Quantification of the Ability of Natural Products to Prevent Herpes Virus Infection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Sasa sp. (SE)
2.3. Preparation of Pine Cone Extract (PCE)
2.4. Preparation of Chromones, Esters, and Amides
2.5. Assay for Anti-Herpes Simplex Virus (HSV) Activity
2.6. Assay for Anti-Human Immunodeficiency Virus (HIV) Activity
2.7. Statistical Treatment
3. Results
3.1. Establishment of Assay Condition for Anti-HSV Activity
3.2. Anti-HSV Activity of Natural Products
3.2.1. Hot-Water Extract (Kampo Formula) and Alkaline Extracts (SE, PCE)
3.2.2. Polyphenols and Chromone-Related Compounds
3.3. Augmentation of Antiviral Potential of Alkaline Extracts by Reducing the Treatment Time
3.3.1. Rapid HSV Inactivation by SE and PCE
3.3.2. Rapid HIV Inactivation by SE
4. Discussion
5. Conclusions
- Alkaline extracts of the leaves of Sasa sp. (SE) and pine cone extract (PCE) showed higher anti-HSV activity than 20 Japanese traditional herb medicines (Kampo formulas), resveratrol, p-coumaric acid, curcumin, tricin, and 119 chromone-related compounds. This confirms our previous finding that the alkaline extract of tea and licorice root showed higher anti-HIV activity than the respective hot water extract [57,58].
- Exposure of HSV to SE or PCE for 3 min almost completely eliminated the infectivity of HSV, whereas a much longer exposure time was required for Kakkonto, the most active Kampo formulae.
- Anti-HSV activity of PCE and Kakkonto could be detected only when they were dissolved by an alkaline solution (pH 8.0), but not by neutral buffer (pH 7.4).
- Anti-HSV activity of SE and povidone iodine was unstable if they were diluted with alkaline solution.
- Anti-HSV activity of SE and PCE were one or two-orders higher than povidone iodide.
- Anti-HIV activity of SE was also enhanced when it was administered for a short period.
- The present study suggests the applicability of a short treatment of oral virus with SE and PCE.
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Corstjens, P.L.; Abrams, W.R.; Malamud, D. Saliva and viral infections. Periodontol. 2000 2016, 70, 93–110. [Google Scholar] [CrossRef] [PubMed]
- Crimi, S.; Fiorillo, L.; Bianchi, A.; D’Amico, C.; Amoroso, G.; Gorassini, F.; Mastroieni, R.; Marino, S.; Scoglio, C.; Catalano, F.; et al. Herpes virus, oral clinical signs and QoL: Systematic review of recent data. Viruses 2019, 11, 463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Annunziata, G.; Maisto, M.; Schisano, C.; Ciampaglia, R.; Narciso, V.; Tenore, G.C.; Novellino, E. Resveratrol as a novel anti-herpes simplex virus nutraceutical agent: An overview. Viruses 2018, 10, 473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Oliveira, A.; Adams, S.D.; Lee, L.H.; Murray, S.R.; Hsu, S.D.; Hammond, J.R.; Dickinson, D.; Chen, P.; Chu, T.C. Inhibition of herpes simplex virus type 1 with the modified green tea polyphenol palmitoyl-epigallocatechin gallate. Food Chem. Toxicol. 2013, 52, 207–215. [Google Scholar] [CrossRef] [Green Version]
