Non-Induction Basiliximab to Facilitate Renal Recovery via Temporary Tacrolimus Cessation in Cardiothoracic Transplant Patients
Abstract
1. Introduction
2. Materials and Methods
Statistical Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Heart. Available online: https://srtr.transplant.hrsa.gov/ADR/Chapter?name=Heart&year=2022 (accessed on 11 April 2024).
- Lung. Available online: https://srtr.transplant.hrsa.gov/ADR/Chapter?name=Lung&year=2022 (accessed on 11 April 2024).
- Naesens, M.; Kuypers, D.R.J.; Sarwal, M. Calcineurin inhibitor nephrotoxicity. Clin. J. Am. Soc. Nephrol. CJASN 2009, 4, 481–508. [Google Scholar] [CrossRef] [PubMed]
- Farouk, S.; Rein, J.L. The Many Faces of Calcineurin Inhibitor Toxicity—What the FK? Adv. Chronic Kidney Dis. 2020, 27, 56–66. [Google Scholar] [CrossRef] [PubMed]
- Ivulich, S.; Paul, E.; Kirkpatrick, C.; Dooley, M.; Snell, G. Everolimus Based Immunosuppression Strategies in Adult Lung Transplant Recipients: Calcineurin Inhibitor Minimization Versus Calcineurin Inhibitor Elimination. Transpl. Int. 2023, 36, 10704. [Google Scholar] [CrossRef]
- Barten, M.J.; Hirt, S.W.; Garbade, J.; Bara, C.; Doesch, A.O.; Knosalla, C.; Grinninger, C.; Stypmann, J.; Sieder, C.; Lehmkuhl, H.B.; et al. Comparing everolimus-based immunosuppression with reduction or withdrawal of calcineurin inhibitor reduction from 6 months after heart transplantation: The randomized MANDELA study. Am. J. Transplant. 2019, 19, 3006–3017. [Google Scholar] [CrossRef] [PubMed]
- Pilch, N.A.; Bowman, L.J.; Taber, D.J. Immunosuppression trends in solid organ transplantation: The future of individualization, monitoring, and management. Pharmacotherapy 2021, 41, 119–131. [Google Scholar] [CrossRef]
- Furuya, Y.; Jayarajan, S.N.; Taghavi, S.; Cordova, F.C.; Patel, N.; Shiose, A.; Leotta, E.; Criner, G.J.; Guy, T.S.; Wheatley, G.H.; et al. The Impact of Alemtuzumab and Basiliximab Induction on Patient Survival and Time to Bronchiolitis Obliterans Syndrome in Double Lung Transplantation Recipients. Am. J. Transplant. Off. J. Am. Soc. Transplant. Am. Soc. Transpl. Surg. 2016, 16, 2334–2341. [Google Scholar] [CrossRef]
- Borro, J.M.; De la Torre, M.; Míguelez, C.; Fernandez, R.; Gonzalez, D.; Lemos, C. Comparative study of basiliximab treatment in lung transplantation. Transplant. Proc. 2005, 37, 3996–3998. [Google Scholar] [CrossRef]
- Rudzik, K.N.; Rivosecchi, R.M.; Palmer, B.A.; Hickey, G.W.; Huston, J.H.; Keebler, M.E.; Kaczorowski, D.J.; Horn, E.T. Basiliximab induction versus no induction in adult heart transplantation. Clin. Transplant. 2023, 37, e14937. [Google Scholar] [CrossRef]
- Watanabe, T.; Yanase, M.; Seguchi, O.; Fujita, T.; Hamasaki, T.; Nakajima, S.; Kuroda, K.; Kumai, Y.; Toda, K.; Iwasaki, K.; et al. Influence of Induction Therapy Using Basiliximab With Delayed Tacrolimus Administration in Heart Transplant Recipients-Comparison With Standard Tacrolimus-Based Triple Immunosuppression. Circ. J. Off. J. Jpn. Circ. Soc. 2020, 84, 2212–2223. [Google Scholar] [CrossRef]
