Ganoderma spp.: A Promising Adjuvant Treatment for Breast Cancer
Abstract
:1. Introduction
2. In Vitro Studies
2.1. Cytotoxic, Antiproliferative, Cytostatic and Antiapoptotic Effects of Ganoderma spp.
2.2. Antimigration and Anti-Invasion Potential of Ganoderma spp.
3. Signaling Studies
3.1. HER2 Signaling Pathways
3.2. PI3K/AKT/mTOR
3.3. NFκB
3.4. AP-1
3.5. Proteases
4. Synergistic Effects between Ganoderma spp. and Antineoplastic Drugs
5. Ganoderma spp. and DNA Damage Protection
Antioxidant Potential of Ganoderma spp.
6. In vivo Studies
6.1. Antitumor and Antimetastasis Effects of Ganoderma spp.
6.2. Chemoprotective and Chemopreventive Effects
6.2.1. Animal Models
6.2.2. BC Patients
7. Ganoderma spp. and BC Patient Behavioral Comorbidities
8. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Yue, Q.X.; Song, X.Y.; Ma, C.; Feng, L.X.; Guan, S.H.; Wu, W.Y.; Yang, M.; Jiang, B.H.; Liu, X.; Cui, Y.J.; et al. Effects of triterpenes from Ganoderma lucidum on protein expression profile of hela cells. Phytomedicine 2010, 17, 606–613. [Google Scholar] [CrossRef] [PubMed]
- Xing, Z.; Yu, Q.; Zhang, J.; Pan, Y. Comparative study on triterpenes in different Ganoderma species. Zhong Yao Cai 2004, 27, 575–576. [Google Scholar] [PubMed]
- Shi, L.; Ren, A.; Mu, D.; Zhao, M. Current progress in the study on biosynthesis and regulation of ganoderic acids. Appl. Microbiol. Biotechnol. 2010, 88, 1243–1251. [Google Scholar] [CrossRef] [PubMed]
- Yuen, J.W.; Gohel, M.D. Anticancer effects of Ganoderma lucidum: A review of scientific evidence. Nutr. Cancer 2005, 53, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Chen, X.; Zhong, Z.; Chen, L.; Wang, Y. Ganoderma lucidum polysaccharides: Immunomodulation and potential anti-tumor activities. Am. J. Chin. Med. 2011, 39, 15–27. [Google Scholar] [CrossRef] [PubMed]
- Goldhirsch, A.; Wood, W.C.; Coates, A.S.; Gelber, R.D.; Thurlimann, B.; Senn, H.J. Strategies for subtypes–Dealing with the diversity of breast cancer: Highlights of the St Gallen international expert consensus on the primary therapy of early breast cancer 2011. Ann. Oncol. 2011, 22, 1736–1747. [Google Scholar] [CrossRef] [PubMed]
- Perou, C.M.; Sorlie, T.; Eisen, M.B.; van de Rijn, M.; Jeffrey, S.S.; Rees, C.A.; Pollack, J.R.; Ross, D.T.; Johnsen, H.; Akslen, L.A.; et al. Molecular portraits of human breast tumours. Nature 2000, 406, 747–752. [Google Scholar] [CrossRef] [PubMed]
- Reis-Filho, J.S.; Pusztai, L. Gene expression profiling in breast cancer: Classification, prognostication, and prediction. Lancet 2011, 378, 1812–1823. [Google Scholar] [CrossRef]
- Perou, C.M.; Borresen-Dale, A.L. Systems biology and genomics of breast cancer. Cold Spring Harb. Perspect. Biol. 2011, 3. [Google Scholar] [CrossRef] [PubMed]
- Blows, F.M.; Driver, K.E.; Schmidt, M.K.; Broeks, A.; van Leeuwen, F.E.; Wesseling, J.; Cheang, M.C.; Gelmon, K.; Nielsen, T.O.; Blomqvist, C.; et al. Subtyping of breast cancer by immunohistochemistry to investigate a relationship between subtype and short and long term survival: A collaborative analysis of data for 10,159 cases from 12 studies. PLoS Med. 2010, 7, e1000279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheang, M.C.; Chia, S.K.; Voduc, D.; Gao, D.; Leung, S.; Snider, J.; Watson, M.; Davies, S.; Bernard, P.S.; Parker, J.S.; et al. Ki67 index, HER2 status, and prognosis of patients with luminal b breast cancer. J. Natl. Cancer Inst. 2009, 101, 736–750. [Google Scholar] [CrossRef] [PubMed]
- Voduc, K.D.; Cheang, M.C.; Tyldesley, S.; Gelmon, K.; Nielsen, T.O.; Kennecke, H. Breast cancer subtypes and the risk of local and regional relapse. J. Clin. Oncol. 2010, 28, 1684–1691. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.; Kaldis, P. Cdks, cyclins and CKIs: Roles beyond cell cycle regulation. Development 2013, 140, 3079–3093. [Google Scholar] [CrossRef] [PubMed]
- Pucci, B.; Kasten, M.; Giordano, A. Cell cycle and apoptosis. Neoplasia (New York, N.Y.) 2000, 2, 291–299. [Google Scholar] [CrossRef]
- Kerr, J.F.; Wyllie, A.H.; Currie, A.R. Apoptosis: A basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer 1972, 26, 239–257. [Google Scholar] [CrossRef] [PubMed]
- Yue, G.G.; Fung, K.P.; Tse, G.M.; Leung, P.C.; Lau, C.B. Comparative studies of various Ganoderma species and their different parts with regard to their antitumor and immunomodulating activities in vitro. J. Altern. Complement. Med. 2006, 12, 777–789. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Slivova, V.; Harvey, K.; Valachovicova, T.; Sliva, D. Ganoderma lucidum suppresses growth of breast cancer cells through the inhibition of Akt/Nf-Kappab signaling. Nutr. Cancer 2004, 49, 209–216. [Google Scholar] [CrossRef] [PubMed]
- Lu, Q.Y.; Sartippour, M.R.; Brooks, M.N.; Zhang, Q.; Hardy, M.; Go, V.L.; Li, F.P.; Heber, D. Ganoderma lucidum spore extract inhibits endothelial and breast cancer cells in vitro. Oncol. Rep. 2004, 12, 659–662. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Slivova, V.; Sliva, D. Ganoderma lucidum inhibits proliferation of human breast cancer cells by down-regulation of estrogen receptor and nf-kappab signaling. Int. J. Oncol. 2006, 29, 695–703. [Google Scholar] [PubMed]
- Martinez-Montemayor, M.M.; Acevedo, R.R.; Otero-Franqui, E.; Cubano, L.A.; Dharmawardhane, S.F. Ganoderma lucidum (Reishi) inhibits cancer cell growth and expression of key molecules in inflammatory breast cancer. Nutr. Cancer 2011, 63, 1085–1094. [Google Scholar] [CrossRef] [PubMed]