- Xiang, Y.; Pei, Y.; Qu, C.; Lai, Z.; Ren, Z.; Yang, K.; Xiong, S.; Zhang, Y.; Yang, C.; Wang, D.; et al. In vitro anti-herpes simplex virus activity of 1,2,4,6-tetra-O-galloyl-β-D-glucose from Phyllanthus emblica L. (Euphorbiaceae). Phytother. Res. 2011, 25, 975–982. [Google Scholar] [CrossRef]
- de Oliveira, A.; Prince, D.; Lo, C.Y.; Lee, L.H.; Chu, T.C. Antiviral activity of theaflavin digallate against herpes simplex virus type 1. Antivir. Res 2015, 118, 56–67. [Google Scholar] [CrossRef]
- Ceole, L.F.; Companhoni, M.V.P.; Sanches Lopes, S.M.; de Oliveira, A.J.B.; Gonçalves, R.A.C.; Dias Filho, B.P.; Nakamura, C.V.; Ueda-Nakamura, T. Anti-herpes activity of polysaccharide fractions from Stevia rebaudiana leaves. Nat. Prod. Res. 2020, 34, 1558–1562. [Google Scholar] [CrossRef]
- Nawawi, A.; Nakamura, N.; Hattori, M.; Kurokawa, M.; Shiraki, K. Inhibitory effects of Indonesian medicinal plants on the infection of herpes simplex virus type 1. Phytother. Res. 1999, 13, 37–41. [Google Scholar] [CrossRef]
- Schnitzler, P.; Nolkemper, S.; Stintzing, F.C.; Reichling, J. Comparative in vitro study on the anti-herpetic effect of phytochemically characterized aqueous and ethanolic extracts of Salvia officinalis grown at two different locations. Phytomedicine 2008, 15, 62–70. [Google Scholar] [CrossRef]
- Zu, Y.; Fu, Y.; Wang, W.; Wu, N.; Liu, W.; Kong, Y.; Schiebel, H.M.; Schwarz, G.; Schnitzler, P.; Reichling, J. Comparative study on the antiherpetic activity of aqueous and ethanolic extracts derived from Cajanus cajan (L.) Millsp. Complement. Med. Res. 2010, 17, 15–20. [Google Scholar] [CrossRef]
- Kido, T.; Mori, K.; Daikuhara, H.; Tsuchiya, H.; Ishige, A.; Sasaki, H. The protective effect of hochu-ekki-to (TJ-41), a Japanese herbal medicine, against HSV-1 infection in mitomycin C-treated mice. Anticancer Res. 2000, 20, 4109–4113. [Google Scholar] [PubMed]
- Nagasaka, K.; Kurokawa, M.; Imakita, M.; Terasawa, K.; Shiraki, K. Efficacy of kakkon-to, a traditional herb medicine, in herpes simplex virus type 1 infection in mice. J. Med. Virol. 1995, 46, 28–34. [Google Scholar] [CrossRef] [PubMed]
- Sakagami, H.; Fukuchi, K.; Kanamoto, T.; Terakubo, S.; Nakashima, H.; Natori, T.; Suguro-Kitajima, M.; Oizumi, H.; Yasui, T.; Oizumi, T. Synergism of Alkaline Extract of the Leaves of Sasa senanensis Rehder and Antiviral Agents. In Vivo 2016, 30, 421–426. [Google Scholar] [PubMed]
- Gordts, S.C.; Férir, G.; D’Huys, T.; Petrova, M.I.; Lebeer, S.; Snoeck, R.; Andrei, G.; Schols, D. The Low-Cost Compound Lignosulfonic Acid (LA) Exhibits Broad-Spectrum Anti-HIV and Anti-HSV Activity and Has Potential for Microbicidal Applications. PLoS ONE 2015, 10, e0131219. [Google Scholar] [CrossRef]
