Duration of DKA and Insulin Use in People with and Without SGLT2 Inhibitor Medications
Abstract
1. Introduction
2. Material and Methods
3. Results
3.1. Baseline Demographics of the Study Population
3.2. Initial Biochemistry and Presentations
3.3. Management and Outcomes of DKA
3.4. Complications of DKA Management
3.5. Management Post DKA Resolution
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- O’Hara, D.V.; Lam, C.S.P.; McMurray, J.J.V.; Yi, T.W.; Hocking, S.; Dawson, J.; Raichand, S.; Januszewski, A.S.; Jardine, M.J. Applications of SGLT2 inhibitors beyond glycaemic control. Nat. Rev. Nephrol. 2024, 20, 513–529. [Google Scholar] [CrossRef] [PubMed]
- Davies, M.J.; Aroda, V.R.; Collins, B.S.; Gabbay, R.A.; Green, J.; Maruthur, N.M.; Rosas, S.E.; Del Prato, S.; Mathieu, C.; Mingrone, G.; et al. Management of Hyperglycemia in Type 2 Diabetes, 2022. A Consensus Report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care 2022, 45, 2753–2786. [Google Scholar] [CrossRef] [PubMed]
- Committee ADAPP. Cardiovascular Disease and Risk Management: Standards of Care in Diabetes—2025. Diabetes Care 2024, 48 (Suppl. S1), S207–S238. [Google Scholar] [CrossRef] [PubMed]
- US Food and Drug Administration. FDA Revises Labels of SGLT2 Inhibitors for Diabetes to Include Warnings About Too Much Acid in the Blood and Serious Urinary Tract Infections: Federal Register. 2015. Available online: https://www.fda.gov/drugs/drug-safety-and-availability/fda-revises-labels-sglt2-inhibitors-diabetes-include-warnings-about-too-much-acid-blood-and-serious (accessed on 13 February 2025).
- Alkabbani, W.; Pelletier, R.; Gamble, J.M. Sodium/Glucose Cotransporter 2 Inhibitors and the Risk of Diabetic Ketoacidosis: An Example of Complementary Evidence for Rare Adverse Events. Am. J. Epidemiol. 2021, 190, 1572–1581. [Google Scholar] [CrossRef]
- Colacci, M.; Fralick, J.; Odutayo, A.; Fralick, M. Sodium-Glucose Cotransporter-2 Inhibitors and Risk of Diabetic Ketoacidosis Among Adults With Type 2 Diabetes: A Systematic Review and Meta-Analysis. Can. J. Diabetes 2022, 46, 10–15.e2. [Google Scholar] [CrossRef]
- Hamblin, P.S.; Wong, R.; Ekinci, E.I.; Fourlanos, S.; Shah, S.; Jones, A.R.; Hare, M.J.L.; Calder, G.L.; Epa, D.S.; George, E.M.; et al. SGLT2 Inhibitors Increase the Risk of Diabetic Ketoacidosis Developing in the Community and During Hospital Admission. J. Clin. Endocrinol. Metab. 2019, 104, 3077–3087. [Google Scholar] [CrossRef]
- Gao, F.M.; Ali, A.S.; Bellomo, R.; Gaca, M.; Lecamwasam, A.; Churilov, L.; Ekinci, E.I. A Systematic Review and Meta-analysis on the Safety and Efficacy of Sodium–Glucose Cotransporter 2 Inhibitor Use in Hospitalized Patients. Diabetes Care 2024, 47, 2275–2290. [Google Scholar] [CrossRef]
- Rosenstock, J.; Ferrannini, E. Euglycemic Diabetic Ketoacidosis: A Predictable, Detectable, and Preventable Safety Concern with SGLT2 Inhibitors. Diabetes Care 2015, 38, 1638–1642. [Google Scholar] [CrossRef]