- Suárez-Arroyo, I.J.; Riosfuller, T.J.; Feliz-Mosquea, Y.R.; Lacourt-Ventura, M.; Leal-Alviarez, D.J.; Maldonado-Martinez, G.; Cubano, L.A.; Martínez-Montemayor, M.M. Ganoderma lucidum combined with the EGFR tyrosine kinase inhibitor, erlotinib synergize to reduce inflammatory breast cancer progression. J. Cancer 2016, 7, 500–511. [Google Scholar] [CrossRef] [PubMed]
- Robertson, F.M.; Bondy, M.; Yang, W.; Yamauchi, H.; Wiggins, S.; Kamrudin, S.; Krishnamurthy, S.; Le-Petross, H.; Bidaut, L.; Player, A.N.; et al. Inflammatory breast cancer: The disease, the biology, the treatment. CA Cancer J. Clin. 2010, 60, 351–375. [Google Scholar] [CrossRef] [PubMed]
- Suarez-Arroyo, I.J.; Rosario-Acevedo, R.; Aguilar-Perez, A.; Clemente, P.L.; Cubano, L.A.; Serrano, J.; Schneider, R.J.; Martínez-Montemayor, M.M. Anti-tumor effects of Ganoderma lucidum (Reishi) in inflammatory breast cancer in in vivo and in vitro models. PLoS ONE 2013, 8, e57431. [Google Scholar] [CrossRef] [PubMed]
- Gurunathan, S.; Raman, J.; Abd Malek, S.N.; John, P.A.; Vikineswary, S. Green synthesis of silver nanoparticles using ganoderma neo-japonicum imazeki: A potential cytotoxic agent against breast cancer cells. Int. J. Nanomed. 2013, 8, 4399–4413. [Google Scholar]
- Jiang, J.; Wojnowski, R.; Jedinak, A.; Sliva, D. Suppression of proliferation and invasive behavior of human metastatic breast cancer cells by dietary supplement breastdefend. Integr. Cancer Ther. 2011, 10, 192–200. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Ahn, N.S.; Yang, X.; Lee, Y.S.; Kang, K.S. Ganoderma lucidum extract induces cell cycle arrest and apoptosis in MCF-7 human breast cancer cell. Int. J. Cancer 2002, 102, 250–253. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.W.; Gao, J.L.; Guan, J.; Qian, Z.M.; Feng, K.; Li, S.P. Evaluation of antiproliferative activities and action mechanisms of extracts from two species of ganoderma on tumor cell lines. J. Agric. Food Chem. 2009, 57, 3087–3093. [Google Scholar] [CrossRef] [PubMed]
- Kuo, H.P.; Hsu, S.C.; Ou, C.C.; Li, J.W.; Tseng, H.H.; Chuang, T.C.; Liu, J.Y.; Chen, S.J.; Su, M.H.; Cheng, Y.C.; et al. Ganoderma tsugae extract inhibits growth of her2-overexpressing cancer cells via modulation of HER2/PI3K/Akt signaling pathway. Evid. Based Complement. Alternat. Med. 2013, 2013, 219472. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.-T.; Lu, F.-H.; Su, Y.-C.; Ou, H.-Y.; Hung, H.-C.; Wu, J.-S.; Yang, Y.-C.; Chang, C.-J. In vivo and in vitro anti-tumor effects of fungal extracts. Molecules 2014, 19. [Google Scholar] [CrossRef] [PubMed]
- Atay, S.; Ak, H.; Kalmis, E.; Kayalar, H.; Aydin, H.H. Diverse effects of the lingzhi or reishi medicinal mushroom, Ganoderma lucidum (Agaricomycetes), in combination with tamoxifen citrate and doxorubicin in MCF-7 breast cancer cells. Int. J. Med. Mushrooms 2016, 18, 489–499. [Google Scholar] [CrossRef]
- Gonul, O.; Aydin, H.H.; Kalmis, E.; Kayalar, H.; Ozkaya, A.B.; Atay, S.; Ak, H. Effects of Ganoderma lucidum (higher basidiomycetes) extracts on the mirna profile and telomerase activity of the MCF-7 breast cancer cell line. Int. J. Med. Mushrooms 2015, 17, 231–239. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Jedinak, A.; Sliva, D. Ganodermanontriol (GDNT) exerts its effect on growth and invasiveness of breast cancer cells through the down-regulation of CDC20 and uPA. Biochem. Biophys. Res. Commun. 2011, 415, 325–329. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zhang, J.; Wan, L.; Zhou, X.; Wang, Z.; Wei, W. Targeting CDC20 as a novel cancer therapeutic strategy. Pharmacol. Ther. 2015, 151, 141–151. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; Qian, Z.; Guo, J.; Hu, D.; Bao, J.; Xie, J.; Xu, W.; Lu, J.; Chen, X.; Wang, Y. Ganoderma lucidum extract induces G1 cell cycle arrest, and apoptosis in human breast cancer cells. Am. J. Chin. Med. 2012, 40, 631–642. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.S.; Lu, J.J.; Guo, J.J.; Li, Y.B.; Tan, W.; Dang, Y.Y.; Zhong, Z.F.; Xu, Z.T.; Chen, X.P.; Wang, Y.T. Ganoderic acid DM, a natural triterpenoid, induces DNA damage, G1 cell cycle arrest and apoptosis in human breast cancer cells. Fitoterapia 2012, 83, 408–414. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Wang, Y.; Wang, X.; Li, J.; Cui, H.; Niu, M. Ganoderic acids suppress growth and angiogenesis by modulating the Nf-kappab signaling pathway in breast cancer cells. Int. J. Clin. Pharmacol. Ther. 2012, 50, 712–721. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.-S.; Song, Y.-L.; Yin, Z.-Q.; Guo, J.-J.; Wang, S.-P.; Zhao, W.-W.; Chen, X.-P.; Zhang, Q.-W.; Lu, J.-J.; Wang, Y.-T. Ganoderiol A-enriched extract suppresses migration and adhesion of MDA-MB-231 cells by inhibiting FAK-SRC-paxillin cascade pathway. PLoS ONE 2013, 8, e76620. [Google Scholar] [CrossRef] [PubMed]
- Peng, X.; Liu, J.; Xia, J.; Wang, C.; Li, X.; Deng, Y.; Bao, N.; Zhang, Z.; Qiu, M. Lanostane triterpenoids from Ganoderma hainanense J. D. Zhao. Phytochemistry 2015, 114, 137–145. [Google Scholar] [CrossRef] [PubMed]
- Shang, D.; Zhang, J.; Wen, L.; Li, Y.; Cui, Q. Preparation, characterization, and antiproliferative activities of the Se-containing polysaccharide SeGLP-2B-1 from Se-enriched Ganoderma lucidum. J. Agric. Food Chem. 2009, 57, 7737–7742. [Google Scholar] [CrossRef] [PubMed]
- Shang, D.; Li, Y.; Wang, C.; Wang, X.; Yu, Z.; Fu, X. A novel polysaccharide from Se-enriched Ganoderma lucidum induces apoptosis of human breast cancer cells. Oncol. Rep. 2011, 25, 267–272. [Google Scholar] [CrossRef] [PubMed]