- Lopez, B.S.; Yamamoto, M.; Utsumi, K.; Aratsu, C.; Sakagami, H. A clinical pilot study of lignin—ascorbic acid combination treatment of herpes simplex virus. In Vivo 2009, 23, 1011–1016. [Google Scholar] [PubMed]
- Sakagami, H.; Kawazoe, Y.; Komatsu, N.; Simpson, A.; Nonoyama, M.; Konno, K.; Yoshida, T.; Kuroiwa, Y.; Tanuma, S. Antitumor, antiviral and immunopotentiating activities of pine cone extracts: Potential medicinal efficacy of natural and synthetic lignin-related materials (review). Anticancer Res. 1991, 11, 881–888. [Google Scholar] [PubMed]
- Zhang, Y.; But, P.P.; Ooi, V.E.; Xu, H.X.; Delaney, G.D.; Lee, S.H.; Lee, S.F. Chemical properties, mode of action, and in vivo anti-herpes activities of a lignin-carbohydrate complex from Prunella vulgaris. Antiviral Res. 2007, 75, 242–249. [Google Scholar] [CrossRef]
- Fukuchi, K.; Sakagami, H.; Okuda, T.; Hatano, T.; Tanuma, S.; Kitajima, K.; Inoue, Y.; Inoue, S.; Ichikawa, S.; Nonoyama, M.; et al. Inhibition of herpes simplex virus infection by tannins and related compouneds. Antiviral Res. 1989, 11, 285–298. [Google Scholar] [CrossRef]
- Fukuchi, K.; Okudaira, N.; Adachi, K.; Odai-Ide, R.; Watanabe, S.; Ohno, H.; Yamamoto, M.; Kanamoto, T.; Terakubo, S.; Nakashima, H.; et al. Antiviral and antitumor activity of licorice root extracts. In Vivo 2016, 30, 777–785. [Google Scholar] [CrossRef] [Green Version]
- Takao, K.; Saito, T.; Chikuda, D.; Sugita, Y. 2-Azolylchromone Derivatives as Potent and Selective Inhibitors of Monoamine Oxidases A and B. Chem. Pharm. Bull. 2016, 64, 1499–1504. [Google Scholar] [CrossRef] [Green Version]
- Takao, K.; Yamashita, M.; Yashiro, A.; Sugita, Y. Synthesis and Biological Evaluation of 3-Benzylidene-4-chromanone Derivatives as Free Radical Scavengers and α-Glucosidase Inhibitors. Chem. Pharm. Bull. 2016, 64, 1203–1207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Devakaram, R.; Black, D.S.; Andrews, K.T.; Fisher, G.M.; Davis, R.A.; Kumar, N. Synthesis and antimalarial evaluation of novel benzopyrano[4,3-b]benzopyran derivatives. Bioorg. Med. Chem. 2011, 19, 5199–5206. [Google Scholar] [CrossRef] [PubMed]
- Takao, K.; Toda, K.; Saito, T.; Sugita, Y. Synthesis of Amide and Ester Derivatives of Cinnamic Acid and Its Analogs: Evaluation of Their Free Radical Scavenging and Monoamine Oxidase and Cholinesterase Inhibitory Activities. Chem. Pharm. Bull. 2017, 65, 1020–1027. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takao, K.; Miyashiro, T.; Sugita, Y. Synthesis and biological evaluation of piperic acid amides as free radical scavengers and α-glucosidase inhibitors. Chem. Pharm. Bull. 2015, 63, 326–333. [Google Scholar] [CrossRef] [Green Version]
- Takao, K.; Endo, S.; Nagai, J.; Kamauchi, H.; Takemura, Y.; Uesawa, Y.; Sugita, Y. 2-Styrylchromone derivatives as potent and selective monoamine oxidase B inhibitors. Bioorg. Chem. 2019, 92, 103285. [Google Scholar] [CrossRef]
