Multichannel Recovery Potential with Activated Autologous Intraovarian Platelet-Rich Plasma and Its Derivatives
Abstract
:1. Introduction
2. Post-Translational Effects and Telomere Considerations
3. Is SIRT3 Replenished by PRP Components?
4. Subcellular Characteristics after PRP
5. PRP and Organ Damage Reversal
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bousquet, P.A.; Sandvik, J.A.; Arntzen, M.; Edin, N.F.J.; Christoffersen, S.; Krengel, U.; Pettersen, E.O.; Thiede, B. Hypoxia strongly affects mitochondrial ribosomal proteins and translocases, as shown by quantitative proteomics of HeLa cells. Int. J. Proteom. 2015, 2015, 678527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, Y.; Zhong, Y.; Chen, X.; Liu, H.; Shi, Y.; Zhang, X.; Sun, H. Hyperbaric oxygen treatment ameliorates the decline in oocyte quality and improves the fertility of aged female mice. Reprod. Sci. 2022, 30, 1834–1840. [Google Scholar] [CrossRef] [PubMed]
- Borş, S.-I.; Dascălu, D.-L.; Borş, A.; Fahmy, H.M.; Kandil, O.M.; Abdoon, A.S.S. Intraovarian injection of reconstituted lyophilized growth-promoting factor extracted from horse blood platelets (L-GFequina) increases oocyte recovery and in vitro embryo production in Holstein cows. Animals 2022, 12, 2618. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Nuevo, A.; Torres-Sanchez, A.; Duran, J.M.; De Guirior, C.; Martínez-Zamora, M.A.; Böke, E. Oocytes maintain ROS-free mitochondrial metabolism by suppressing complex I. Nature 2022, 607, 756–761. [Google Scholar] [CrossRef]
- Bakacak, M.; Bostanci, M.S.; Inanc, F.; Yaylali, A.; Serin, S.; Attar, R.; Yildirim, G.; Yildirim, O.K. Protective effect of platelet-rich plasma on experimental ischemia/reperfusion injury in rat ovary. Gynecol. Obstet. Investig. 2016, 81, 225–231. [Google Scholar] [CrossRef]
- Hosseini, L.; Shirazi, A.; Naderi, M.M.; Shams-Esfandabadi, N.; Boroujeni, S.B.; Sarvari, A.; Sadeghnia, S.; Behzadi, B.; Akhondi, M.M. Platelet-rich plasma promotes the development of isolated human primordial and primary follicles to the preantral stage. Reprod. Biomed. Online 2017, 35, 343–350. [Google Scholar] [CrossRef] [Green Version]
- Maslakov, G.P.; Kulishkin, N.S.; Surkova, A.A.; Kulakova, M.A. Maternal transcripts of Hox genes are found in oocytes of Platynereis dumerilii (Annelida, Nereididae). J. Dev. Biol. 2021, 9, 37. [Google Scholar] [CrossRef]
- Ota, T.; Asahina, H.; Park, S.-H.; Huang, Q.; Minegishi, T.; Auersperg, N.; Leung, P.C. HOX cofactors expression and regulation in the human ovary. Reprod. Biol. Endocrinol. 2008, 6, 49. [Google Scholar] [CrossRef] [Green Version]
- Mallo, M.; Alonso, C.R. The regulation of Hox gene expression during animal development. Development 2013, 140, 3951–3963. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Huang, Q.; Cheng, J.-C.; Nishi, Y.; Yanase, T.; Huang, H.-F.; Leung, P.C. Homeobox A7 increases cell proliferation by up-regulation of epidermal growth factor receptor expression in human granulosa cells. Reprod. Biol. Endocrinol. 2010, 8, 61. [Google Scholar] [CrossRef] [Green Version]
- Ota, T.; Choi, K.-B.; Gilks, C.B.; Leung, P.C.K.; Auersperg, N. Cell type- and stage-specific changes in HOXA7 protein expression in human ovarian folliculogenesis: Possible role of GDF-9. Differentiation 2006, 74, 1–10. [Google Scholar] [CrossRef]