- Wachtel-Galor, S.; Yuen, J.; Buswell, J.A.; Benzie, I.F.F. Ganoderma lucidum (Lingzhi or Reishi): A medicinal mushroom. In Herbal medicine: Biomolecular and clinical aspects, 2nd ed.; Benzie, I.F.F., Wachtel-Galor, S., Eds.; CRC Press/Taylor & Francis: Boca Raton, FL, USA, 2011; pp. 175–199. [Google Scholar]
- Yeh, C.H.; Chen, H.C.; Yang, J.J.; Chuang, W.I.; Sheu, F. Polysaccharides PS-G and protein LZ-8 from reishi (Ganoderma lucidum) exhibit diverse functions in regulating murine macrophages and T lymphocytes. J. Agric. Food Chem. 2010, 58, 8535–8544. [Google Scholar] [CrossRef] [PubMed]
- Haak-Frendscho, M.; Kino, K.; Sone, T.; Jardieu, P. Ling zhi-8: A novel T cell mitogen induces cytokine production and upregulation of ICAM-1 expression. Cell Immunol. 1993, 150, 101–113. [Google Scholar] [CrossRef] [PubMed]
- van der Hem, L.G.; van der Vliet, J.A.; Bocken, C.F.; Kino, K.; Hoitsma, A.J.; Tax, W.J. Ling zhi-8: Studies of a new immunomodulating agent. Transplantation 1995, 60, 438–443. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.L.; Liang, Y.C.; Tseng, Y.S.; Huang, H.Y.; Chou, S.Y.; Hseu, R.S.; Huang, C.T.; Chiang, B.L. An immunomodulatory protein, ling zhi-8, induced activation and maturation of human monocyte-derived dendritic cells by the Nf-kappab and mapk pathways. J. Leukoc. Biol. 2009, 86, 877–889. [Google Scholar] [CrossRef] [PubMed]
- Kino, K.; Yamashita, A.; Yamaoka, K.; Watanabe, J.; Tanaka, S.; Ko, K.; Shimizu, K.; Tsunoo, H. Isolation and characterization of a new immunomodulatory protein, ling zhi-8 (LZ-8), from Ganoderma lucidium. J. Biol. Chem. 1989, 264, 472–478. [Google Scholar] [PubMed]
- Wu, C.T.; Lin, T.Y.; Hsu, H.Y.; Sheu, F.; Ho, C.M.; Chen, E.I. Ling zhi-8 mediates p53-dependent growth arrest of lung cancer cells proliferation via the ribosomal protein S7-MDM2-p53 pathway. Carcinogenesis 2011, 32, 1890–1896. [Google Scholar] [CrossRef] [PubMed]
- Liang, C.; Li, H.; Zhou, H.; Zhang, S.; Liu, Z.; Zhou, Q.; Sun, F. Recombinant LZ-8 from Ganoderma lucidum induces endoplasmic reticulum stress-mediated autophagic cell death in SGC-7901 human gastric cancer cells. Oncol. Rep. 2012, 27, 1079–1089. [Google Scholar] [PubMed]
- Hsu, H.Y.; Hua, K.F.; Lin, C.C.; Lin, C.H.; Hsu, J.; Wong, C.H. Extract of reishi polysaccharides induces cytokine expression via TLR4-modulated protein kinase signaling pathways. J. Immunol. 2004, 173, 5989–5999. [Google Scholar] [CrossRef] [PubMed]
- Liao, S.F.; Liang, C.H.; Ho, M.Y.; Hsu, T.L.; Tsai, T.I.; Hsieh, Y.S.; Tsai, C.M.; Li, S.T.; Cheng, Y.Y.; Tsao, S.M.; et al. Immunization of fucose-containing polysaccharides from reishi mushroom induces antibodies to tumor-associated globo H-series epitopes. Proc. Natl. Acad. Sci. USA 2013, 110, 13809–13814. [Google Scholar] [CrossRef] [PubMed]
- Tsao, S.M.; Hsu, H.Y. Fucose-containing fraction of ling-zhi enhances lipid rafts-dependent ubiquitination of TGFβ receptor degradation and attenuates breast cancer tumorigenesis. Sci. Rep. 2016, 6. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.H.; Kim, J.S.; Kim, Z.H.; Huang, R.B.; Chae, Y.L.; Wang, R.S. Khz-cp (crude polysaccharide extract obtained from the fusion of Ganoderma lucidum and Polyporus umbellatus mycelia) induces apoptosis by increasing intracellular calcium levels and activating P38 and NADPH oxidase-dependent generation of reactive oxygen species in SNU-1 cells. BMC Complement Altern. Med. 2014, 14. [Google Scholar] [CrossRef]
- Kim, T.H.; Kim, J.S.; Kim, Z.H.; Huang, R.B.; Chae, Y.L.; Wang, R.S. Induction of apoptosis in MCF7 human breast cancer cells by khz (fusion of Ganoderma lucidum and Polyporus umbellatus mycelium). Mol. Med. Rep. 2016, 13, 1243–1249. [Google Scholar] [PubMed]
- Li, Q.Z.; Wang, X.F.; Zhou, X.W. Recent status and prospects of the fungal immunomodulatory protein family. Crit. Rev. Biotechnol. 2011, 31, 365–375. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Kong, Y.Y.; Chen, X.; Guo, M.Y.; Bai, X.H.; Lu, Y.J.; Li, W.; Zhou, X.W. Recombinant fip-gat, a fungal immunomodulatory protein from Ganoderma atrum, induces growth inhibition and cell death in breast cancer cells. J. Agric. Food Chem. 2016, 64, 2690–2698. [Google Scholar] [CrossRef] [PubMed]
- Friedl, P.; Wolf, K. Tumour-cell invasion and migration: Diversity and escape mechanisms. Nat. Rev. Cancer 2003, 3, 362–374. [Google Scholar] [CrossRef] [PubMed]
- Thyagarajan, A.; Zhu, J.; Sliva, D. Combined effect of green tea and Ganoderma lucidum on ivasive behavior of breast cancer cells. Int. J. Oncol. 2007, 30, 963–970. [Google Scholar] [PubMed]
- Sliva, D.; Sedlak, M.; Slivova, V.; Valachovicova, T.; Lloyd, F.P., Jr.; Ho, N.W. Biologic activity of spores and dried powder from Ganoderma lucidum for the inhibition of highly invasive human breast and prostate cancer cells. J. Altern. Complement Med. 2003, 9, 491–497. [Google Scholar] [CrossRef] [PubMed]
- Sliva, D.; Labarrere, C.; Slivova, V.; Sedlak, M.; Lloyd, F.P., Jr.; Ho, N.W. Ganoderma lucidum suppresses motility of highly invasive breast and prostate cancer cells. Biochem. Biophys. Res. Commun. 2002, 298, 603–612. [Google Scholar] [CrossRef]
- Slivova, V.; Valachovicova, T.; Jiang, J.; Sliva, D. Ganoderma lucidum inhibits invasiveness of breast cancer cell. J. Cancer Integr. Med. 2004, 2, 25–30. [Google Scholar]
- Jiang, J.; Grieb, B.; Thyagarajan, A.; Sliva, D. Ganoderic acids suppress growth and invasive behavior of breast cancer cells by modulating ap-1 and nf-kappab signaling. Int. J. Mol. Med. 2008, 21, 577–584. [Google Scholar] [PubMed]