- Takao, K.; Ishikawa, R.; Sugita, Y. Synthesis and biological evaluation of 3-styrylchromone derivatives as free radical scavengers and α-glucosidase inhibitors. Chem. Pharm. Bull. 2014, 62, 810–815. [Google Scholar] [CrossRef] [Green Version]
- Elion, G.B. Mechanism of action and selectivity of acyclovir. Am. J. Med. 1982, 73, 7–13. [Google Scholar] [CrossRef]
- Kawana, R.; Kitamura, T.; Nakagomi, O.; Matsumoto, I.; Arita, M.; Yoshihara, N.; Yanagi, K.; Yamada, A.; Morita, O.; Yoshida, Y.; et al. Inactivation of human viruses by povidone-iodine in comparison with other antiseptics. Dermatology 1997, 195, 29–35. [Google Scholar] [CrossRef]
- Sakagami, H.; Amano, S.; Kikuchi, H.; Nakamura, Y.; Kuroshita, R.; Watanabe, S.; Satoh, K.; Hasegawa, H.; Nomura, A.; Kanamoto, T.; et al. Antiviral, antibacterial and vitamin C-synergized radical-scavenging activity of Sasa senanensis Rehder extract. In Vivo 2008, 22, 471–476. [Google Scholar]
- Sakagami, H.; Matsuta, T.; Yasui, T.; Oguchi, K.; Kitajima, M.; Sugiura, T.; Oizumi, T.; Oizumi, T. Functional evaluation of Sasa Makino et Shibata leaf extract as group III OTC drug. In Altenative Medicine; Sakagami, H., Ed.; BoD—Books on Demand: Rijeka, Croatia, 2012; pp. 171–200. [Google Scholar]
- Sakagami, H.; Ikeda, M.; Unten, S.; Takeda, K.; Murayama, J.; Hamada, A.; Kimura, K.; Komatsu, N.; Konno, K. Antitumor activity of polysaccharide fractions from pine cone extract of Pinus parviflora Sieb. et Zucc. Anticancer Res. 1987, 7, 1153–1159. [Google Scholar]
- Sakagami, H.; Kushida, T.; Oizumi, T.; Nakashima, H.; Makino, T. Distribution of lignin-carbohydrate complex in plant kingdom and its functionality as alternative medicine. Pharmacol. Ther. 2010, 128, 91–105. [Google Scholar] [CrossRef] [PubMed]
- Miyoshi, I.; Taguchi, H.; Kubonishi, I.; Yoshimoto, S.; Ohtsuki, Y.; Shiraishi, Y.; Akagi, T. Type C virus-producing cell lines derived from adult T cell leukemia. Gann Monogr. Cancer Res. 1982, 28, 219–229. [Google Scholar]
- Nakashima, H.; Masuda, M.; Murakami, T.; Koyanagi, Y.; Matsumoto, A.; Fujii, N.; Yamamoto, N. Anti-human immunodeficiency virus activity of a novel synthetic peptide, T22 ([Tyr-5,12, Lys-7]polyphemusin II): A possible inhibitor of virus-cell fusion. Antimicrob. Agents Chemother. 1992, 36, 1249–1255. [Google Scholar] [CrossRef] [Green Version]
- Pauwels, R.; Balzarini, J.; Baba, M.; Snoeck, R.; Schols, D.; Herdewijn, P.; Desmyter, J.; De Clercq, E. Rapid and automated tetrazolium-based colorimetric assay for the detection of anti-HIV compounds. J. Virol. Methods 1988, 20, 309–321. [Google Scholar] [CrossRef]
- Shi, H.; Fukuchi, K.; Asai, D.; Terakubo, S.; Takemura, H.; Sakagami, H. Quantification of antitumor, antiviral and neuroprotective activity of twenty Kampo preparations. New Food Ind. 2020, 62, 599–607. [Google Scholar]