- Shagabayeva, L.; Osho, A.A.; Moonsamy, P.; Mohan, N.; Li, S.S.-Y.; Wolfe, S.; Langer, N.B.; Funamoto, M.; Villavicencio, M.A. Induction therapy in lung transplantation: A contemporary analysis of trends and outcomes. Clin. Transplant. 2022, 36, e14782. [Google Scholar] [CrossRef]
- Kim, H.E.; Paik, H.C.; Jeong, S.J.; Park, M.S.; Kim, S.Y.; Lee, J.G. Basiliximab Induction with Delayed Calcineurin Inhibitors for High-Risk Lung Transplant Candidates. Yonsei Med. J. 2021, 62, 164–171. [Google Scholar] [CrossRef]
- Alonso, P.; Sanchez-Lazaro, I.; Almenar, L.; Martinez-Dolz, L.; Andres, A.; Salvador, A.; Montero, A. Use of a “CNI holidays” strategy in acute renal dysfunction late after heart transplant. Report of two cases. Heart Int. 2014, 9, 74–77. [Google Scholar] [CrossRef]
- Eiting, M.M.; Clark, J.E.; Astor, T.; Rogers, C.C.; Palafox, J.; Waldman, G. Safety and Efficacy of Basiliximab for Immunosuppression Holiday in Lung Transplant Patients. J. Heart Lung Transplant. 2021, 40 (Suppl. 4), S376. [Google Scholar] [CrossRef]
- Anselm, A.; Cantarovich, M.; Davies, R.; Grenon, J.; Haddad, H. Prolonged Basiliximab Use as an Alternative to Calcineurin Inhibition to Allow Renal Recovery Late After Heart Transplantation. J. Heart Lung Transplant. 2008, 27, 1043–1045. [Google Scholar] [CrossRef] [PubMed]
- Potter, B.; Giannetti, N.; Cecere, R.; Cantarovich, M. Long-term calcineurin inhibitor “holiday” using daclizumab in a heart transplant patient with acute renal dysfunction. J. Heart Lung Transplant. 2005, 24, 1126–1128. [Google Scholar] [CrossRef]
- Cantarovich, M.; Giannetti, N.; Cyr, E.; Chartier, R.; Cecere, R. Improvement of acute renal dysfunction (ARD) in heart transplant (TX) patients (PTS) during calcineurin inhibitor (CNI) ‘holiday’ without rejection under anti-CD25 monoclonal antibody (MAB) coverage. J. Heart Lung Transplant. 2001, 20, 233. [Google Scholar] [CrossRef]
- Högerle, B.A.; Kohli, N.; Habibi-Parker, K.; Lyster, H.; Reed, A.; Carby, M.; Zeriouh, M.; Weymann, A.; Simon, A.R.; Sabashnikov, A.; et al. Challenging immunosuppression treatment in lung transplant recipients with kidney failure. Transpl. Immunol. 2016, 35, 18–22. [Google Scholar] [CrossRef] [PubMed]
- Cantarovich, M.; Metrakos, P.; Giannetti, N.; Cecere, R.; Barkun, J.; Tchervenkov, J. Anti-CD25 monoclonal antibody coverage allows for calcineurin inhibitor “holiday” in solid organ transplant patients with acute renal dysfunction1. Transplantation 2002, 73, 1169. [Google Scholar] [CrossRef]
- Khwaja, A. KDIGO clinical practice guidelines for acute kidney injury. Nephron Clin. Pract. 2012, 120, c179–c184. [Google Scholar] [CrossRef]
- Velleca, A.; Shullo, M.A.; Dhital, K.; Azeka, E.; Colvin, M.; DePasquale, E.; Farrero, M.; García-Guereta, L.; Jamero, G.; Khush, K.; et al. The International Society for Heart and Lung Transplantation (ISHLT) guidelines for the care of heart transplant recipients. J. Heart Lung Transplant. Off. Publ. Int. Soc. Heart Transplant. 2023, 42, e1–e141. [Google Scholar] [CrossRef]
