Antipyretic, Antinociceptive, and Anti-Inflammatory Activities from Pogostemon benghalensis Leaf Extract in Experimental Wister Rats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Drugs
2.2. Plant Material
2.3. Preparation of Plant Extract
2.4. Animals and Ethical Approval
2.5. Acute Toxicity Studies
2.6. Acetic Acid-Induced Writhing Test
2.7. Thermal Test
2.8. Formalin Test
2.9. Antipyretic Activity
2.10. Anti-Inflammatory Activity
2.11. Data Analysis
3. Results
3.1. Acute Toxicity Study
3.2. Acetic Acid-Induced Writhing Reflex
3.3. Thermal Test
3.4. Formalin Test
3.5. Antipyretic Effect
3.6. Anti-Inflammatory Activity
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Nathan, C. Points of control in inflammation. Nature 2002, 420, 846–852. [Google Scholar] [CrossRef] [PubMed]
- Merskey, H.; Bogduk, N. Classification of Chronic Pain, 2nd ed.; IASP Press, International Association for the Study of Pain: Seattle, WA, USA, 1994; pp. 210–214. [Google Scholar]
- Tirumalasetty, J.; Ubedulla, S.; Chandrasekhar, N.; Kishan, P.; Rasamal, K. Evaluation of antipyretic activity of alcoholic extract of Vitex nigundo leaves in PGE1 induced pyrexia model in Albino rats. J. Chem. Pharm. Res. 2012, 4, 3015–3019. [Google Scholar]
- Punchard, N.A.; Whelan, C.J.; Adcock, I. The Journal of Inflammation. J. Inflamm. 2004, 1, 1. [Google Scholar] [CrossRef] [PubMed]
- Labianca, R.; Sarzi-Puttini, P.; Zuccaro, S.M.; Cherubino, P.; Vellucci, R.; Fornasari, D. Adverse effects associated with non-opioid and opioid treatment in patients with chronic pain. Clin. Drug. Investig. 2012, 32, 53–63. [Google Scholar] [CrossRef]
- Atanasov, A.G.; Waltenberger, B.; Pferschy-Wenzig, E.-M.; Linder, T.; Wawrosch, C.; Uhrin, P.; Temml, V.; Wang, L.; Schwaiger, S.; Heiss, E.H. Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnol. Adv. 2015, 33, 1582–1614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ekor, M. The growing use of herbal medicines: Issues relating to adverse reactions and challenges in monitoring safety. Front. Pharmacol. 2014, 4, 177. [Google Scholar] [CrossRef]
- Gurung, S.; Škalko-Basnet, N. Wound healing properties of Carica papaya latex: In vivo evaluation in mice burn model. J. Ethnopharmacol. 2009, 121, 338–341. [Google Scholar] [CrossRef]
- Bodeker, G.; Ong, C.-K. WHO Global Atlas of Traditional, Complementary and Alternative Medicine; World Health Organization: Kobe, Japan, 2005; Volume 1. [Google Scholar]
- Braun, L.A.; Tiralongo, E.; Wilkinson, J.M.; Spitzer, O.; Bailey, M.; Poole, S.; Dooley, M. Perceptions, use and attitudes of pharmacy customers on complementary medicines and pharmacy practice. BMC Complement. Altern. Med. 2010, 10, 38. [Google Scholar] [CrossRef]
- Liem, A. “I’ve Only Just Heard About It”: Complementary and Alternative Medicine Knowledge and Educational Needs of Clinical Psychologists in Indonesia. Medicina 2019, 55, 333. [Google Scholar] [CrossRef]
- Aryal, S.; Baniya, M.; Danakhu, K.; Kuwar, P.; Gurung, R.; Koirala, N. Total Phenolic, Flavonoid Content and Antioxidant Potential of Wild Vegetables from Western Nepal. Plants 2019, 8, 96. [Google Scholar] [CrossRef]
- Uprety, Y.; Poudel, R.C.; Gurung, J.; Chettri, N.; Chaudhary, R.P. Traditional use and management of NTFPs in Kangchenjunga Landscape: Implications for conservation and livelihoods. J. Ethnobiol. Ethnomed. 2016, 12, 19. [Google Scholar] [CrossRef] [PubMed]