- Ono, M.; Kantoh, K.; Ueki, J.; Shimada, A.; Wakabayashi, H.; Matsuta, T.; Sakagami, H.; Kumada, H.; Hamada, N.; Kitajima, M.; et al. Quest for anti-inflammatory substances using IL-1β-stimulated gingival fibroblasts. In Vivo 2011, 25, 763–768. [Google Scholar] [PubMed]
- Zhou, L.; Hashimoto, K.; Satoh, K.; Yokote, Y.; Kitajima, M.; Oizumi, T.; Oizumi, H.; Sakagami, H. Effect of Sasa senanensis Rehder extract on NO and PGE2 production by activated mouse macrophage-like RAW264.7 cells. In Vivo 2009, 23, 773–777. [Google Scholar]
- Sakagami, H.; Amano, S.; Yasui, T.; Satoh, K.; Shioda, S.; Kanamoto, T.; Terakubo, S.; Nakashima, H.; Watanabe, K.; Sugiura, T.; et al. Biological interaction between Sasa senanensis Rehder leaf extract and toothpaste ingredients. In Vivo 2013, 27, 275–284. [Google Scholar]
- Matsuta, T.; Sakagami, H.; Sugiura, T.; Kitajima, M.; Oizumi, H.; Oizumi, T. Structural characterization of anti-UV components from Sasa senanensis Rehder extract. In Vivo 2013, 27, 77–83. [Google Scholar]
- Nanbu, T.; Shimada, J.; Kobayashi, M.; Hirano, K.; Koh, T.; Machino, M.; Ohno, H.; Yamamoto, M.; Sakagami, H. Anti-UV activity of lignin-carbohydrate complex and related compounds. In Vivo 2013, 27, 133–139. [Google Scholar]
- Sakagami, H.; Sheng, H.; Okudaira, N.; Yasui, T.; Wakabayashi, H.; Jia, J.; Natori, T.; Suguro-Kitajima, M.; Oizumi, H.; Oizumi, T. Prominent Anti-UV Activity and Possible Cosmetic Potential of Lignin-carbohydrate Complex. In Vivo 2016, 30, 331–339. [Google Scholar] [PubMed]
- Matsuta, T.; Sakagami, H.; Kitajima, M.; Oizumi, H.; Oizumi, T. Anti-UV Activity of Alkaline Extract of the Leaves of Sasa senanensis Rehder. In Vivo 2011, 25, 751–755. [Google Scholar] [PubMed]
- Satoh, K.; Ida, Y.; Ishihara, M.; Sakagami, H. Interaction between sodium ascorbate and polyphenols. Anticancer Res. 1999, 19, 4177–4186. [Google Scholar] [PubMed]
- Sakagami, H.; Sheng, H.; Ono, K.; Komine, Y.; Miyadai, T.; Terada, Y.; Nakada, D.; Tanaka, S.; Matsumoto, M.; Yasui, T.; et al. Anti-Halitosis Effect of Toothpaste Supplemented with Alkaline Extract of the Leaves of Sasa senanensis Rehder. In Vivo 2016, 30, 107–111. [Google Scholar] [PubMed]
- Sakagami, H.; Iwamoto, S.; Matsuta, T.; Satoh, K.; Shimada, C.; Kanamoto, T.; Terakubo, S.; Nakashima, H.; Morita, Y.; Ohkubo, A.; et al. Comparative study of biological activity of three commercial products of Sasa senanensis Rehder leaf extract. In Vivo 2012, 26, 259–264. [Google Scholar]
- Castro, R.C.A.; Ferreira, I.S.; Roberto, I.C.; Mussatto, S.I. Isolation and physicochemical characterization of different lignin streams generated during the second-generation ethanol production process. Int. J. Biol. Macromol. 2019, 129, 497–510. [Google Scholar] [CrossRef]