- Colvin, M.M.; Cook, J.L.; Chang, P.; Francis, G.; Hsu, D.T.; Kiernan, M.S.; Kobashigawa, J.A.; Lindenfeld, J.; Masri, S.C.; Miller, D.; et al. Antibody-mediated rejection in cardiac transplantation: Emerging knowledge in diagnosis and management: A scientific statement from the American Heart Association. Circulation 2015, 131, 1608–1639. [Google Scholar] [CrossRef]
- Stewart, S.; Fishbein, M.C.; Snell, G.I.; Berry, G.J.; Boehler, A.; Burke, M.M.; Glanville, A.; Gould, F.K.; Magro, C.; Marboe, C.C.; et al. Revision of the 1996 working formulation for the standardization of nomenclature in the diagnosis of lung rejection. J. Heart Lung Transplant. Off. Publ. Int. Soc. Heart Transplant. 2007, 26, 1229–1242. [Google Scholar] [CrossRef]
- Nelson, J.; Alvey, N.; Bowman, L.; Schulte, J.; Segovia, M.C.; McDermott, J.; Te, H.S.; Kapila, N.; Levine, D.J.; Gottlieb, R.L.; et al. Consensus recommendations for use of maintenance immunosuppression in solid organ transplantation: Endorsed by the American College of Clinical Pharmacy, American Society of Transplantation, and the International Society for Heart and Lung Transplantation. Pharmacother. J. Hum. Pharmacol. Drug Ther. 2022, 42, 599–633. [Google Scholar] [CrossRef]
- Melton, T. Figure 1. Created in BioRender. Available online: https://BioRender.com/c97i573 (accessed on 22 May 2025).
- Melton, T. Figure 2. Created in BioRender. Available online: https://BioRender.com/s11z229 (accessed on 22 May 2025).
- Ekberg, H.; Tedesco-Silva, H.; Demirbas, A.; Vítko, Š.; Nashan, B.; Gürkan, A.; Margreiter, R.; Hugo, C.; Grinyó, J.M.; Frei, U.; et al. Reduced Exposure to Calcineurin Inhibitors in Renal Transplantation. N. Engl. J. Med. 2007, 357, 2562–2575. [Google Scholar] [CrossRef]
- Vincenti, F.; Ramos, E.; Brattstrom, C.; Cho, S.; Ekberg, H.; Grinyo, J.; Johnson, R.; Kuypers, D.; Stuart, F.; Khanna, A.; et al. Multicenter trial exploring calcineurin inhibitors avoidance in renal transplantation. Transplantation 2001, 71, 1282–1287. [Google Scholar] [CrossRef]
- Åsberg, A.; Midtvedt, K.; Line, P.D.; Narverud, J.; Holdaas, H.; Jenssen, T.; Reisæter, A.V.; Johnsen, L.F.; Fauchald, P.; Hartmann, A. Calcineurin Inhibitor Avoidance with Daclizumab, Mycophenolate Mofetil, and Prednisolone in DR-Matched de Novo Kidney Transplant Recipients. Transplantation 2006, 82, 62. [Google Scholar] [CrossRef] [PubMed]
- D’Souza, W.N.; Lefrançois, L. IL-2 is not required for the initiation of CD8 T cell cycling but sustains expansion. J. Immunol. Baltim. Md 1950 2003, 171, 5727–5735. [Google Scholar] [CrossRef] [PubMed]
- Li, X.C.; Anthony, M.J. Transplant Immunology|Wiley Online Books, 1st ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2015; Available online: https://onlinelibrary.wiley.com/doi/book/10.1002/9781119072997 (accessed on 28 April 2024).