- Thyagarajan, A.; Jiang, J.; Hopf, A.; Adamec, J.; Sliva, D. Inhibition of oxidative stress-induced invasiveness of cancer cells by Ganoderma lucidum is mediated through the suppression of interleukin-8 secretion. Int. J. Mol. Med. 2006, 18, 657–664. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Sliva, D. Novel medicinal mushroom blend suppresses growth and invasiveness of human breast cancer cells. Int. J. Oncol. 2010, 37, 1529–1536. [Google Scholar] [PubMed]
- Lamouille, S.; Xu, J.; Derynck, R. Molecular mechanisms of epithelial-mesenchymal transition. Nat. Rev. Mol. Cell Biol. 2014, 15, 178–196. [Google Scholar] [CrossRef] [PubMed]
- Krausz, E.; de Hoogt, R.; Gustin, E.; Cornelissen, F.; Grand-Perret, T.; Janssen, L.; Vloemans, N.; Wuyts, D.; Frans, S.; Axel, A.; et al. Translation of a tumor microenvironment mimicking 3d tumor growth co-culture assay platform to high-content screening. J. Biomol. Screen 2013, 18, 54–66. [Google Scholar] [CrossRef] [PubMed]
- Ivascu, A.; Kubbies, M. Rapid generation of single-tumor spheroids for high-throughput cell function and toxicity analysis. J. Biomol. Screen 2006, 11, 922–932. [Google Scholar] [CrossRef] [PubMed]
- Sutherland, R.M. Cell and environment interactions in tumor microregions: The multicell spheroid model. Science 1988, 240, 177–184. [Google Scholar] [CrossRef] [PubMed]
- Hoffmeyer, M.R.; Wall, K.M.; Dharmawardhane, S.F. In vitro analysis of the invasive phenotype of SUM 149, an inflammatory breast cancer cell line. Cancer Cell Int. 2005, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sliva, D.; English, D.; Lyons, D.; Lloyd, F.P., Jr. Protein kinase c induces motility of breast cancers by upregulating secretion of urokinase-type plasminogen activator through activation of ap-1 and nf-kappab. Biochem. Biophys. Res. Commun. 2002, 290, 552–557. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Thyagarajan-Sahu, A.; Loganathan, J.; Eliaz, I.; Terry, C.; Sandusky, G.E.; Sliva, D. Breastdefend prevents breast-to-lung cancer metastases in an orthotopic animal model of triple-negative human breast cancer. Oncol. Rep. 2012, 28, 1139–1145. [Google Scholar] [PubMed]
- Lv, Q.; Meng, Z.; Yu, Y.; Jiang, F.; Guan, D.; Liang, C.; Zhou, J.; Lu, A.; Zhang, G. Molecular mechanisms and translational therapies for human epidermal receptor 2 positive breast cancer. Int. J. Mol. Sci. 2016, 17. [Google Scholar] [CrossRef] [PubMed]
- Slamon, D.J. Studies of the HER-2/neu proto-oncogene in human breast cancer. Cancer Invest. 1990, 8, 253–254. [Google Scholar] [CrossRef] [PubMed]
- Sliva, D.; Rizzo, M.T.; English, D. Phosphatidylinositol 3-kinase and nf-kappab regulate motility of invasive mda-mb-231 human breast cancer cells by the secretion of urokinase-type plasminogen activator. J. Biol. Chem. 2002, 277, 3150–3157. [Google Scholar] [CrossRef] [PubMed]
- Cully, M.; You, H.; Levine, A.J.; Mak, T.W. Beyond pten mutations: The pi3k pathway as an integrator of multiple inputs during tumorigenesis. Nat. Rev. Cancer 2006, 6, 184–192. [Google Scholar] [CrossRef] [PubMed]
- Heerding, D.A.; Rhodes, N.; Leber, J.D.; Clark, T.J.; Keenan, R.M.; Lafrance, L.V.; Li, M.; Safonov, I.G.; Takata, D.T.; Venslavsky, J.W.; et al. Identification of 4-(2-(4-amino-1,2,5-oxadiazol-3-yl)-1-ethyl-7-{[(3s)-3-piperidinylmethyl]oxy}-1h- imidazo[4,5-c]pyridin-4-yl)-2-methyl-3-butyn-2-ol (gsk690693), a novel inhibitor of akt kinase. J. Med. Chem. 2008, 51, 5663–5679. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.H.; Sarbassov, D.D.; Ali, S.M.; Latek, R.R.; Guntur, K.V.; Erdjument-Bromage, H.; Tempst, P.; Sabatini, D.M. Gbetal, a positive regulator of the rapamycin-sensitive pathway required for the nutrient-sensitive interaction between raptor and mtor. Mol. Cell 2003, 11, 895–904. [Google Scholar] [CrossRef]
- Laplante, M.; Sabatini, D.M. Mtor signaling in growth control and disease. Cell 2012, 149, 274–293. [Google Scholar] [CrossRef] [PubMed]
- Silvera, D.; Arju, R.; Darvishian, F.; Levine, P.H.; Zolfaghari, L.; Goldberg, J.; Hochman, T.; Formenti, S.C.; Schneider, R.J. Essential role for eif4gi overexpression in the pathogenesis of inflammatory breast cancer. Nat. Cell Biol. 2009, 11, 903–908. [Google Scholar] [CrossRef] [PubMed]
- Soliman, G.A.; Acosta-Jaquez, H.A.; Dunlop, E.A.; Ekim, B.; Maj, N.E.; Tee, A.R.; Fingar, D.C. Mtor ser-2481 autophosphorylation monitors mtorc-specific catalytic activity and clarifies rapamycin mechanism of action. J. Biol. Chem. 2010, 285, 7866–7879. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Knowles, E.; O'Toole, S.A.; McNeil, C.M.; Millar, E.K.; Qiu, M.R.; Crea, P.; Daly, R.J.; Musgrove, E.A.; Sutherland, R.L. Pi3k pathway activation in breast cancer is associated with the basal-like phenotype and cancer-specific mortality. Int. J. Cancer 2010, 126, 1121–1131. [Google Scholar] [CrossRef] [PubMed]
- Carracedo, A.; Ma, L.; Teruya-Feldstein, J.; Rojo, F.; Salmena, L.; Alimonti, A.; Egia, A.; Sasaki, A.T.; Thomas, G.; Kozma, S.C.; et al. Inhibition of mtorc1 leads to mapk pathway activation through a pi3k-dependent feedback loop in human cancer. J. Clin. Invest. 2008, 118, 3065–3074. [Google Scholar] [CrossRef] [PubMed]
- Barkett, M.; Gilmore, T.D. Control of apoptosis by rel/nf-kappab transcription factors. Oncogene 1999, 18, 6910–6924. [Google Scholar] [CrossRef] [PubMed]