- Dangol, D.R. Economic uses of forest plant resources in western Chitwan, Nepal. Banko Janakari 2002, 12, 56–64. [Google Scholar] [PubMed]
- Manandhar, N.P. Useful Wild Plants of Nepal; Franz Steiner Verlag Wiesbaden GMBH: Kathmandu, Nepal, 1989. [Google Scholar]
- Das, S.; Dash, S.K.; Padhy, S.N. Ethno-medicinal Informations from Orissa State, India, A Review. J. Hum. Ecol. 2003, 14, 165–227. [Google Scholar] [CrossRef]
- Ashwini, S.; Khade, A.; Basawaraj, H.; Shrishail, G. A comprehensive review on Pogostemon benghalensis (Burm. f.) O. Kuntze. Res. Rev. J. Pharmacogn. Phytochem. 2013, 1, 10–15. [Google Scholar]
- Ghimire, K.; Bastakoti, R.R. Ethnomedicinal knowledge and healthcare practices among the Tharus of Nawalparasi district in central Nepal. For. Ecol. Manag. 2009, 257, 2066–2072. [Google Scholar] [CrossRef]
- Patel, M.; Antala, B.; Dowerah, E.; Senthilkumar, R.; Lahkar, M. Antitumor activity of Pogostemon benghalensis Linn. on ehrlich ascites carcinoma tumor bearing mice. J. Cancer. Res. Ther. 2014, 10, 1071–1075. [Google Scholar] [CrossRef] [PubMed]
- Thoppil, J.; Tajo, A.; Minija, J.; Deena, M.; Sreeranjini, K.; Leeja, L.; Sivadasan, M.; Alfarhan, A. Antimicrobial activity of the essential oils of three species of Pogostemon. J. Environ. Biol. 2014, 35, 795. [Google Scholar] [PubMed]
- Taylor, R.S.L.; Manandhar, N.P.; Hudson, J.B.; Towers, G.H.N. Antiviral activities of Nepalese medicinal plants. J. Ethnopharmacol. 1996, 52, 157–163. [Google Scholar] [CrossRef]
- Pahari, S.K.; Singh, S.P.; Banmali, M.P.; Thaler, F.J.L.; Rathour, M.S.S. Ethical Guidelines for the Care and Use of Animals in Health Research in Nepal; Nepal Health Research Council: Kathmandu, Nepal, 2005. [Google Scholar]
- OECD. Test No. 425: Acute Oral Toxicity: Up-and-Down Procedure; OECD: Paris, France, 2008. [Google Scholar]
- Pingsusaen, P.; Kunanusorn, P.; Khonsung, P.; Chiranthanut, N.; Panthong, A.; Rujjanawate, C. Investigation of anti-inflammatory, antinociceptive and antipyretic activities of Stahlianthus involucratus rhizome ethanol extract. J. Ethnopharmacol. 2015, 162, 199–206. [Google Scholar] [CrossRef]
- Sulaiman, M.R.; Zakaria, Z.A.; Bujarimin, A.S.; Somchit, M.N.; Israf, D.A.; Moin, S. Evaluation of Moringa oleifera Aqueous Extract for Antinociceptive and Anti-Inflammatory Activities in Animal Models. Pharm. Biol. 2008, 46, 838–845. [Google Scholar] [CrossRef]
- Roth, J.; Blatteis, C.M. Mechanisms of fever production and lysis: Lessons from experimental LPS fever. Compr. Physiol. 2011, 4, 1563–1604. [Google Scholar]
- Malvar, D.d.C.; Soares, D.M.; Fabrício, A.S.C.; Kanashiro, A.; Machado, R.R.; Figueiredo, M.J.; Rae, G.A.; de Souza, G.E.P. The antipyretic effect of dipyrone is unrelated to inhibition of PGE(2) synthesis in the hypothalamus. Br. J. Pharmacol. 2011, 162, 1401–1409. [Google Scholar] [CrossRef] [PubMed]
- Do Malvar, D.C.; Aguiar, F.A.; de Vaz, A.L.L.; Assis, D.C.; de Melo, M.C.; Jabor, V.A.; Kalapothakis, E.; Ferreira, S.H.; Clososki, G.C.; de Souza, G.E. Dipyrone metabolite 4-MAA induces hypothermia and inhibits PGE2-dependent and -independent fever while 4-AA only blocks PGE2-dependent fever. Br. J. Pharmacol. 2014, 171, 3666–3679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Backhouse, N.; Delporte, C.; Givernau, M.; Cassels, B.; Valenzuela, A.; Speisky, H. Anti-inflammatory and antipyretic effects of boldine. Agents Actions 1994, 42, 114–117. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.-P.; Huang, W.-T.; Cheng, B.-C.; Hsu, C.-C.; Lin, M.-T. The flavonoid baicalin protects against cerebrovascular dysfunction and brain inflammation in experimental heatstroke. Neuropharmacology 2007, 52, 1024–1033. [Google Scholar] [CrossRef]