- Papanastasiou, L.; Glycofridi, S.; Gravvanis, C.; Skarakis, N.; Papadimitriou, I.; Kanti, G.; Kapsali, C.; Kounadi, T. Diabetic ketoacidosis in patients treated with SGLT2 inhibitors: Experience at a tertiary hospital. Hormones 2021, 20, 369–376. [Google Scholar] [CrossRef]
- Umapathysivam, M.M.; Morgan, B.; Inglis, J.M.; Meyer, E.; Liew, D.; Thiruvenkatarajan, V.; Jesudason, D. SGLT2 Inhibitor-Associated Ketoacidosis vs Type 1 Diabetes-Associated Ketoacidosis. JAMA Netw. Open 2024, 7, e242744. [Google Scholar] [CrossRef]
- Clark, A.; Mohammed, A.S.; Raut, A.; Moore, S.; Houlden, R.; Awad, S. Prevalence and Clinical Characteristics of Adults Presenting With Sodium-Glucose Cotransporter-2 Inhibitor-Associated Diabetic Ketoacidosis at a Canadian Academic Tertiary Care Hospital. Can. J. Diabetes 2021, 45, 214–219. [Google Scholar] [CrossRef]
- Jeon, J.Y.; Kim, S.K.; Kim, K.S.; Song, S.O.; Yun, J.S.; Kim, B.Y.; Kim, C.H.; Park, S.O.; Hong, S.; Seo, D.H.; et al. Clinical characteristics of diabetic ketoacidosis in users and non-users of SGLT2 inhibitors. Diabetes Metab. 2019, 45, 453–457. [Google Scholar] [CrossRef] [PubMed]
- Almazrouei, R.; Afandi, B.; AlKindi, F.; Govender, R.; Al-Shamsi, S. Clinical Characteristics and Outcomes of Diabetic Ketoacidosis in Patients With Type 2 Diabetes using SGLT2 Inhibitors. Clin. Med. Insights Endocrinol. Diabetes 2023, 16, 11795514231153717. [Google Scholar] [CrossRef] [PubMed]
- Shoelson, S.E.; Lee, J.; Goldfine, A.B. Inflammation and insulin resistance. J. Clin. Investig. 2006, 116, 1793–1801. [Google Scholar] [CrossRef] [PubMed]
- de Luca, C.; Olefsky, J.M. Inflammation and insulin resistance. FEBS Lett. 2008, 582, 97–105. [Google Scholar] [CrossRef]
- Drobny, E.C.; Abramson, E.C.; Baumann, G. Insulin receptors in acute infection: A study of factors conferring insulin resistance. J. Clin. Endocrinol. Metab. 1984, 58, 710–716. [Google Scholar] [CrossRef]
- Arneth, B. Insulin Resistance and Glucose Metabolism during Infection. Endocrines 2023, 4, 685–695. [Google Scholar] [CrossRef]
- Trifunovic, D.; Stankovic, S.; Sobic-Saranovic, D.; Marinkovic, J.; Petrovic, M.; Orlic, D.; Beleslin, B.; Banovic, M.; Vujisic-Tesic, B.; Petrovic, M.; et al. Acute insulin resistance in ST-segment elevation myocardial infarction in non-diabetic patients is associated with incomplete myocardial reperfusion and impaired coronary microcirculatory function. Cardiovasc. Diabetol. 2014, 13, 73. [Google Scholar] [CrossRef]
- Chow, E.; Clement, S.; Garg, R. Euglycemic diabetic ketoacidosis in the era of SGLT-2 inhibitors. BMJ Open Diabetes Res. Amp. Care 2023, 11, e003666. [Google Scholar] [CrossRef]
- Saponaro, C.; Pattou, F.; Bonner, C. SGLT2 inhibition and glucagon secretion in humans. Diabetes Metab. 2018, 44, 383–385. [Google Scholar] [CrossRef]
- Bader, N.; Mirza, L. Euglycemic Diabetic Ketoacidosis in a 27 year-old female patient with type-1-Diabetes treated with sodium-glucose cotransporter-2 (SGLT2) inhibitor Canagliflozin. Pak. J. Med. Sci. 2016, 32, 786–788. [Google Scholar] [CrossRef]
- Wan Azman, S.S.; Sukor, N.; Abu Shamsi, M.Y.; Ismail, I.; Kamaruddin, N.A. Case Report: High-Calorie Glucose Infusion and Tight Glycemic Control in Ameliorating Refractory Acidosis of Empagliflozin-Induced Euglycemic Diabetic Ketoacidosis. Front. Endocrinol. 2022, 13, 867647. [Google Scholar] [CrossRef]
