical activity of thymoquinone in patients with advanced refractory malignant disease. Shiraz E Med. J. 2009, 10, 107–111. [Google Scholar]
- Odeh, F.; Ismail, S.I.; Abu-Dahab, R.; Mahmoud, I.S.; Al Bawab, A. Thymoquinone in liposomes: A study of loading efficiency and biological activity towards breast cancer. Drug Deliv. 2012, 19, 371–377. [Google Scholar] [CrossRef] [PubMed]
Herbs | Main Active Chemical Constituents | Animal Model/Tumor Cell Line | Anti-Cancer Activities/Outcome | Molecular Mechanisms/Outcome | References |
---|---|---|---|---|---|
Ginseng | Ginsenoside Rh2 | MDA-MB-231 and MCF-7 breast cancer cell lines | Anti-proliferative and apoptosis | (i) Induce changes in hypo-methylated genes (ii) Mediate G(0)/G(1) phase cell cycle arrest (iii) inhibit the production of inflammatory cytokines (iv) Obstruct nuclear factor (NF)-κB signaling and mitogen-activated protein kinase pathways | [30,32,34,35] |
Ginseng | Ginsenoside Rg3 | MDA-MB-231 and MCF-7 breast cancer cell lines | Anti-proliferative | (i) Decrease expression of cyclin D1 and cyclin A (ii) Arrest cells in the G-1 phase | [36] |
Garlic | Diallyl disulfide | MDA-MB-468 cancer cell line and female Swiss albino mice with EAC tumor | Decrease tumor growth and apoptosis | (i) Induce apoptosis by promoting caspase-3 expression (ii) Prevent oxidative degradation of anti-tumor protein, p53 | [37] |
Curcuma longa | Curcumin | MDA-MB-231 and BT-483 breast cancer cells | Anti-proliferative effect in a dose-dependent manner | (i) Downregulation of NFkappaB inducing genes (ii) Decrease transcription of matrix metalloproteinases (MMPs)-1 and cyclin D | [38] |
Curcuma longa | Curcumin | MCF-7 and MDA-MB-231 breast cancer cells | Inhibition of cell proliferation and induction of apoptosis | Down-regulation of the beta-catenin pathway | [39] |
Echinacea | Extracts of Echinacea purpurea | BT-549 mammalian breast cancer cell | Inhibition of cell proliferation | Mechanism not given | [40] |
Arctium lappa (greater burdock) | Arctigenin | MDA-MB-231 breast cancer cells | Induce apoptosis | (i) Activation of the ROS/p38 MAPK pathway (ii) Induction of mitochondrial caspase-independent pathways with increased Bax/Bcl-2 ratio | [41] |
Arctium lappa (greater burdock) | Arctigenin | MCF-7 and MDA-MB-231 human breast cancer cell lines | Anti-metastatic effect | Inhibiting the NF-κB, Akt/MAPK signaling pathways, and MMP-9 | [42] |
Flaxseed (dietary) | Lignans | Athymic mice inoculated with human MCF-7 cancer cells | Inhibition of cell proliferation and induced apoptosis | Reduced mRNA expressions of cyclin D1, epidermal growth factor receptor and Bcl2 | [43] |
Nigella sativa | Thymoquinone | T-47D and MDA-MB-468 breast cancer cells | Induced apoptosis | (i) Promote G (1) phase arrest via translation upregulation of procaspase-3 and Bax (ii) Inhibition of cyclin D1 and cyclin E, and PARP cleavage alongside downregulation of the gene expression of survivin, Bcl-2 and Bcl-xL | [44] |
Nigella sativa | Thymoquinone | MCF-7 breast cancer cell line | Induced apoptosis | Upregulation of the expression of tumor suppressor gene p53 in a time-dependent manner | [45] |
Nigella sativa | Thymoquinone | MDA-MB-231 triple-negative breast cancer cells | Anti-metastatic effect | Downregulate the expressions of CXCR4 in breast cancer cells in a time- and dose-dependent manner | [46] |
Herbs | Main Active Chemical Constituents | Study Design - Cell Culture, Animal Model or Clinical | Anti-Cancer Drug | Endpoint and Results | References |
---|---|---|---|---|---|
Ginseng | Ginsenoside Rg3 | MCF-7 xenografts in nude mice | Paclitaxel | (i) Enhanced the oral bioavailability of paclitaxel (ii) Improved the anti-tumor activity of paclitaxel | [54] |
Cimicifuga racemose (Black cohosh) | - | Randomized controlled trial of 136 breast cancer patients | Tamoxifen | Significant reduction in the number and severity of hot flushes | [56] |
Curcuma longa | Curcumin | MCF-7 and the basal-like MDA-MB-231 cancer cell lines | Paclitaxel | Synergistic therapy with (i) Decreased breast carcinogenesis by downregulating the expressions of Rho-A, p53 and Bcl-2 (ii) Decrease toxicity | [57] |
Curcuma longa | Curcumin | MCF-7, SKBR3 and MDA-MB-231 breast cancer cell lines | 5-fluorouracil | Increased sensitization via reducing the expression of thymidylate synthase and downregulating nuclear factor-κB | [58] |