- Naora, H.; Montz, F.J.; Chai, C.-Y.; Roden, R.B.S. Aberrant expression of homeobox gene HOXA7 is associated with Müllerian-like differentiation of epithelial ovarian tumors and generation of a specific autologous antibody response. Proc. Natl. Acad. Sci. USA 2001, 98, 15209–15214. [Google Scholar] [CrossRef]
- Carter, L.E.; Cook, D.P.; McCloskey, C.W.; Grondin, M.A.; Landry, D.A.; Dang, T.; Collins, O.; Gamwell, L.F.; Dempster, H.A.; Vanderhyden, B.C. Transcriptional heterogeneity of stemness phenotypes in the ovarian epithelium. Commun. Biol. 2021, 4, 527. [Google Scholar] [CrossRef]
- Kaushik, S.; Cuervo, A.M. Proteostasis and aging. Nat. Med. 2015, 21, 1406–1415. [Google Scholar] [CrossRef]
- Duncan, F.E.; Jasti, S.; Paulson, A.; Kelsh, J.M.; Fegley, B.; Gerton, J.L. Age-associated dysregulation of protein metabolism in the mammalian oocyte. Aging Cell 2017, 16, 1381–1393. [Google Scholar] [CrossRef]
- Ma, C.; Liu, D.; Li, D.; Zhang, J.; Xu, X.; Zhu, H.; Wan, X.; Miao, C.H.; Konkle, B.A.; Onigman, P.; et al. Comprehensive N- and O-glycosylation mapping of human coagulation factor V. J. Thromb. Haemost. 2020, 18, 1884–1892. [Google Scholar] [CrossRef]
- Mercado, C.P.; Quintero, M.V.; Li, Y.; Singh, P.; Byrd, A.K.; Talabnin, K.; Ishihara, M.; Azadi, P.; Rusch, N.J.; Kuberan, B.; et al. A serotonin-induced N-glycan switch regulates platelet aggregation. Sci. Rep. 2013, 3, 2795. [Google Scholar] [CrossRef] [Green Version]
- Dubé, F.; Amireault, P. Local serotonergic signaling in mammalian follicles, oocytes and early embryos. Life Sci. 2007, 81, 1627–1637. [Google Scholar] [CrossRef]
- Gupta, K.; Toombes, G.E.; Swartz, K.J. Exploring structural dynamics of a membrane protein by combining bioorthogonal chemistry and cysteine mutagenesis. eLife 2019, 8, e50776. [Google Scholar] [CrossRef]
- Sills, E.S.; Wood, S.H.; Walsh, A.P.H. Intraovarian condensed platelet cytokines for infertility and menopause—Mirage or miracle? Biochimie 2023, 204, 41–47. [Google Scholar] [CrossRef]
- Lin, Z.; Xing, W.; Gao, C.; Wang, X.; Qi, D.; Dai, G.; Zhao, W.; Yan, G. Inhibitory effect of vascular endothelial growth factor on the slowly activating delayed rectifier potassium current in guinea pig ventricular myocytes. J. Am. Heart Assoc. 2018, 7, e007730. [Google Scholar] [CrossRef] [Green Version]
- Koide, M.; Penar, P.L.; Tranmer, B.I.; Wellman, G.C. Heparin-binding EGF-like growth factor mediates oxyhemoglobin-induced suppression of voltage-dependent potassium channels in rabbit cerebral artery myocytes. Am. J. Physiol. Heart Circ. Physiol. 2007, 293, H1750–H1759. [Google Scholar] [CrossRef] [PubMed]
- Jaffe, L.A.; Egbert, J.R. Regulation of mammalian oocyte meiosis by intercellular communication within the ovarian follicle. Annu. Rev. Physiol. 2017, 79, 237–260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ong, S.T.; Tyagi, A.; Chandy, K.G.; Bhushan, S. Mechanisms underlying C-type inactivation in Kv channels: Lessons from structures of human Kv1. 3 and Fly Shaker-IR channels. Front Pharmacol 2022, 13, 924289. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.-M.; Cui, N.; Xu, S.-X.; Gao, F.-L.; Hao, G.-M.; Cao, J.-F. Influence of 4-aminopyridine on human ovarian luteinized granulosa cell proliferation, production, and apoptosis through inhibiting voltage-gated K+ channel. Zhonghua Fu Chan Ke Za Zhi 2008, 43, 918–922. Available online: https://pubmed.ncbi.nlm.nih.gov/19134331/ (accessed on 15 May 2023). [PubMed]