- Koneshamoorthy, A.; Epa, D.S.; O’Neal, D.N.; Lee, M.H.; Santamaria, J.D.; MacIsaac, R.J. Outcomes associated with a variable rate insulin infusion diabetic ketoacidosis protocol. J. Diabetes Complicat. 2024, 38, 108702. [Google Scholar] [CrossRef]
- Bohach, N.; Moorman, J.M.; Cunningham, B.; Mullen, C.; Fowler, M.A. Comparison of Variable Versus Fixed Insulin Infusion Rate on Resolution of Diabetic Ketoacidosis. Am. J. Ther. 2023, 30, e179–e185. [Google Scholar] [CrossRef] [PubMed]
- Lorenson, J.L.; Cusumano, M.C.; Stewart, A.M.; Buhnerkempe, M.G.; Sanghavi, D. Fixed-rate insulin for adult diabetic ketoacidosis is associated with more frequent hypoglycaemia than rate-reduction method: A retrospective cohort study. Int. J. Pharm. Pract. 2019, 27, 380–385. [Google Scholar] [CrossRef] [PubMed]
- Umpierrez, G.E.; Davis, G.M.; ElSayed, N.A.; Fadini, G.P.; Galindo, R.J.; Hirsch, I.B.; Klonoff, D.C.; McCoy, R.G.; Misra, S.; Gabbay, R.A.; et al. Hyperglycemic Crises in Adults with Diabetes: A Consensus Report. Diabetes Care 2024, 47, 1257–1275. [Google Scholar] [CrossRef] [PubMed]
- Dhatariya, K.K.; Joint British Diabetes Societies for Inpatient Care. The management of diabetic ketoacidosis in adults—An updated guideline from the Joint British Diabetes Society for Inpatient Care. Diabet. Med. 2022, 39, e14788. [Google Scholar] [CrossRef]
- Wang, R.; Kave, B.; McIlroy, E.; Kyi, M.; Colman, P.G.; Fourlanos, S. Metabolic outcomes in patients with diabetes mellitus administered SGLT2 inhibitors immediately before emergency or elective surgery: Single centre experience and recommendations. Br. J. Anaesth. 2021, 127, e5–e7. [Google Scholar] [CrossRef]
SGLT2i Group (n = 30) | Non-SGLT2i Group (n = 60) | p-Value | |
---|---|---|---|
Gender (%) | 0.26 | ||
Male | 19 (63) | 29 (48) | |
Female | 11 (37) | 31 (52) | |
Age (years) † | 53.0 (47.0−62.3) | 31.0 (24.3−48.0) | <0.001 |
BMI (kg/m2) † | 31.1 (26.5−35.6) | 24.2 (21.7−27.2) | <0.001 |
Duration of diabetes (years) † | 6.0 (2.8−16.8) | 9.0 (0.0−18.0) | 0.80 |
Types of diabetes (%) ‡ | <0.001 | ||
Type 1 | 1 (3) | 60 (100) | |
Type 2 | 25 (83) | 0 (0) | |
LADA | 4 (13) | 0 (0) | |
Premorbid antihyperglycemic agents (%) | 0.001 | ||
Insulin therapy | 12 (40) | 45 (75) | |
Non-insulin therapy | 18 (60) | 0 (0) | |
None | 0 (0) | 15 (25) | |
HbA1c * | 9.8 ± 3.0 % (84 ± 9 mmol/mol) | 9.7 ± 2.5 % (83 ± 4 mmol/mol) | 0.74 |
Diabetes complications (%) | |||
Ischemic heart disease | 6 (20) | 4 (7) | 0.07 |
Stroke | 3 (10) | 5 (8) | 0.54 |
Peripheral vascular disease | 2 (7) | 4 (7) | 0.68 |
Peripheral neuropathy | 2 (7) | 9 (15) | 0.22 |
Retinopathy | 3 (10) | 8 (13) | 0.47 |
Chronic kidney disease | |||
Initial DKA biochemistry | |||
BGL (mmol/L) † | 14.1 (9.9−26.5) | 27.1 (23.9−36.6) | <0.001 |
BOHB Ketones (mmol/L) † | 4.1 (3.6−5.5) | 6.2 (4.5−7.0) | <0.001 |
pH † | 7.22 (6.98−7.34) | 7.10 (6.95−7.21) | 0.07 |
Serum bicarbonate (mmol/L) † | 14.0 (11.0−19.0) | 9.5 (6.0−13.0) | 0.003 |