- Miyamoto, T.; Yamamura, M.; Tobimatsu, Y.; Suzuki, S.; Kojima, M.; Takabe, K.; Terajima, Y.; Mihashi, A.; Kobayashi, Y.; Umezawa, T. A comparative study of the biomass properties of Erianthus and sugarcane: Lignocellulose structure, alkaline delignification rate, and enzymatic saccharification efficiency. Biosci. Biotechnol. Biochem. 2018, 82, 1143–1152. [Google Scholar] [CrossRef]
- Srinivas, K.; de Carvalho Oliveira, F.; Teller, P.J.; Gonçalves, A.R.; Helms, G.L.; Ahring, B.K. Oxidative degradation of biorefinery lignin obtained after pretreatment of forest residues of Douglas Fir. Bioresour. Technol. 2016, 221, 394–404. [Google Scholar] [CrossRef] [Green Version]
- Nakashima, H.; Murakami, T.; Yamamoto, N.; Naoe, T.; Kawazoe, Y.; Konno, K.; Sakagami, H. Lignified materials as medicinal resources. V. Anti-HIV (human immunodeficiency virus) activity of some synthetic lignins. Chem. Pharm. Bull. 1992, 40, 2102–2105. [Google Scholar] [CrossRef] [Green Version]
- Sakagami, H.; Nagata, K.; Ishihama, A.; Oh-hara, T.; Kawazoe, Y. Anti-influenza virus activity of synthetically polymerized phenylpropenoids. Biochem. Biophys. Res. Commun. 1990, 172, 1267–1272. [Google Scholar] [CrossRef]
- Belardinelli, P.A.; Morelatto, R.A.; Benavidez, T.E.; Baruzzi, A.M.; López de Blanc, S.A. Effect of two mouthwashes on salivary ph. Acta Odontol. Latinoam. 2014, 27, 66–71. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves Ferreira, N.; Cerná, L.; Cedíková, M.; Bibková, K.; Mičanová, Z.; Ulčová-Gallová, Z. Some immunological properties of female saliva and its effect on sperm motility. Cas. Lek. Cesk. 2014, 153, 86–90. [Google Scholar] [PubMed]
- Sakagami, H.; Takeda, M.; Kawazoe, Y.; Nagata, K.; Ishihama, A.; Ueda, M.; Yamazaki, S. Anti-influenza virus activity of a lignin fraction from cone of Pinus parviflora Sieb. et Zucc. In Vivo 1992, 6, 491–496. [Google Scholar] [PubMed]
- Fukuchi, K.; Sakagami, H.; Ikeda, M.; Kawazoe, Y.; Oh-hara, T.; Konno, K.; Ichikawa, S.; Hata, N.; Kondo, H.; Nonoyama, M. Inhibition of herpes simplex virus infection by pine cone antitumor substances. Anticancer Res. 1989, 9, 313–318. [Google Scholar] [PubMed]
- Kushida, T.; Makino, T.; Tomomura, M.; Tomomura, A.; Sakagami, H. Enhancement of dectin-2 gene expression by lignin-carbohydrate complex from Lendinus edodes extract (LEM) in mouse macrophage-like cell line. Anticancer Res. 2011, 31, 1241–1248. [Google Scholar] [PubMed]
- Sakagami, H.; Ohkoshi, E.; Amano, S.; Satoh, K.; Kanamoto, T.; Terakubo, S.; Nakashima, H.; Sunaga, K.; Otsuki, T.; Ikeda, H.; et al. Efficient utilization of plant resources by alkaline extraction. Altern. Integr. Med. 2013, 2, 133. [Google Scholar] [CrossRef]
- Ohno, H.; Miyoshi, S.; Araho, D.; Kanamoato, T.; Terakubo, S.; Nakashima, H.; Tsuda, T.; Sunaga, K.; Amano, S.; Ohkoshi, E.; et al. Efficient utilization of licorice root by alkaline extraction. In Vivo 2014, 28, 785–794. [Google Scholar] [PubMed]
S1 | Unkeito (TJ-106) | S11 | Jumihaidokuto (TJ-6) |