- Hayden, M.S.; Ghosh, S. Nf-kappab in immunobiology. Cell Res. 2011, 21, 223–244. [Google Scholar] [CrossRef] [PubMed]
- Beraud, C.; Henzel, W.J.; Baeuerle, P.A. Involvement of regulatory and catalytic subunits of phosphoinositide 3-kinase in nf-kappab activation. Proc. Natl. Acad. Sci. USA 1999, 96, 429–434. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Chen, Z.J. Expanding role of ubiquitination in nf-kappab signaling. Cell Res. 2011, 21, 6–21. [Google Scholar] [CrossRef] [PubMed]
- Biswas, D.K.; Martin, K.J.; McAlister, C.; Cruz, A.P.; Graner, E.; Dai, S.C.; Pardee, A.B. Apoptosis caused by chemotherapeutic inhibition of nuclear factor-kappab activation. Cancer Res. 2003, 63, 290–295. [Google Scholar] [PubMed]
- Kharman-Biz, A.; Gao, H.; Ghiasvand, R.; Zhao, C.; Zendehdel, K.; Dahlman-Wright, K. Expression of activator protein-1 (AP-1) family members in breast cancer. BMC Cancer 2013, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Milde-Langosch, K.; Roder, H.; Andritzky, B.; Aslan, B.; Hemminger, G.; Brinkmann, A.; Bamberger, C.M.; Loning, T.; Bamberger, A.M. The role of the ap-1 transcription factors c-fos, fosb, fra-1 and fra-2 in the invasion process of mammary carcinomas. Breast Cancer Res. Treat. 2004, 86, 139–152. [Google Scholar] [CrossRef] [PubMed]
- Harbeck, N.; Kates, R.E.; Gauger, K.; Willems, A.; Kiechle, M.; Magdolen, V.; Schmitt, M. Urokinase-type plasminogen activator (upa) and its inhibitor pai-i: Novel tumor-derived factors with a high prognostic and predictive impact in breast cancer. Thromb. Haemost. 2004, 91, 450–456. [Google Scholar] [CrossRef] [PubMed]
- De Petro, G.; Tavian, D.; Copeta, A.; Portolani, N.; Giulini, S.M.; Barlati, S. Expression of urokinase-type plasminogen activator (u-pa), u-pa receptor, and tissue-type pa messenger rnas in human hepatocellular carcinoma. Cancer Res. 1998, 58, 2234–2239. [Google Scholar] [PubMed]
- Santibanez, J.F. Transforming growth factor-beta and urokinase-type plasminogen activator: Dangerous partners in tumorigenesis-implications in skin cancer. ISRN Dermatol. 2013, 2013. [Google Scholar] [CrossRef] [PubMed]
- Waltz, D.A.; Fujita, R.M.; Yang, X.; Natkin, L.; Zhuo, S.; Gerard, C.J.; Rosenberg, S.; Chapman, H.A. Nonproteolytic role for the urokinase receptor in cellular migration in vivo. Am. J. Respir. Cell Mol. Biol. 2000, 22, 316–322. [Google Scholar] [CrossRef] [PubMed]
- Folgueira, M.A.; Maistro, S.; Katayama, M.L.; Roela, R.A.; Mundim, F.G.; Nanogaki, S.; de Bock, G.H.; Brentani, M.M. Markers of breast cancer stromal fibroblasts in the primary tumour site associated with lymph node metastasis: A systematic review including our case series. Biosci. Rep. 2013, 33. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Gao, J.; Lu, F. Human adipose-derived stem cell adipogenesis induces paracrine regulation of the invasive ability of mcf-7 human breast cancer cells in vitro. Exp. Ther. Med. 2013, 6, 937–942. [Google Scholar] [PubMed]
- Deryugina, E.I.; Quigley, J.P. Matrix metalloproteinases and tumor metastasis. Cancer Metastasis Rev. 2006, 25, 9–34. [Google Scholar] [CrossRef] [PubMed]
- Radisky, E.S.; Radisky, D.C. Matrix metalloproteinase-induced epithelial-mesenchymal transition in breast cancer. J. Mammary Gland Biol. Neoplasia 2010, 15, 201–212. [Google Scholar] [CrossRef] [PubMed]
- Chaturvedi, A.K.; Kuntz, D.J.; Rao, N.G. Metabolic aspects of the toxicology of mixtures of parathion, toxaphene and/or 2,4-d in mice. J. Appl. Toxicol. 1991, 11, 245–251. [Google Scholar] [CrossRef] [PubMed]
- Coskun, U.; Yamac, D.; Gulbahar, O.; Sancak, B.; Karaman, N.; Ozkan, S. Locally advanced breast carcinoma treated with neoadjuvant chemotherapy: Are the changes in serum levels of ykl-40, mmp-2 and mmp-9 correlated with tumor response? Neoplasma 2007, 54, 348–352. [Google Scholar] [PubMed]
- La Rocca, G.; Pucci-Minafra, I.; Marrazzo, A.; Taormina, P.; Minafra, S. Zymographic detection and clinical correlations of mmp-2 and mmp-9 in breast cancer sera. Br. J. Cancer 2004, 90, 1414–1421. [Google Scholar] [CrossRef] [PubMed]
- Talvensaari-Mattila, A.; Turpeenniemi-Hujanen, T. Preoperative serum mmp-9 immunoreactive protein is a prognostic indicator for relapse-free survival in breast carcinoma. Cancer Lett. 2005, 217, 237–242. [Google Scholar] [CrossRef] [PubMed]
- Tortora, G.; Bianco, R.; Daniele, G.; Ciardiello, F.; McCubrey, J.A.; Ricciardi, M.R.; Ciuffreda, L.; Cognetti, F.; Tafuri, A.; Milella, M. Overcoming resistance to molecularly targeted anticancer therapies: Rational drug combinations based on egfr and mapk inhibition for solid tumours and haematologic malignancies. Drug Resist. Updat 2007, 10, 81–100. [Google Scholar] [CrossRef] [PubMed]
- Furusawa, E.; Chou, S.C.; Furusawa, S.; Hirazumi, A.; Dang, Y. Antitumour activity of Ganoderma lucidum, an edible mushroom, on intraperitoneally implanted lewis lung carcinoma in synergenic mice. Phytother. Res. 1992, 6, 300–304. [Google Scholar] [CrossRef]
- Huang, C.Y.; Chen, J.Y.; Wu, J.E.; Pu, Y.S.; Liu, G.Y.; Pan, M.H.; Huang, Y.T.; Huang, A.M.; Hwang, C.C.; Chung, S.J.; et al. Ling-zhi polysaccharides potentiate cytotoxic effects of anticancer drugs against drug-resistant urothelial carcinoma cells. J. Agric. Food Chem. 2010, 58, 8798–8805. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.H.; Kuo, H.P.; Hsieh, H.H.; Li, J.W.; Hsu, W.H.; Chen, S.J.; Su, M.H.; Liu, S.H.; Cheng, Y.C.; Chen, C.Y.; et al. Ganoderma tsugae induces s phase arrest and apoptosis in doxorubicin-resistant lung adenocarcinoma H23/0.3 cells via modulation of the PI3K/Akt signaling pathway. Evid. Based Complement. Alternat. Med. 2012, 2012. [Google Scholar] [CrossRef] [PubMed]