- Sung, J.Y.; Cheong, J.H. Pan-cancer analysis of clinical relevance via Telomere Maintenance Mechanism. Int. J. Mol. Sci. 2021, 22, 11101. [Google Scholar] [CrossRef]
- Sung, J.Y.; Cheong, J.H. Single cell analysis of gastric cancer reveals non-defined telomere maintenance mechanism. Cells 2022, 11, 3342. [Google Scholar] [CrossRef]
- Xu, X.; Chen, X.; Zhang, X.; Liu, Y.; Wang, Z.; Wang, P.; Du, Y.; Qin, Y.; Chen, Z.-J. Impaired telomere length and telomerase activity in peripheral blood leukocytes and granulosa cells in patients with biochemical primary ovarian insufficiency. Hum. Reprod. 2017, 32, 201–207. [Google Scholar] [CrossRef]
- Tománek, M.; Chronowska, E.; Kott, T.; Czerneková, V. Telomerase activity in pig granulosa cells proliferating and differentiating in vitro. Anim. Reprod. Sci. 2008, 104, 284–298. [Google Scholar] [CrossRef]
- Toupance, S.; Fattet, A.-J.; Thornton, S.N.; Benetos, A.; Guéant, J.-L.; Koscinski, I. Ovarian telomerase and female fertility. Biomedicines 2021, 9, 842. [Google Scholar] [CrossRef]
- Podlevsky, J.D.; Chen, J.J. Evolutionary perspectives of telomerase RNA structure and function. RNA Biol. 2016, 13, 720–732. [Google Scholar] [CrossRef] [Green Version]
- Weinrich, S.L.; Pruzan, R.; Ma, L.; Ouellette, M.; Tesmer, V.M.; Holt, S.E.; Bodnar, A.G.; Lichtsteiner, S.; Kim, N.W.; Trager, J.B.; et al. Reconstitution of human telomerase with the template RNA component HTR and the catalytic protein subunit HTRT. Nat. Genet. 1997, 17, 498–502. [Google Scholar] [CrossRef]
- Wu, R.A.; Upton, H.E.; Vogan, J.M.; Collins, K. Telomerase mechanism of telomere synthesis. Annu. Rev. Biochem. 2017, 86, 439–460. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Li, R.; Hou, X.; Wang, Y.; Pan, M.; Kang, N.; Yuchi, Y.; Liao, W.; Liu, X.; Mao, Z.; et al. Mediation effect of platelet traits on associations of central obesity with aging biomarkers in rural adults of Henan, China. Nutrients 2022, 14, 3597. [Google Scholar] [CrossRef]
- Muscari, A.; Pascalis, S.; Ludovico, C.; Castaldini, N.; Antonelli, S.; Bianchi, G.; Magalotti, D.; Zoli, M.; Cenni, A. Determinants of mean platelet volume (MPV) in an elderly population: Relevance of body fat, blood glucose and ischaemic electrocardiographic changes. Thromb. Haemost. 2008, 99, 1079–1084. [Google Scholar] [CrossRef]
- Brækkan, S.K.; Mathiesen, E.B.; Njølstad, I.; Wilsgaard, T.; Størmer, J.; Hansen, J.B. Mean platelet volume is a risk factor for venous thromboembolism: The Tromsø Study, Tromsø, Norway. J. Thromb. Haemost. 2010, 8, 157–162. [Google Scholar] [CrossRef]
- Zhou, L.; Zheng, D.; Wang, M.; Cong, Y.-S. Telomerase reverse transcriptase activates the expression of vascular endothelial growth factor independent of telomerase activity. Biochem. Biophys. Res. Commun. 2009, 386, 739–743. [Google Scholar] [CrossRef]
- Sills, E.S.; Wood, S.H. Growth factors, gene activation, and cell recruitment: From intraovarian condensed platelet cytokines to de novo oocyte development. J. Clin. Transl. Res. 2022, 8, 49–53. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8848765/ (accessed on 15 May 2023).