Precipitants of DKA (%) | |||
Infection | 18 (60) | 22 (37) | 0.04 |
Missed insulin | 4 (13) | 32 (53) | 0.001 |
Decreased oral intake | 8 (27) | 6 (10) | 0.06 |
New onset diabetes | 0 (0) | 13 (22) | 0.004 |
Alcohol | 2 (7) | 9 (15) | 0.32 |
Acute myocardial infarct | 3 (10) | 1 (2) | 0.11 |
Steroid therapy | 4 (13) | 0 (0) | 0.01 |
Pancreatitis | 0 (0) | 2 (3) | 0.55 |
Surgery | 2 (7) | 0 (0) | 0.11 |
Ketogenic diet | 2 (7) | 0 (0) | 0.11 |
SGLT2i Group (n = 30) | Non-SGLT2i Group (n = 60) | p-Value | |
---|---|---|---|
Outcomes | |||
ICU LOS (hours) * | 56 (43–101) | 40 (23–67) | 0.002 |
Time to pH resolution (hours) * | 7 (1–14) | 10 (6–13) | 0.21 |
Time to ketonemia resolution (hours) * | 22 (15–36) | 20 (14–31) | 0.91 |
Recurrent ketonemia (%) | 8 (27) | 17 (28) | 1.00 |
Mortality (%) | 3 (10) | 0 (0) | 0.04 |
Insulin administration | |||
Total insulin dose (units) * | 136 (64–217) | 89 (55–147) | 0.06 |
Total IV insulin dose (units) * | 150 (107–228) † | 89 (55–147) | 0.004 |
Total IV insulin duration (hours) * | 35 (26–51) † | 26 (17–44) | 0.08 |
Total IV insulin over 24 h (units) * | 93 (71–137) † | 81 (54–111) | 0.04 |
Average IV insulin infusion rate (unit/h) * | 3.9 (3.0–5.7) † | 3.4 (2.3–4.6) | 0.04 |
IV fluids administration | |||
5% dextrose (%) | 9 (30) | 8 (14) | 0.09 |
Amount (liters) ‡ | 0.4 ± 0.9 | 0.2 ± 0.6 | 0.03 |
Rate (mL/h) * | 83 (83–100) | 125 (83–146) | 0.24 |
10% dextrose (%) | 25 (83) | 56 (93) | 0.11 |
Amount (liters) ‡ | 1.4 ± 1.1 | 1.9 ± 1.4 | 0.25 |
Rate (mL/h) ‡ | 85 ± 6 | 82 ± 24 | 0.57 |
Total dextrose (g) ‡ | 157 ± 117 | 195 ± 135 | 0.19 |
NaCl 0.9% (%) | 24 (80) | 56 (93) | 0.08 |
Amount (liters) * | 2.4 (1.2–3.8) | 3.0 (2.0–4.5) | 0.24 |
CSL (%) | 8 (27) | 26 (43) | 0.17 |
Amount (liters) ‡ | 0.8 ± 1.9 | 0.9 ± 1.2 | 0.61 |
Total amount of IV fluids ‡ | 5.0 ± 3.2 | 6.3 ± 2.8 | 0.06 |
Complications (%) | |||
Hypokalemia | 20 (67) | 37 (62) | 0.82 |
Hypoglycemia | 4 (13) | 14 (23) | 0.52 |
Vascular complications (e.g., thrombophlebitis) | 0 (0) | 0 (0) | 1.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, Y.-A.; Lee, A.K.; Barmanray, R.D.; Gao, F.; Fourlanos, S.; Gilfillan, C. Duration of DKA and Insulin Use in People with and Without SGLT2 Inhibitor Medications. Medicines 2025, 12, 21. https://doi.org/10.3390/medicines12030021
Park Y-A, Lee AK, Barmanray RD, Gao F, Fourlanos S, Gilfillan C. Duration of DKA and Insulin Use in People with and Without SGLT2 Inhibitor Medications. Medicines. 2025; 12(3):21. https://doi.org/10.3390/medicines12030021
Chicago/Turabian StylePark, Yeung-Ae, Anya Kitt Lee, Rahul D. Barmanray, Frank Gao, Spiros Fourlanos, and Chris Gilfillan. 2025. "Duration of DKA and Insulin Use in People with and Without SGLT2 Inhibitor Medications" Medicines 12, no. 3: 21. https://doi.org/10.3390/medicines12030021
APA StylePark, Y.-A., Lee, A. K., Barmanray, R. D., Gao, F., Fourlanos, S., & Gilfillan, C. (2025). Duration of DKA and Insulin Use in People with and Without SGLT2 Inhibitor Medications. Medicines, 12(3), 21. https://doi.org/10.3390/medicines12030021