Camellia sinensis (Green tea) | Epigallocatechin gallate (EGCG) and quercetin | MCF-7 and MDA-MB-23 breast cancer cells | Tamoxifen | Synergistic activity with reduced tumor cell proliferation | [59] |
Echinacea | Hexane fractions of Echinacea purpurea containing cynarin | MCF-7 breast cancer cell lines. | Doxorubicin | Enhanced cytotoxic activity of doxorubicin | [60] |
Arctium lappa on | Arctigenin | (MCF7 and MDA-MB-231 breast cancer cell lines. | Doxorubicin | Synergistic effect with decreased cell viability and induced apoptosis | [61] |
Flaxseed | Lignan | Athymic mice inoculated with MCF-7 breast cancer cells. | Tamoxifen | Tumor regression by over 53% | [62] |
Flaxseed | Flaxseed oil (lignans) | Athymic micewith HER2-overexpressing tumor (BT-474). | Trastuzumab | Reduced phosphorylated/total expression of Akt and MAPK protein expression | [63] |
Nigella sativa | Thymoquinone | MDA-MB-231 human breast cancer and estrogen positive MCF-7 cells. | Tamoxifen | Synergistic effect with decreased cell viability and induced apoptosis | [64] |
Nigella sativa | Thymoquinone | MCF-7/DOX cells. | Doxorubicin | (i) Apoptosis in doxorubicin-resistant human breast cancer cells via upregulation of PTEN and inhibition of Akt phosphorylation. (ii) Increased cellular levels of p21 and p53 proteins | [65] |
Nigella sativa | Thymoquinone | MCF-7 and T47D breast cancer cells. | Paclitaxel | (i) Decreased resistance to paclitacel (ii) Increased percentage of apoptotic cell death particularly in using MCF-7 | [66] |
Nigella sativa | Thymoquinone | Her2- MDA-231 and Her2+ SKBR-3 breast cancer lines. | Cyclophosphamide | (i) Inhibited the proliferation of cancer cells in the G1 phase (ii) Upregulated PTEN and downregulated the phosphorylation of Akt | [67] |
Herbs | Main Active Chemical Constituents /Quantity | Study Design | Endpoints and Results | References |
---|---|---|---|---|
Garlic | - | Population-based, case control, 314 cases and 346 controls | Inverse association between breast cancer and moderate as well as high consumption | [89] |
Camellia sinensis (Green tea) | Epigallocatechin-3-gallate | Case-control study of 1009 female breast cancer patients and age-matched controls | Significant protection against breast cancer (OR = 0.61) | [93] |
Camellia sinensis (Green tea) | Epigallocatechin-3-gallate | 472 female breast cancer patients with stage I, II and stage III disease | (i) Relative risk of recurrence of 0.564 (95% CI: 0.35 - 0.91) (ii) Prior use before diagnosis was significantly associated with better prognosis of stage I and II | [94] |
Flaxseed (dietary) | Lignans | Ontario Women’s Diet and Health Study of 2,999 cases and 3,370 controls | Significant decrease in breast cancer risk (OR = 0.77) | [95] |
Flaxseed (dietary) | Lignans | Randomized double-blind placebo-controlled clinical trial of postmenopausal women newly diagnosed with breast cancer | Reduced tumor growth associated with downregulation of c-erbB2 expression and reduced Ki-67 labeling index | [96] |
Nigella sativa | Nigella sativa 5% gel | Randomized, double-blind, placebo-controlled clinical trial comprising 62 breast cancer patients undergoing radiotherapy | Significantly reduced the severity of acute radiation dermatitis and delays the onset of moist desquamation | [97] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
McGrowder, D.A.; Miller, F.G.; Nwokocha, C.R.; Anderson, M.S.; Wilson-Clarke, C.; Vaz, K.; Anderson-Jackson, L.; Brown, J. Medicinal Herbs Used in Traditional Management of Breast Cancer: Mechanisms of Action. Medicines 2020, 7, 47. https://doi.org/10.3390/medicines7080047
McGrowder DA, Miller FG, Nwokocha CR, Anderson MS, Wilson-Clarke C, Vaz K, Anderson-Jackson L, Brown J. Medicinal Herbs Used in Traditional Management of Breast Cancer: Mechanisms of Action. Medicines. 2020; 7(8):47. https://doi.org/10.3390/medicines7080047
Chicago/Turabian StyleMcGrowder, Donovan A., Fabian G. Miller, Chukwuemeka R. Nwokocha, Melisa S. Anderson, Cameil Wilson-Clarke, Kurt Vaz, Lennox Anderson-Jackson, and Jabari Brown. 2020. "Medicinal Herbs Used in Traditional Management of Breast Cancer: Mechanisms of Action" Medicines 7, no. 8: 47. https://doi.org/10.3390/medicines7080047