- Hou, X.; Li, Z.; Higashi, Y.; Delafontaine, P.; Sukhanov, S. Insulin-like growth factor-1 prevents cellular aging via activation of mitophagy. J. Aging Res. 2020, 2020, 4939310. [Google Scholar] [CrossRef]
- Benoit, S.; Kraemer, D.; Bröcker, E.-B.; Goebeler, M. Dyskeratosis congenita in a 40-year-old patient. Hautarzt 2006, 57, 313–315. [Google Scholar] [CrossRef]
- Savage, S.A.; Niewisch, M.R. Dyskeratosis Congenita and Related Telomere Biology Disorders; Adam, M.P., Everman, D.B., Mirzaa, G.M., Pagon, R.A., Wallace, S.E., Bean, L.J.H., Gripp, K.W., Eds.; GeneReviews; University of Washington: Seattle, WA, USA, 2009–2023. Available online: https://www.ncbi.nlm.nih.gov/books/NBK22301/ (accessed on 15 May 2023).
- Sills, E.S.; Petersen, J.L.; Rickers, N.S.; Wood, S.H.; Li, X. Regenerative effect of intraovarian injection of autologous platelet-rich plasma: Serum anti-Mullerian hormone levels measured among poor-prognosis in vitro fertilization patients. Int. J. Regen. Med. 2020, 3, 1–5. [Google Scholar] [CrossRef]
- Sills, E.S.; Rickers, N.S.; Svid, C.S.; Rickers, J.M.; Wood, S.H. Normalized ploidy following 20 consecutive blastocysts with chromosomal error: Healthy 46, XY pregnancy with IVF after intraovarian injection of autologous enriched platelet-derived growth factors. Int. J. Mol. Cell Med. 2019, 8, 84–90. [Google Scholar] [PubMed]
- Merhi, Z.; Seckin, S.; Mouanness, M. Intraovarian platelet-rich plasma administration could improve blastocyst euploidy rates in women undergoing in vitro fertilization. Clin. Exp. Reprod. Med. 2022, 49, 210–214. [Google Scholar] [CrossRef] [PubMed]
- Ziętara, P.; Dziewięcka, M.; Augustyniak, M. Why is longevity still a scientific mystery? Sirtuins—Past, present and future. Int. J. Mol. Sci. 2022, 24, 728. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Yang, Q.; Li, H.; Wang, Y.; Jiang, Y.; Wang, H.; Cong, L.; Xu, J.; Shen, Z.; Chen, W.; et al. Sirt3 deficiency accelerates ovarian senescence without affecting spermatogenesis in aging mice. Free Radic. Biol. Med. 2022, 193 Pt 2, 511–525. [Google Scholar] [CrossRef]
- Suenkel, B.; Valente, S.; Zwergel, C.; Weiss, S.; Di Bello, E.; Fioravanti, R.; Aventaggiato, M.; Amorim, J.A.; Garg, N.; Kumar, S.; et al. Potent and specific activators for mitochondrial Sirtuins Sirt3 and Sirt5. J. Med. Chem. 2022, 65, 14015–14031. [Google Scholar] [CrossRef]
- Trapphoff, T.; Heiligentag, M.; Dankert, D.; Demond, H.; Deutsch, D.; Fröhlich, T.; Arnold, G.; Grümmer, R.; Horsthemke, B.; Eichenlaub-Ritter, U. Postovulatory aging affects dynamics of mRNA, expression and localization of maternal effect proteins, spindle integrity and pericentromeric proteins in mouse oocytes. Hum. Reprod. 2016, 31, 133–149. [Google Scholar] [CrossRef] [Green Version]
- Olson, M.O.; Dundr, M. The moving parts of the nucleolus. Histochem. Cell Biol. 2005, 123, 203–216. [Google Scholar] [CrossRef]