- Barbarino, J.M.; Staatz, C.E.; Venkataramanan, R.; Klein, T.E.; Altman, R.B. PharmGKB summary: Cyclosporine and tacrolimus pathways. Pharmacogenet. Genom. 2013, 23, 563–585. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Zhou, X.; Yu, S.; Xie, H.; Zheng, S. IL-15 is decreased upon CsA and FK506 treatment of acute rejection following heart transplantation in mice. Mol. Med. Rep. 2015, 11, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Baan, C.C.; Boelaars-van Haperen, M.J.A.M.; van Riemsdijk, I.C.; van der Plas, A.J.; Weimar, W. IL-7 and IL-15 bypass the immunosuppressive action of anti-CD25 monoclonal antibodies. Transplant. Proc. 2001, 33, 2244–2246. [Google Scholar] [CrossRef]
- Waldmann, T.A. The shared and contrasting roles of interleukin-2 (IL-2) and IL-15 in the life and death of normal and neoplastic lymphocytes: Implications for cancer therapy. Cancer Immunol. Res. 2015, 3, 219–227. [Google Scholar] [CrossRef] [PubMed]
- Ross, D.J.; Belperio, J.; Natori, C.; Ardehali, A. The Effect of Monthly Anti-CD25+ Treatment with Basiliximab on the Progression of Chronic Renal Dysfunction after Lung Transplantation. Int. J. Organ. Transplant. Med. 2020, 11, 101–106. [Google Scholar] [PubMed]
- Gaynor, J.J.; Ciancio, G.; Guerra, G.; Sageshima, J.; Roth, D.; Goldstein, M.J.; Chen, L.; Kupin, W.; Mattiazzi, A.; Tueros, L.; et al. Lower tacrolimus trough levels are associated with subsequently higher acute rejection risk during the first 12 months after kidney transplantation. Transpl. Int. Off. J. Eur. Soc. Organ. Transplant. 2016, 29, 216–226. [Google Scholar] [CrossRef] [PubMed]
- Hricik, D.E.; Formica, R.N.; Nickerson, P.; Rush, D.; Fairchild, R.L.; Poggio, E.D.; Gibson, I.W.; Wiebe, C.; Tinckam, K.; Bunnapradist, S.; et al. Adverse Outcomes of Tacrolimus Withdrawal in Immune–Quiescent Kidney Transplant Recipients. J. Am. Soc. Nephrol. JASN 2015, 26, 3114–3122. [Google Scholar] [CrossRef]
- Loethen, A.; Lavelle, R.; Sarswat, N.; Chung, B.; Smith, B.; Kalantari, S.; Grinstein, J.; Nguyen, A.; Belkin, M.; Murks, C.; et al. (163) Efficacy and Tolerability of Belatacept in Heart Transplant Recipients. J. Heart Lung Transplant. 2023, 42, S81–S82. [Google Scholar] [CrossRef]
- Brugière, O.; Vallée, A.; Raimbourg, Q.; Peraldi, M.-N.; de Verdière, S.C.; Beaumont, L.; Hamid, A.; Zrounba, M.; Roux, A.; Picard, C.; et al. Conversion to belatacept after lung transplantation: Report of 10 cases. PLoS ONE 2023, 18, e0281492. [Google Scholar] [CrossRef]
Any Tacrolimus Reduction (n = 19) | Tacrolimus Cessation Group (n = 12) | Matched Comparison Group (n = 36) | |
---|---|---|---|
Age, Median (Q1, Q3) | 65 [53–69] | 66 [53–69] | 63 [57–67] |