- Dickenson, A. Mechanisms of central hypersensitivity: Excitatory amino acid mechanisms and their control. In The Pharmacology of Pain; Springer: Geneva, Switzerland, 1997; pp. 167–210. [Google Scholar]
- Umukoro, S.; Ashorobi, R.B. Further studies on the antinociceptive action of aqueous seed extract of Aframomum melegueta. J. Ethnopharmacol. 2007, 109, 501–504. [Google Scholar] [CrossRef]
- Deraedt, R.; Jouquey, S.; Delevallée, F.; Flahaut, M. Release of prostaglandins E and F in an algogenic reaction and its inhibition. Eur. J Pharmacol. 1980, 61, 17–24. [Google Scholar] [CrossRef]
- Adzu, B.; Amos, S.; Kapu, S.D.; Gamaniel, K.S. Anti-inflammatory and anti-nociceptive effects of Sphaeranthus senegalensis. J. Ethnopharmacol. 2003, 84, 169–173. [Google Scholar] [CrossRef]
- Oh, Y.-C.; Jeong, Y.H.; Cho, W.-K.; Ha, J.-H.; Gu, M.J.; Ma, J.Y. Anti-Inflammatory and Analgesic Effects of Pyeongwisan on LPS-Stimulated Murine Macrophages and Mouse Models of Acetic Acid-Induced Writhing Response and Xylene-Induced Ear Edema. Int. J. Mol. Sci. 2015, 16, 1232–1251. [Google Scholar] [CrossRef] [Green Version]
- Jia, Q.; Su, W.; Peng, W.; Li, P.; Wang, Y. Anti-diarrhoea and analgesic activities of the methanol extract and its fractions of Jasminum amplexicaule Buch.-Ham.(Oleaceae). J. Ethnopharmacol. 2008, 119, 299–304. [Google Scholar] [CrossRef]
- Pini, L.A.; Vitale, G.; Ottani, A.; Sandrini, M. Naloxone-reversible antinociception by paracetamol in the rat. J. Pharmacol. Exp. Ther. 1997, 280, 934–940. [Google Scholar] [PubMed]
- Patel, R.; Montagut-Bordas, C.; Dickenson, A.H. Calcium channel modulation as a target in chronic pain control. Br. J. Pharmacol. 2018, 175, 2173–2184. [Google Scholar] [CrossRef] [PubMed]
- Sarmento-Neto, J.F.; Do Nascimento, L.G.; Felipe, C.F.B.; De Sousa, D.P. Analgesic Potential of Essential Oils. Molecules 2016, 21, 20. [Google Scholar] [CrossRef]
- Maione, F.; Minosi, P.; Di Giannuario, A.; Raucci, F.; Chini, M.G.; De Vita, S.; Bifulco, G.; Mascolo, N.; Pieretti, S. Long-Lasting Anti-Inflammatory and Antinociceptive Effects of Acute Ammonium Glycyrrhizinate Administration: Pharmacological, Biochemical, and Docking Studies. Molecules 2019, 24, 2453. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Sahbaie, P.; Zheng, M.; Ritchie, J.; Peltz, G.; Mogil, J.S.; Clark, J.D. Expression genetics identifies spinal mechanisms supporting formalin late phase behaviors. Mol. Pain 2010, 6, 11. [Google Scholar] [CrossRef] [PubMed]
- Gutstein, H.B. Opioid analgesics. In Goodman & Gilman’s the Pharmacological Basis of Therapeutics, 11th ed.; Laurence, L., Brunton, J.S., Lazo, K., Parker, L., Eds.; The McGraw-Hill Companies, Inc.: New York, NY, USA, 2005; pp. 569–619. [Google Scholar]
- Khan, I.; Nisar, M.; Ebad, F.; Nadeem, S.; Saeed, M.; Khan, H.; Samiullah; Khuda, F.; Karim, N.; Ahmad, Z. Anti-inflammatory activities of Sieboldogenin from Smilax china Linn.: Experimental and computational studies. J. Ethnopharmacol. 2009, 121, 175–177. [Google Scholar] [CrossRef] [PubMed]