- Morimoto, N.; Hashimoto, S.; Yamanaka, M.; Nakano, T.; Satoh, M.; Nakaoka, Y.; Iwata, H.; Fukui, A.; Morimoto, Y.; Shibahara, H. Mitochondrial oxygen consumption rate of human embryos declines with maternal age. J. Assist. Reprod. Genet. 2020, 37, 1815–1821. [Google Scholar] [CrossRef]
- Ravichandran, K.; McCaffrey, C.; Grifo, J.; Morales, A.; Perloe, M.; Munne, S.; Wells, D.; Fragouli, E. Mitochondrial DNA quantification as a tool for embryo viability assessment: Retrospective analysis of data from single euploid blastocyst transfers. Hum. Reprod. 2017, 32, 1282–1292. [Google Scholar] [CrossRef] [Green Version]
- Lledo, B.; A Ortiz, J.; Morales, R.; García-Hernández, E.; Ten, J.; Bernabeu, A.; Llácer, J. Comprehensive mitochondrial DNA analysis and IVF outcome. Hum. Reprod. Open 2018, 2018, hoy023. [Google Scholar] [CrossRef] [Green Version]
- Lukaszuk, K.; Podolak, A. Does trophectoderm mitochondrial DNA content affect embryo developmental and implantation potential? Int. J. Mol. Sci. 2022, 23, 5976. [Google Scholar] [CrossRef]
- Fragouli, E.; McCaffrey, C.; Ravichandran, K.; Spath, K.; Grifo, J.A.; Munné, S.; Wells, D. Clinical implications of mtDNA quantification on pregnancy outcomes: A blinded prospective non-selection study. Hum. Reprod. 2017, 32, 2340–2347. [Google Scholar] [CrossRef] [Green Version]
- Scott, R.T., 3rd; Sun, L.; Zhan, Y.; Marin, D.; Tao, X.; Seli, E. Mitochondrial DNA content is not predictive of reproductive competence in euploid blastocysts. Reprod. Biomed. Online 2020, 41, 183–190. [Google Scholar] [CrossRef]
- Boynukalin, F.K.; Gultomruk, M.; Cavkaytar, S.; Turgut, E.; Findikli, N.; Serdarogullari, M.; Coban, O.; Yarkiner, Z.; Rubio, C.; Bahceci, M. Parameters impacting the live birth rate per transfer after frozen single euploid blastocyst transfer. PLoS ONE 2020, 15, e0227619. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.-S.; Wang, S.-L.; Liu, X.-L.; Kang, Z.-C. Platelet-rich plasma promotes peripheral nerve regeneration after sciatic nerve injury. Neural Regen. Res. 2023, 18, 375–381. [Google Scholar] [CrossRef]
- Léger, J.L.; Pichaud, N.; Boudreau, L.H. Purification of functional platelet mitochondria using a discontinuous percoll gradient. Methods Mol. Biol. 2021, 2276, 57–66. [Google Scholar] [CrossRef]
- Rowley, J.W.; Weyrich, A.S. Ribosomes in platelets protect the messenger. Blood 2017, 129, 2343–2345. [Google Scholar] [CrossRef] [Green Version]
- Park, C.; Cha, H.-J.; Kim, M.Y.; Bang, E.; Moon, S.-K.; Yun, S.J.; Kim, W.-J.; Noh, J.S.; Kim, G.-Y.; Cho, S.; et al. Phloroglucinol attenuates DNA damage and apoptosis induced by oxidative stress in human retinal pigment epithelium ARPE-19 cells by blocking the production of mitochondrial ROS. Antioxidants 2022, 11, 2353. [Google Scholar] [CrossRef]
- Duan, G.; Ren, Z.; Du, B.; Shao, W.; Dong, H.; Du, A. Platelet-rich plasma protects human keratinocytes from UVB-induced apoptosis by attenuating inflammatory responses and endoplasmic reticulum stress. J. Cosmet. Dermatol. 2022, 22, 1327–1333. [Google Scholar] [CrossRef]