S2 | Chotosan (TJ-47) | S12 | Yokuininto (TJ-52) |
S3 | Hochuekkito (TJ-41) | S13 | Shofusan (TJ-22) |
S4 | Hangebyakujutsutemmato (TJ-37) | S14 | Hainosankyuto (TJ-122) |
S5 | Kakkonto (TJ-1) | S15 | Jizusoippo (TJ-59) |
S6 | Shomakakkonto (TJ-101) | S16 | Unseiin (TJ-57) |
S7 | Sokeikakketsuto (TJ-53) | S17 | Rikkosan (TJ-110) |
S8 | Seijobofuto (TJ-58) | S18 | Keigairengyoto (TJ-50) |
S9 | Yokukansan (TJ-54) | S19 | Sansoninto (TJ-103) |
S10 | Orengedokuto (TJ-15) | S20 | Kakkontokasenkyushin’I (TJ-2) |
Test Sample | Viability of HSV- Infected Cells (%) | CC50 | EC50-I | EC50-II | Anti- HSV Activity | Max. Cell Recovery (%) | |
---|---|---|---|---|---|---|---|
SI-I | SI-II | ||||||
Kampo formula (Supplementary Figure S2) (mg/mL) | |||||||
S1 Unkeito | 27 | >3.0 | (-) | 1 | (-) | >3.0 | 51 |
S2 Chotosan | 25 | 2.6 | (-) | >3.0 | (-) | <0.87 | 48 |
S3 Hochuekkito | 25 | >3.0 | (-) | >3.0 | (-) | ><1.0 | 44 |
S4 Hangebyakujutsutemmato | 26 | 1.35 | (-) | >3.0 | (-) | <0.45 | 41 |
S5 Kakkonto | 29 | 1.65 | 0.58 | 0.56 | >5.2 | >5.4 | 78 |
S6 Shomakakkonto | 34 | 2.1 | (-) | >3.0 | (-) | <0.70 | 46 |
S7 Sokeikakketsuto | 29 | >3.0 | (-) | >3.0 | (-) | ><1.0 | 46 |
S8 Seijobofuto | 34 | 0.58 | (-) | >3.0 | (-) | <0.19 | 39 |
S9 Yokukansan | 31 | >3.0 | 2.9 | 1.9 | >1.0 | >1.6 | 66 |
S10 Orengedokuto | 22 | 0.76 | (-) | >3.0 | (-) | <0.25 | 30 |
S11 Jumihaidokuto | 25 | 3 | (-) | 2.8 | (-) | 1.1 | 52 |
S12 Yokuininto | 21 | >3.0 | (-) | 2.4 | (-) | 1.3 | 55 |
S13 Shofusan | 21 | 2.5 | (-) | >3.0 | (-) | <0.83 | 34 |
S14 Hainosankyuto | 24 | 2.6 | (-) | >3.0 | (-) | <0.87 | 33 |
S15 Jizusoippo | 23 | 1.3 | (-) | >3.0 | (-) | <0.43 | 33 |
S16 Unseiin | 23 | 1.5 | (-) | >3.0 | (-) | <0.5 | 29 |
S17 Rikkosan | 21 | 1.8 | (-) | >3.0 | (-) | <0.60 | 34 |
S18 Keigairengyoto | 26 | 1.6 | (-) | >3.0 | (-) | <0.53 | 34 |
S19 Sansoninto | 23 | 1.6 | (-) | >3.0 | (-) | <0.53 | 47 |
S20 Kakkontokasenkyushin’I | 32 | 2 | (-) | >3.0 | (-) | <0.67 | 45 |
Alkaline extracts (mg/mL) | |||||||
SE (Supplementary Table S1) | 20 | 2.6 | 0.7 | 0.5 | 4.5 | 6.8 | 90 |
PCE | 19 | 2 | 0.19 | 0.17 | 13.1 | 14.7 | 82 |
Polyphenols (µM) | |||||||
Resveratrol | 16 | 18 | (-) | >1000 | (-) | <0.018 | 20 |
p-Coumaric acid | 42 | 170 | (-) | >1000 | (-) | <0.17 | 43 |
Curcumin | 22 | 16 | (-) | >100 | (-) | <0.16 | 42 |
Chromones (µM) (Supplementary Table S2) | |||||||
(2a) (Ref. 20) | 9 | >600 | 450 | 400 | >1.3 | >1.5 | 59 |
(3c) (Ref. 20) | 9 | 310 | NT | 300 | NT | 1.0 | 50 |
(14) (Ref. 21) | 11 | 31 | NT | 29 | NT | 1.1 | 51 |
(2) (Ref. 24) | 11 | >1000 | 820 | 640 | >1.2 | >1.6 | 61 |
(8) (Ref. 25) | 23 | 86 | ND | 180 | ND | >3.3 | 54 |
(12) (Ref. 25) | 23 | >600 | ND | 370 | ND | >1.6 | 64 |
Positive controls (µM) | |||||||
ACV | 23 | >30 | 1.3 | 1.1 | >23.1 | >27.3 | 108 |
Tricin | 18 | 10 | (-) | 1.4 | (-) | 7.1 | 68 |