- Sadava, D.; Still, D.W.; Mudry, R.R.; Kane, S.E. Effect of ganoderma on drug-sensitive and multidrug-resistant small-cell lung carcinoma cells. Cancer Lett. 2009, 277, 182–189. [Google Scholar] [CrossRef] [PubMed]
- Li, W.D.; Zhang, B.D.; Wei, R.; Liu, J.H.; Lin, Z.B. Reversal effect of Ganoderma lucidum polysaccharide on multidrug resistance in K562/ADM cell line. Acta Pharmacol. Sin. 2008, 29, 620–627. [Google Scholar] [CrossRef] [PubMed]
- Hsu, S.C.; Ou, C.C.; Li, J.W.; Chuang, T.C.; Kuo, H.P.; Liu, J.Y.; Chen, C.S.; Lin, S.C.; Su, C.H.; Kao, M.C. Ganoderma tsugae extracts inhibit colorectal cancer cell growth via G2/M cell cycle arrest. J. Ethnopharmacol. 2008, 120, 394–401. [Google Scholar] [CrossRef] [PubMed]
- Yao, X.; Li, G.; Xu, H.; Lu, C. Inhibition of the JAK-STAT3 signaling pathway by ganoderic acid A enhances chemosensitivity of HepG2 cells to cisplatin. Planta Med. 2012, 78, 1740–1748. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Ye, G.; Fu, G.; Cheng, J.X.; Yang, B.B.; Peng, C. Ganoderma lucidum exerts anti-tumor effects on ovarian cancer cells and enhances their sensitivity to cisplatin. Int. J. Oncol. 2011, 38, 1319–1327. [Google Scholar] [PubMed]
- Hsu, S.C.; Ou, C.C.; Chuang, T.C.; Li, J.W.; Lee, Y.J.; Wang, V.; Liu, J.Y.; Chen, C.S.; Lin, S.C.; Kao, M.C. Ganoderma tsugae extract inhibits expression of epidermal growth factor receptor and angiogenesis in human epidermoid carcinoma cells: In vitro and in vivo. Cancer Lett. 2009, 281, 108–116. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Nie, S.; Chen, Y.; Wang, Y.; Li, C.; Xie, M. Enhancement of cyclophosphamide-induced antitumor effect by a novel polysaccharide from Ganoderma atrum in sarcoma 180-bearing mice. J. Agric. Food Chem. 2011, 59, 3707–3716. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, A.; Sarkar, F. Current understanding of drug resistance mechanisms and therapeutic targets in her2 overexpressing breast cancers. In Breast Cancer Metastasis and Drug Resistance; Ahmad, A., Ed.; Springer: New York, NY, USA, 2013; pp. 261–274. [Google Scholar]
- Wu, Q.P.; Xie, Y.Z.; Deng, Z.; Li, X.M.; Yang, W.; Jiao, C.W.; Fang, L.; Li, S.Z.; Pan, H.H.; Yee, A.J.; et al. Ergosterol peroxide isolated from Ganoderma lucidum abolishes microrna mir-378-mediated tumor cells on chemoresistance. PLoS ONE 2012, 7, 30. [Google Scholar] [CrossRef] [PubMed]
- Nonaka, Y.; Ishibashi, H.; Nakai, M.; Shibata, H.; Kiso, Y.; Abe, S. Effects of the antlered form of Ganoderma lucidum on tumor growth and metastasis in cyclophosphamide-treated mice. Biosci. Biotechnol. Biochem. 2008, 72, 1399–1408. [Google Scholar] [CrossRef] [PubMed]
- Pillai, T.G.; Nair, C.K.; Janardhanan, K.K. Polysaccharides isolated from Ganoderma lucidum occurring in southern parts of india, protects radiation induced damages both in vitro and in vivo. Environ. Toxicol. Pharmacol. 2008, 26, 80–85. [Google Scholar] [CrossRef] [PubMed]
- Pillai, T.G.; Nair, C.K.K.; Janardhanan, K.K. Enhancement of repair of radiation induced DNA strand breaks in human cells by Ganoderma mushroom polysaccharides. Food Chem. 2010, 119, 1040–1043. [Google Scholar] [CrossRef]
- Lin, K.W.; Chen, Y.T.; Yang, S.C.; Wei, B.L.; Hung, C.F.; Lin, C.N. Xanthine oxidase inhibitory lanostanoids from Ganoderma tsugae. Fitoterapia 2013, 89, 231–238. [Google Scholar] [CrossRef] [PubMed]
- Hsu, H.Y.; Lian, S.L.; Lin, C.C. Radioprotective effect of Ganoderma lucidum (leyss. Ex. Fr.) karst after x-ray irradiation in mice. Am. J. Chin. Med. 1990, 18, 61–69. [Google Scholar] [CrossRef] [PubMed]
- Kubo, N.; Myojin, Y.; Shimamoto, F.; Kashimoto, N.; Kyo, E.; Kamiya, K.; Watanabe, H. Protective effects of a water-soluble extract from cultured medium of Ganoderma lucidum (Rei-shi) mycelia and Agaricus blazei murill against X-irradiation in B6C3F1 mice: Increased small intestinal crypt survival and prolongation of average time to animal death. Int. J. Mol. Med. 2005, 15, 401–406. [Google Scholar] [PubMed]
- Sosa, V.; Moline, T.; Somoza, R.; Paciucci, R.; Kondoh, H.; ME, L.L. Oxidative stress and cancer: An overview. Ageing Res. Rev. 2013, 12, 376–390. [Google Scholar] [CrossRef] [PubMed]
- Deepalakshmi, K.; Mirunalini, S.; Krishnaveni, M.; Arulmozhi, V. In vitro and in vivo antioxidant potentials of an ethanolic extract of Ganoderma lucidum in rat mammary carcinogenesis. Chin. J. Nat. Med. 2013, 11, 621–627. [Google Scholar] [CrossRef]
- Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef] [PubMed]
- Kashimoto, N.; Ishii, S.; Myojin, Y.; Ushijima, M.; Hayama, M.; Watanabe, H. A water-soluble extract from cultured medium of Ganoderma lucidum (Reishi) mycelia attenuates the small intestinal injury induced by anti-cancer drugs. Oncol. Lett. 2010, 1, 63–68. [Google Scholar] [CrossRef] [PubMed]
- Yu, Q.; Nie, S.P.; Wang, J.Q.; Liu, X.Z.; Yin, P.F.; Huang, D.F.; Li, W.J.; Gong, D.M.; Xie, M.Y. Chemoprotective effects of Ganoderma atrum polysaccharide in cyclophosphamide-induced mice. Int. J. Biol. Macromol. 2013, 64C, 395–401. [Google Scholar] [CrossRef] [PubMed]
- Arany, I.; Safirstein, R.L. Cisplatin nephrotoxicity. Semin Nephrol. 2003, 23, 460–464. [Google Scholar] [CrossRef]
- Arunkumar, P.A.; Viswanatha, G.L.; Radheshyam, N.; Mukund, H.; Belliyappa, M.S. Science behind cisplatin-induced nephrotoxicity in humans: A clinical study. Asian Pac. J. Trop. Biomed. 2012, 2, 640–644. [Google Scholar] [CrossRef]