- Barrios-Maya, M.-A.; Ruiz-Ramírez, A.; Quezada, H.; Acuña, C.L.C.; El-Hafidi, M. Palmitoyl-CoA effect on cytochrome c release, a key process of apoptosis, from liver mitochondria of rat with sucrose diet-induced obesity. Food Chem. Toxicol. 2021, 154, 112351. [Google Scholar] [CrossRef]
- Taghizabet, N.; Rezaei-Tazangi, F.; Mousavi, M.; Dehghani, F.; Zareifard, N.; Shabani, S.; Bahmanpour, S.; Aliakbari, F.; Sadeghzadeh, Z.; Dortaj, H.; et al. Endometrial cell-derived conditioned medium in combination with platelet-rich plasma promotes development of mouse ovarian follicles. Zygote 2022, 31, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Grossen, A.A.; Lee, B.J.; Shi, H.H.; Shakir, H.J.; Cornett, E.M.; Kaye, A.D. Platelet-rich plasma injections: Pharmacological and clinical considerations in pain management. Curr. Pain Headache Rep. 2022, 26, 741–749. [Google Scholar] [CrossRef] [PubMed]
- Sills, E.S.; Wood, S.H. Epigenetics, ovarian cell plasticity, and platelet-rich plasma: Mechanistic theories. Reprod. Fertil. 2022, 3, C44–C51. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.-C.; Chang, H.-M.; Fang, L.; Sun, Y.-P.; Leung, P.C. TGF-β1 up-regulates connexin43 expression: A potential mechanism for human trophoblast cell differentiation. J. Cell Physiol. 2015, 230, 1558–1566. [Google Scholar] [CrossRef] [PubMed]
- Abdel Fattah, S.M.; Saif-Elnasr, M.; Soliman, A.F. Platelet-rich plasma as a potential therapeutic approach against lead nitrate- and/or gamma radiation-induced hepatotoxicity. Environ. Sci. Pollut. Res. Int. 2018, 25, 34460–34471. [Google Scholar] [CrossRef] [PubMed]
- Rui, S.; Yuan, Y.; Du, C.; Song, P.; Chen, Y.; Wang, H.; Fan, Y.; Armstrong, D.G.; Deng, W.; Li, L. Comparison and investigation of exosomes derived from platelet-rich plasma activated by different agonists. Cell Transplant. 2021, 30, 9636897211017833. [Google Scholar] [CrossRef]
- Sills, E.S. Why might ovarian rejuvenation fail? Decision analysis of variables impacting reproductive response after autologous platelet-rich plasma. Minerva Obstet. Gynecol. 2022, 74, 377–385. [Google Scholar] [CrossRef]
- Glasziou, P.; Chalmers, I.; Rawlins, M.; McCulloch, P. When are randomised trials unnecessary? Picking signal from noise. BMJ 2007, 334, 349–351. [Google Scholar] [CrossRef] [Green Version]
- Sabouni, R.; Tarrab, R.; Kalaji, D.; Abbassi, H. A new approach of using platelet-rich autologous plasma to increase the ovarian reservoir in a Syrian patient with ovarian insufficiency: A case report. Ann. Med. Surg. (London) 2021, 73, 103149. [Google Scholar] [CrossRef]
- Parikh, F.R.M.; Sawkar, S.G.; Agarwal, S.; Makwana, P.K.M.; Khandeparkar, M.S.M.; Naik, N.J.M.; Sanap, M.V.M.; Joshi, S.P.M.; Athalye, A.S. A novel method of intraovarian instillation of platelet rich plasma to improve reproductive outcome in young Indian women with diminished ovarian reserve. Glob. Reprod. Health 2022, 7, e59. [Google Scholar] [CrossRef]