- Koirala, N.; Thuan, N.H.; Ghimire, G.P.; Thang, D.V.; Sohng, J.K. Methylation of flavonoids: Chemical structures, bioactivities, progress and perspectives for biotechnological production. Enzyme Microb. Technol. 2016, 86, 103–116. [Google Scholar] [CrossRef] [PubMed]
- Koirala, N.; Pandey, R.P.; Parajuli, P.; Jung, H.J.; Sohng, J.K. Methylation and subsequent glycosylation of 7,8-dihydroxyflavone. J. Biotechnol. 2014, 184, 128–137. [Google Scholar] [CrossRef] [PubMed]
Treatment Groups | Dose (mg/kg, p.o.) | No. Writhings | Inhibition % |
---|---|---|---|
Control | 37.33 ± 1.03 | ||
PBME | 100 | 25.00 ± 1.41 * | 33.03 |
200 | 18.50 ± 1.05 * | 50.44 | |
400 | 11.33 ± 0.81 * | 69.65 | |
PBME (400 mg) + naloxone (5 mg/kg) | 13.11 ± 0.89 | 64.88 | |
Indomethacin (10 mg/kg) | 10 | 11.67± 1.21 * | 68.74 |
Sample | Dose (mg/kg, p.o) | Latency Time (min) | ||||
---|---|---|---|---|---|---|
0 | 30 | 60 | 120 | 240 | ||
Control | 14.8 ± 0.7 | 15.4 ± 1.0 | 15.2 ± 0.8 | 14.8 ± 1.0 | 15.2 ± 0.7 | |
PBME | 100 | 15.0 ± 1.1 | 16.1 ± 0.7 | 18.1 ± 1.1 * | 18.4 ± 1.2 *,#,¤ | 17.3 ±1.2 *,#,¤ |
200 | 15.2 ± 0.8 | 16.0 ± 1.41 | 17.6 ± 1.5 * | 20.4 ± 1.2 *,#,¤ | 19.2 ± 1.5 *#,¤ | |
400 | 15.0 ± 0.5 * | 21.0 ± 0.7 * | 24.0 ± 0.7 *,# | 26.0 ± 1.0 *,# | 25.0 ± 0.9 *,# | |
Morphine | 5 | 15.0 ± 1.2 * | 22.0 ± 1.2 *,# | 25.0 ± 1.6 *,#,¤ | 27.0 ± 0.8 *,#,¤ | 26.0 ± 1.1 *,# |
PBME (400 mg) + naloxone (5mg/kg) | 14.8 ± 0.7 | 20.4 ± 1.4 *,# | 23.2 ± 0.7 *,# | 24.9 ± 0.5 *,# | 24.0 ± 0.5 *,# | |
Morphine (5 mg/kg) + naloxone (5 mg/kg) | 15.0 ± 0.2 *,¤ | 15.3 ± 0.6 *,¤ | 15.2 ± 0.8 *,¤ | 15.1 ± 0.3 *,¤ | 15.1 ± 0.7 *,¤ |
Sample | Dose (mg/kg, p.o.) | Duration of Licking (s) (Inhibition %) | |
---|---|---|---|
Initial Phase (05–10 min) | Late Phase (20–30 min) | ||
Control | 66.0 ± 1.58 | 63.6 ± 3.28 | |
PBME | 100 | 34.0 ± 1.58 * (48.48) | 27.8 ± 0.83 * (56.29) |
200 | 26.2± 0.83 * (60.303) | 20.4 ± 1.51 * (67.925) | |
400 | 17.4 ± 0.55 * (73.64) | 9.40 ± 1.14 * (85.22) | |
Aspirin | 100 | 63.0 ± 1.00 (04.54) | 7.4 ± 1.14 * (88.36) |
Morphine | 5 | 15.8 ± 0.84 * (76.06) | 9.8 ± 1.30 * (84.59) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aryal, S.; Adhikari, B.; Panthi, K.; Aryal, P.; Mallik, S.K.; Bhusal, R.P.; Salehi, B.; Setzer, W.N.; Sharifi-Rad, J.; Koirala, N. Antipyretic, Antinociceptive, and Anti-Inflammatory Activities from Pogostemon benghalensis Leaf Extract in Experimental Wister Rats. Medicines 2019, 6, 96. https://doi.org/10.3390/medicines6040096
Aryal S, Adhikari B, Panthi K, Aryal P, Mallik SK, Bhusal RP, Salehi B, Setzer WN, Sharifi-Rad J, Koirala N. Antipyretic, Antinociceptive, and Anti-Inflammatory Activities from Pogostemon benghalensis Leaf Extract in Experimental Wister Rats. Medicines. 2019; 6(4):96. https://doi.org/10.3390/medicines6040096
Chicago/Turabian StyleAryal, Sushant, Balkrishna Adhikari, Kasmira Panthi, Pramod Aryal, Shyam Kumar Mallik, Ram Prasad Bhusal, Bahare Salehi, William N. Setzer, Javad Sharifi-Rad, and Niranjan Koirala. 2019. "Antipyretic, Antinociceptive, and Anti-Inflammatory Activities from Pogostemon benghalensis Leaf Extract in Experimental Wister Rats" Medicines 6, no. 4: 96. https://doi.org/10.3390/medicines6040096
APA StyleAryal, S., Adhikari, B., Panthi, K., Aryal, P., Mallik, S. K., Bhusal, R. P., Salehi, B., Setzer, W. N., Sharifi-Rad, J., & Koirala, N. (2019). Antipyretic, Antinociceptive, and Anti-Inflammatory Activities from Pogostemon benghalensis Leaf Extract in Experimental Wister Rats. Medicines, 6(4), 96. https://doi.org/10.3390/medicines6040096