- Pillai, T.G.; John, M.; Sara Thomas, G. Prevention of cisplatin induced nephrotoxicity by terpenes isolated from Ganoderma lucidum occurring in southern parts of India. Exp. Toxicol. Pathol. 2011, 63, 157–160. [Google Scholar] [CrossRef] [PubMed]
- Yuan, C.-S.; McEntee, E.; Guan, X.; Chang, W.-T.; Mehendale, S.R.; Aung, H.H.; Basila, D.; Wang, C.-Z. Effects of Ganoderma lucidum extract on chemotherapy-induced nausea and vomiting in a rat model. Am. J. Chin. Med. 2005, 33, 807–815. [Google Scholar]
- Hasson, S.S.A.A.; Al-Busaidi, J.K.Z.; Sallam, T.A. The past, current and future trends in DNA vaccine immunisations. Asian Pac. J. Trop. Biomed. 2015, 5, 344–353. [Google Scholar] [CrossRef]
- Lin, C.-C.; Yu, Y.-L.; Shih, C.-C.; Liu, K.-J.; Ou, K.-L.; Hong, L.-Z.; Chen, J.D.C.; Chu, C.-L. A novel adjuvant ling zhi-8 enhances the efficacy of DNA cancer vaccine by activating dendritic cells. Cancer Immunol. Immunother. 2011, 60, 1019. [Google Scholar] [CrossRef] [PubMed]
- Chu, C.-L.; Chen, D.-C.; Lin, C.-C. A novel adjuvant ling zhi-8 for cancer DNA vaccines. Hum. Vaccines 2011, 7, 1161–1164. [Google Scholar] [CrossRef] [PubMed]
- Jin, X.; Ruiz Beguerie, J.; Sze, D.M.; Chan, G.C. Ganoderma lucidum (Reishi mushroom) for cancer treatment. Cochrane Database Syst. Rev. 2012, 6. [Google Scholar] [CrossRef]
- Zhuang, S.R.; Chen, S.L.; Tsai, J.H.; Huang, C.C.; Wu, T.C.; Liu, W.S.; Tseng, H.C.; Lee, H.S.; Huang, M.C.; Shane, G.T.; et al. Effect of citronellol and the Chinese medical herb complex on cellular immunity of cancer patients receiving chemotherapy/radiotherapy. Phytother. Res. 2009, 23, 785–790. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, S.R.; Chiu, H.F.; Chen, S.L.; Tsai, J.H.; Lee, M.Y.; Lee, H.S.; Shen, Y.C.; Yan, Y.Y.; Shane, G.T.; Wang, C.K. Effects of a Chinese medical herbs complex on cellular immunity and toxicity-related conditions of breast cancer patients. Br. J. Nutr. 2012, 107, 712–718. [Google Scholar] [CrossRef] [PubMed]
- Bower, J.E.; Ganz, P.A.; Desmond, K.A.; Bernaards, C.; Rowland, J.H.; Meyerowitz, B.E.; Belin, T.R. Fatigue in long-term breast carcinoma survivors: A longitudinal investigation. Cancer 2006, 106, 751–758. [Google Scholar] [CrossRef] [PubMed]
- Dow, K.H.; Ferrell, B.R.; Leigh, S.; Ly, J.; Gulasekaram, P. An evaluation of the quality of life among long-term survivors of breast cancer. Breast Cancer Res. Treat. 1996, 39, 261–273. [Google Scholar] [CrossRef] [PubMed]
- Eaker, S.; Wigertz, A.; Lambert, P.C.; Bergkvist, L.; Ahlgren, J.; Lambe, M. Breast cancer, sickness absence, income and marital status. A study on life situation 1 year prior diagnosis compared to 3 and 5 years after diagnosis. PLoS ONE 2011, 6, e18040. [Google Scholar] [CrossRef] [PubMed]
- Borneman, T.; Piper, B.F.; Sun, V.C.; Koczywas, M.; Uman, G.; Ferrell, B. Implementing the fatigue guidelines at one NCCN member institution: Process and outcomes. J. Natl. Compr. Canc. Netw. 2007, 5, 1092–1101. [Google Scholar] [PubMed]
- Huang, X.; Zhang, Q.; Kang, X.; Song, Y.; Zhao, W. Factors associated with cancer-related fatigue in breast cancer patients undergoing endocrine therapy in an urban setting: A cross-sectional study. BMC Cancer 2010, 10. [Google Scholar] [CrossRef] [PubMed]
- Rotonda, C.; Guillemin, F.; Bonnetain, F.; Conroy, T. Factors correlated with fatigue in breast cancer patients before, during and after adjuvant chemotherapy: The fatsein study. Contemp. Clin. Trials 2011, 32, 244–249. [Google Scholar] [CrossRef] [PubMed]
- Taunk, N.K.; Haffty, B.G.; Chen, S.; Khan, A.J.; Nelson, C.; Pierce, D.; Goyal, S. Comparison of radiation-induced fatigue across 3 different radiotherapeutic methods for early stage breast cancer. Cancer 2011, 117, 4116–4124. [Google Scholar] [CrossRef] [PubMed]
- Campos, M.P.; Hassan, B.J.; Riechelmann, R.; Del Giglio, A. Cancer-related fatigue: A review. Rev. Assoc. Med. Bras. (1992) 2011, 57, 211–219. [Google Scholar] [CrossRef]
- Escalante, C.P.; Manzullo, E.F. Cancer-related fatigue: The approach and treatment. J. Gen. Intern. Med. 2009, 24 Suppl 2, S412–S416. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Zhang, Q.; Zhao, L.; Huang, X.; Wang, J.; Kang, X. Spore powder of Ganoderma lucidum improves cancer-related fatigue in breast cancer patients undergoing endocrine therapy: A pilot clinical trial. Evid. Based Complement. Alternat. Med. 2012, 2012. [Google Scholar] [CrossRef] [PubMed]
- Bao, P.P.; Lu, W.; Cui, Y.; Zheng, Y.; Gu, K.; Chen, Z.; Zheng, W.; Shu, X.O. Ginseng and Ganoderma lucidum use after breast cancer diagnosis and quality of life: A report from the shanghai breast cancer survival study. PLoS ONE 2012, 7, e39343. [Google Scholar] [CrossRef] [PubMed]
Source | BC Cell Line | Effect | Reference |
---|---|---|---|
ReishiMax GLp® | MDA-MB-231 | G0/G1 cell cycle arrest; downregulation of cyclin D1 and CDK4 | [17] |
ReishiMax GLp® | SUM-149 | Downregulation of CCND1 and WEE; downregulation of CCNA2, CCNB2 | [23] |
BreastDefend™ | MDA-MB-231 | Upregulation of GADD45A; downregulation of CCNDA1 | [25] |
G. lucidum ethanolic extract | MCF-7 | Upregulation of p21/Waf1; downregulation of cyclin D1 | [26] |
G. lucidum ethanolic extract | MDA-MB 231 | Decreased G1/S phase transition | [27] |
G. sinense ethanolic extract | MDA-MB 231 | G2 cell cycle arrest | [27] |
G. tsugae methanolic extract | SKBR-3 | G1 cell cycle arrest; downregulation of cyclins D1 and E | [28] |