Birth Sex (Male) | 14 (74%) | 7 (58%) | 19 (53%) |
Race | |||
White | 11 (58%) | 9 (75%) | 30 (83%) |
Black or African Ancestry | 6 (32%) | 2 (17%) | 2 (6%) |
Asian | 1 (5%) | 1 (8%) | 2 (6%) |
American Indian/Alaskan Native | 1 (5%) | 0 | 1 (3%) |
Other | 0 | 0 | 1 (3%) |
Diabetes | 8 (42%) | 6 (50%) | 12 (33%) |
Hypertension | 8 (42%) | 4 (33%) | 17 (47%) |
Hyperlipidemia | 13 (68%) | 9 (75%) | 21 (58%) |
Chronic Kidney Disease | 9 (47%) | 3 (25%) | 17 (47%) |
Transplant Type | |||
Heart | 6 (32%) | 2 (17%) | 10 (28%) |
Lung | 12 (63%) | 10 (83%) | 25 (69%) |
Simultaneous Heart and Lung | 1 (5%) | 0 | 1 (3%) |
Induction | |||
Steroids only | 5 (26%) | 3 (25%) | 9 (25%) |
Basiliximab | 12 (63%) | 8 (67%) | 23 (64%) |
Rabbit antithymocyte globulin | 2 (11%) | 1 (8%) | 4 (11%) |
History of biopsy-proven rejection prior to tacrolimus reduction | 4 (21%) | 4 (33%) | 17 (47%) |
Hospitalization at event | 19 (100%) | 12 (100%) | 30 (83%) |
Baseline SCr (mg/dL) | 1.3 [1.2–1.6] | 1.3 [1.1–2.1] | 1.5 [1.1–1.7] |
SCr at diagnosis of AKI (mg/dL) | 1.9 [1.6–2.2] | 2.0 [1.6–2.6] | 1.9 [1.5–2.3] |
SCr at administration of NIB (mg/d) a | 2.2 [1.9–4.2] | 2.7 [1.9–4.4] | - |
Peak SCr (mg/dL) | 2.4 [2.2–4.1] | 2.8 [2.2–4.4] | 2.1 [1.9–2.7] |
AKI Stage | |||
1 | 4 (21%) | 3(25%) | 31 (86%) |
2 | 4 (21%) | 4 (33%) | 4 (11%) |
3 | 10 (53%) | 5 (42%) | 1 (3%) |
Concomitant nephrotoxins present | 8 (42%) | 4 (33%) | 9 (25%) |
Concomitant vasopressors present | 10 (53%) | 5 (42%) | 3 (8%) |
Renal replacement required during reduction | 6 (32%) | 1 (8%) | 1 (3%) |
Other physiological causes of AKI present | 19 (100%) | 12 (100%) | 10 (28%) |
Immunosuppression before NIB | |||
Tacrolimus, MMF, Prednisone | 14 (74%) | 9 (75%) | 28 (78%) |
Tacrolimus, Prednisone | 5 (26%) | 3 (25%) | 7 (19%) |
Tacrolimus, Sirolimus, MMF, Prednisone | 0 | 0 | 1 (3%) |
Median tacrolimus level week prior to AKI (ng/mL) | 8 [4.5–10.1] | 8.1 [5.8–10.2] | 9.1 [7.5–11] |
Time from transplant to AKI (months) | 0.3 [0.05–4.0] | 1.5 [0.3–5.8] | 2.6 [1.2–7.7] |
Any Tacrolimus Reduction (n = 19) | Tacrolimus Cessation Group (n = 12) | Matched Comparison Group (n = 36) | p-Value a | |
---|---|---|---|---|
Number of doses of NIB received | - | |||
One dose | 10 (53%) | 3 (25%) | - | |
Two doses | 8 (42%) | 8 (67%) | - | |
Three doses | 1 (5%) | 1 (8%) | - | |
Renal recovery at end of tacrolimus reduction | 8 (42%) | 7 (58%) | 15 (42%) | 0.32 |
Required dialysis at end of tacrolimus reduction | 4 (21%) | 1 (8%) | 0 | 0.08 |
SCr (mg/dL) at end of reduction period b c | 1.7 [1.5–2.4] | 1.5 [1.3–2.2] | 1.6 [1.3–1.9] | 0.82 |
Median SCr (mg/dL) days 0–7 post AKI b | 2.2 [1.9–3.2] | 2.0 [1.8–3.4] | 1.8 [1.3–2.0] | 0.041 |