- Cakiroglu, Y.; Yuceturk, A.; Karaosmanoglu, O.; Kopuk, S.Y.; Korun, Z.E.U.; Herlihy, N.; Scott, R.T.; Tiras, B.; Seli, E. Ovarian reserve parameters and IVF outcomes in 510 women with poor ovarian response (POR) treated with intraovarian injection of autologous platelet rich plasma (PRP). Aging (Albany N. Y.) 2022, 14, 2513–2523. [Google Scholar] [CrossRef]
- Kheil, M.H.; Bahsoun, R.; Sharara, F.I. Platelet-rich plasma: Inconclusive evidence of reproductive outcomes in menopausal women. J. Assist. Reprod. Genet. 2022, 39, 1987–1991. [Google Scholar] [CrossRef]
- Sills, E.S.; Tan, S.L. Preliminary cost variance modeling to compare autologous intraovarian platelet-rich plasma vs. standard hormone replacement therapy for menopause management. Ceska Gynekol. 2022, 87, 28–34. [Google Scholar] [CrossRef]
- Sills, E.S. Ovarian recovery via autologous platelet-rich plasma: New benchmarks for condensed cytokine applications to reverse reproductive aging. Aging Med. (Milton) 2022, 5, 63–67. [Google Scholar] [CrossRef]
- Zarin, M.; Karbalaei, N.; Keshtgar, S.; Nemati, M. Platelet-rich plasma improves impaired glucose hemostasis, disrupted insulin secretion, and pancreatic oxidative stress in streptozotocin-induced diabetic rat. Growth Factors 2019, 37, 226–237. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Hamilton, M.; Shaaban, M.; Khalaf, Y.; Seddler, M.; Ghobara, T.; Braude, P.; Kennedy, R.; Rutherford, A.; Hartshorne, G.; et al. Conventional in-vitro fertilisation versus intracytoplasmic sperm injection for treatment of non-male-factor infertility: A randomised controlled trial. Lancet 2001, 357, 2075–2079. [Google Scholar] [CrossRef]
- Perrotta, M.; Hamper, J. Patient informed choice in the age of evidence-based medicine: IVF patients’ approaches to biomedical evidence and fertility treatment add-ons. Sociol. Health Illn. 2022, 45, 225–241. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sills, E.S.; Wood, S.H. Multichannel Recovery Potential with Activated Autologous Intraovarian Platelet-Rich Plasma and Its Derivatives. Medicines 2023, 10, 40. https://doi.org/10.3390/medicines10070040
Sills ES, Wood SH. Multichannel Recovery Potential with Activated Autologous Intraovarian Platelet-Rich Plasma and Its Derivatives. Medicines. 2023; 10(7):40. https://doi.org/10.3390/medicines10070040
Chicago/Turabian StyleSills, E. Scott, and Samuel H. Wood. 2023. "Multichannel Recovery Potential with Activated Autologous Intraovarian Platelet-Rich Plasma and Its Derivatives" Medicines 10, no. 7: 40. https://doi.org/10.3390/medicines10070040
APA StyleSills, E. S., & Wood, S. H. (2023). Multichannel Recovery Potential with Activated Autologous Intraovarian Platelet-Rich Plasma and Its Derivatives. Medicines, 10(7), 40. https://doi.org/10.3390/medicines10070040