Ganodermanontriol | MDA-MB 231 | Downregulation of CDC20 | [32] |
ethanol-soluble and acidic component from G. lucidum | MCF-7 MDA-MB-231 | G1 cell cycle arrest | [34] |
GADM from G. lucidum | MCF-7 MDA-MB-231 | G1 cell cycle arrest; downregulation of total and p-Rb | [35] |
GA-Me from G. lucidum | MDA-MB-231 | Downregulation of cyclin D1 | [36] |
FIP-gat from G. atrum | MDA-MB-231 | G1 cell cycle arrest | [55] |
Compound | Target Molecule | Effect | Biological Function | References |
---|---|---|---|---|
G. tsugae; ReishiMax GLp® | AKT, p-AKT | Downregulated | Cell survival, proliferation | [17,21,23,28] |
ReishiMax GLp® | AP-1 | Downregulated | Proliferation, migration | [59,61,69] |
G. lucidum | Bax | Upregulated | Apoptosis | [26] |
GA-Me | BCL-2 | Downregulated | Survival | [36] |
G. neo-japonicum; SeGLP-2B-1 | Caspase 3 | Upregulated | Apoptosis | [24,40] |
G. lucidum; Khz | Caspase 7 | Upregulated | Apoptosis | [26,53] |
SeGLP-2B-1; Khz | Caspase 8 | Upregulated | Apoptosis | [40,53] |
SeGLP-2B-1; Khz | Caspase 9 | Upregulated | Apoptosis | [40,53] |
Ganodermanontriol | CDC20 | Downregulated | Cell cycle | [32] |
GAEE | CDC42 | Downregulated | Migration | [37] |
ReishiMax GLp® | CDK4 | Upregulated | Cell cycle | [17] |
GA-Me; ReishiMax GLp® | c-Myc | Downregulated | Cell survival, proliferation, oncogenesis | [19,23,31,36] |
BreastDefend™ | CXCR4 | Downregulated | Inflammation, metastasis | [70] |
BreastDefend™ | Cyclin A1 | Downregulated | Cell cycle | [25] |
ReishiMax GLp® | Cyclin A2 | Downregulated | Cell cycle | [23] |
ReishiMax GLp® | Cyclin B2 | Downregulated | Cell cycle | [23] |
ReishiMax GLp®; G. lucidum G. tsugae; GA-Me | Cyclin D1 | Downregulated | Cell cycle | [17,23,26,28,31] |
G. tsugae | Cyclin E | Downregulated | Cell cycle | [28] |
FIP-gat | DUSP1 | Downregulated | Proliferation | [55] |
ReishiMax GLp® | E-cadherin | Downregulated | Migration, invasion | [23] |
ReishiMax GLp® | EGFR | Downregulated | Cell survival, proliferation | [21] |
ReishiMax GLp® | EIF4B | Downregulated | Protein synthesis | [23] |
ReishiMax GLp® | eIF4G | Downregulated | Protein synthesis | [23] |
ReishiMax GLp® | ERK2, p-ERK1/2 | Downregulated | Cell survival, proliferation | [21,23] |
ReishiMax GLp® | ERα | Downregulated | Oncogenesis | [19] |
GAEE | FAK | Downregulated | Migration | [37] |
ReishiMax GLp® | FOS | Upregulated | Proliferation | [23] |
BreastDefend™ | GADD45A | Upregulated | Cell cycle | [25] |
ReishiMax GLp® | GJA1 | Downregulated | Cell signaling | [23] |
G. tsugae | HER2, p-HER2 | Downregulated | Cell survival, proliferation | [28] |
GA-Me | IL-8 | Downregulated | Migration, invasion | [36] |
GA-Me | IL-6 | Downregulated | Migration, invasion | [36] |
ReishiMax GLp® | JUN | Upregulated | Proliferation | [23] |
ReishiMax GLp®; GA-Me | MMP-2 | Downregulated | Invasion, metastasis | [20,36] |
ReishiMax GLp®; GA-Me | MMP-9 | Downregulated | Invasion, metastasis | [20,36] |
ReishiMax GLp® | NFKBIA | Upregulated | Proliferation, invasion | [23] |
ReishiMax GLp®; GA-Me; BreastDefend™ | NF-κB | Downregulated | Proliferation, invasion | [19,36,58,59,61,69,70] |
ReishiMax GLp® | p120-catenin | Downregulated | Cell survival, proliferation | [23] |
G. lucidum | p21/Waf1 | Upregulated | Apoptosis | [26] |
ReishiMax GLp® | p-4E-BP1 | Downregulated | Protein synthesis | [23] |
ReishiMax GLp® | p70S6K | Downregulated | Protein synthesis | [23] |
ReishiMax GLp® | PAK1 | Downregulated | Proliferation, migration | [23] |
G. lucidum; ESAC; SeGLP-2B-1 | PARP | Cleaved | Apoptosis | [26,34,40] |
GAEE | paxillin | Downregulated | Migration | [37] |
ReishiMax GLp® | PDK1 | Downregulated | Cell survival, proliferation | [23] |
ReishiMax GLp® | mTOR, p-mTOR | Downregulated | Cell survival, proliferation | [23] |
GAEE | Rac1 | Downregulated | Migration | [37] |
ReishiMax GLp® | RAS | Downregulated | Cell survival, proliferation | [23] |
GADM | Rb, p-Rb | Downregulated | Cell cycle | [35] |
GAEE | RhoA | Downregulated | Migration | [37] |
ReishiMax GLp® | S6, p-S6 | Downregulated | Protein synthesis | [23] |
FFLZ | TGFRβ/Smad2/3-Smad4-Snail/Slug-axis | Downregulated | EMT, metastasis | [51] |
FIP-gat | SQSTM1 | Downregulated | Autophagy, apoptosis | [55] |
FIP-gat | TNFSF8 | Downregulated | Proliferation | [55] |
ganoderic acid; ReishiMax GLp®; BreastDefend™ | uPA/uPAR | Downregulated | Migration, invasion, metastasis | [59,61,69,70] |
GA-Me | VEGF | Downregulated | Angiogenesis | [36] |
G. lucidum | WEE | Downregulated | Cell cycle | [23] |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suárez-Arroyo, I.J.; Loperena-Alvarez, Y.; Rosario-Acevedo, R.; Martínez-Montemayor, M.M. Ganoderma spp.: A Promising Adjuvant Treatment for Breast Cancer. Medicines 2017, 4, 15. https://doi.org/10.3390/medicines4010015
Suárez-Arroyo IJ, Loperena-Alvarez Y, Rosario-Acevedo R, Martínez-Montemayor MM. Ganoderma spp.: A Promising Adjuvant Treatment for Breast Cancer. Medicines. 2017; 4(1):15. https://doi.org/10.3390/medicines4010015
Chicago/Turabian StyleSuárez-Arroyo, Ivette J., Yaliz Loperena-Alvarez, Raysa Rosario-Acevedo, and Michelle M. Martínez-Montemayor. 2017. "Ganoderma spp.: A Promising Adjuvant Treatment for Breast Cancer" Medicines 4, no. 1: 15. https://doi.org/10.3390/medicines4010015
APA StyleSuárez-Arroyo, I. J., Loperena-Alvarez, Y., Rosario-Acevedo, R., & Martínez-Montemayor, M. M. (2017). Ganoderma spp.: A Promising Adjuvant Treatment for Breast Cancer. Medicines, 4(1), 15. https://doi.org/10.3390/medicines4010015