Median SCr (mg/dL) days 8–14 post AKI b | 1.8 [1.4–2.3] | 1.5 [1.4–2.4] | 1.5 [1.2–2.1] | 0.39 |
Median SCr (mg/dL) days 15–30 post AKI b | 1.6 [1.3–1.9] | 1.4 [1.3–1.8] | 1.5 [1.3–2.0] | 0.98 |
Renal recovery at 30 days post-AKI | 6 (32%) | 5 (42%) | 15 (42%) | >0.99 |
Dialysis dependent within 30 days | 4 (21%) | 1 (8%) | 1 (3%) | 0.40 |
Median tacrolimus level one week following NIB (ng/mL) | 7.0 [4.9–7.7] | 5.6 [4.3–7.6] | 8.8 [7.6–9.8] | 0.001 |
Went on to be dialysis-dependent within one year | 6 (32%) | 3 (25%) | 2 (6%) | 0.092 |
Changes to immunosuppression regimen | 3 (25%) | 1 (3%) | 0.02 | |
Change of tacrolimus to cyclosporine | 1 (5%) | 1 (8%) | 0 | 0.08 |
Addition of sirolimus | 2 (11%) | 2 (17%) | 0 | 0.01 |
Changed to sirolimus monotherapy | 0 | 0 | 1 (3%) | 0.56 |
Reduction in tacrolimus trough goal d | 11 (61%) | 4 (36%) | 6 (17%) | 0.18 |
Any Tacrolimus Reduction (n = 19) | Tacrolimus Cessation Group (n = 12) | Matched Comparison Group (n = 36) | p-Value a | |
---|---|---|---|---|
Treated biopsy-proven rejection after AKI | 2 (11%) | 2 (17%) | 7 (19%) | 0.80 |
Any biopsy-proven rejection after AKI | 7 (37%) | 4 (33%) | 14 (39%) | >0.99 |
Patients with at least one treated infection after tacrolimus reduction b | 15 (79%) | 9 (75%) | 18 (50%) | 0.32 |
Total number of treated infections | 32 | 20 | 53 | - |
CMV | 1 | 0 | 2 | - |
EBV | 2 | 2 | 1 | - |
Fungal | 1 | 1 | 2 | - |
Bacterial | 25 | 16 | 35 | - |
Viral | 4 | 2 | 15 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Melton, T.A.; Fenske, M.W.; Bernard, S.A.; Cole, K.C.; Pennington, K.M.; Lemke, A.I. Non-Induction Basiliximab to Facilitate Renal Recovery via Temporary Tacrolimus Cessation in Cardiothoracic Transplant Patients. Medicines 2025, 12, 22. https://doi.org/10.3390/medicines12030022
Melton TA, Fenske MW, Bernard SA, Cole KC, Pennington KM, Lemke AI. Non-Induction Basiliximab to Facilitate Renal Recovery via Temporary Tacrolimus Cessation in Cardiothoracic Transplant Patients. Medicines. 2025; 12(3):22. https://doi.org/10.3390/medicines12030022
Chicago/Turabian StyleMelton, Tanner A., Molly W. Fenske, Stacy A. Bernard, Kristin C. Cole, Kelly M. Pennington, and Adley I. Lemke. 2025. "Non-Induction Basiliximab to Facilitate Renal Recovery via Temporary Tacrolimus Cessation in Cardiothoracic Transplant Patients" Medicines 12, no. 3: 22. https://doi.org/10.3390/medicines12030022
APA StyleMelton, T. A., Fenske, M. W., Bernard, S. A., Cole, K. C., Pennington, K. M., & Lemke, A. I. (2025). Non-Induction Basiliximab to Facilitate Renal Recovery via Temporary Tacrolimus Cessation in Cardiothoracic Transplant Patients. Medicines, 12(3), 22. https://doi.org/10.3390/medicines12030022