Exposure Time (min) | Viability of HSV- Infected Cells (%) | CC50 (mg/mL) | EC50-I (mg/mL) | EC50-II (mg/mL) | Anti-HSV Activity | Max. Cell Recovery (%) | |||
---|---|---|---|---|---|---|---|---|---|
SI-I | SI-II | ||||||||
SE | 3 | NaHCO3 | 21.3 | 5.8 | 0.62 | 0.51 | 9.4 | 11.4 | 101.7 |
(solution) | 3 | PBS | 24.8 | 12.0 | 0.46 | 0.38 | 26.1 | 31.6 | 98.8 |
PCE | 3 | NaHCO3 | 25.9 | >100 | 0.45 | 0.31 | >222 | >322 | 101.3 |
(powder) | 3 | PBS | 25.9 | >100 | 1.6 | 1.3 | >62.5 | >76.9 | 26.8 |
S5 | 3 | NaHCO3 | 32.7 | >100 | (-) | (-) | (-) | (-) | 88.3 |
(powder) | 3 | PBS | 25.0 | >100 | (-) | (-) | (-) | (-) | 40.6 |
PVP-I | 3 | NaHCO3 | 21.8 | 0.78 | 0.6 | 0.34 | 1.3 | 2.3 | 103.1 |
(solution) | 3 | PBS | 20..2 | 0.28 | 0.14 | 0.09 | 2.0 | 3.1 | 94.3 |
CC50 (µg/mL) | EC50 (µg/mL) | SI | n-Fold | |
---|---|---|---|---|
SE (long exposure) | 627.80 | 6.63 | 95 | 1 |
SE (short exposure 1) | >500 | 0.894 | >560 | >5.9 |
Repeat | 1067 | 0.447 | 2388 | 25.1 |
SE (short exposure 2) | >500 | 1.35 | >369 | >3.9 |
Repeat | 1067 | 0.677 | 1577 | 16.6 |
Positive controls | ||||
AZT (µM) | 41.49 | 0.00817 | 5082 | |
ddC (µM) | 745.32 | 0.390 | 1913 | |
DS | >1000 | 0.0339 | >29485 | |
CRDS | 704.96 | 0.151 | 4666 |
Biological Activity | SE | Lignin–Carbohydrate Complex |
---|---|---|
Anti-inflammatory activity | [37,38] | [32] |
Antiviral activity | [29] | [16,32] |
Antibacterial activity | [29,39] | |
Anti-UV activity | [40] | [41,42] |
Synergism with acyclovir (Antiviral) | [13] | |
Synergism with vitamin C (Anti-UV) | [43] | |
Synergism with vitamin C (antitumor) | [44] | |
Anti-halitosis activity | [45] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fukuchi, K.; Sakagami, H.; Sugita, Y.; Takao, K.; Asai, D.; Terakubo, S.; Takemura, H.; Ohno, H.; Horiuchi, M.; Suguro, M.; et al. Quantification of the Ability of Natural Products to Prevent Herpes Virus Infection. Medicines 2020, 7, 64. https://doi.org/10.3390/medicines7100064
Fukuchi K, Sakagami H, Sugita Y, Takao K, Asai D, Terakubo S, Takemura H, Ohno H, Horiuchi M, Suguro M, et al. Quantification of the Ability of Natural Products to Prevent Herpes Virus Infection. Medicines. 2020; 7(10):64. https://doi.org/10.3390/medicines7100064
Chicago/Turabian StyleFukuchi, Kunihiko, Hiroshi Sakagami, Yoshiaki Sugita, Koichi Takao, Daisuke Asai, Shigemi Terakubo, Hiromu Takemura, Hirokazu Ohno, Misaki Horiuchi, Madoka Suguro, and et al. 2020. "Quantification of the Ability of Natural Products to Prevent Herpes Virus Infection" Medicines 7, no. 10: 64. https://doi.org/10.3390/medicines7100064
APA StyleFukuchi, K., Sakagami, H., Sugita, Y., Takao, K., Asai, D., Terakubo, S., Takemura, H., Ohno, H., Horiuchi, M., Suguro, M., Fujisawa, T., Toeda, K., Oizumi, H., Yasui, T., & Oizumi, T. (2020). Quantification of the Ability of Natural Products to Prevent Herpes Virus Infection. Medicines, 7(10), 64. https://doi.org/10.3390/medicines7100064