Removal of Carbon Nanotubes from Aqueous Solutions by Sodium Hypochlorite: Effects of Treatment Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of CNT Dispersions
2.2. Treatment of SG-CNT Dispersions with NaClO
2.3. Measurement of Free Available Chlorine in Treatments
3. Results
3.1. The Influence of NaClO Concentrations
3.2. The Influence of Temperature
3.3. The Influence of pH Condition
3.4. The Influence of SG-CNT Concentration and Dispersant
4. Discussion
4.1. The Effect of NaClO Concentration
4.2. Impact of Temperature
4.3. Effect of pH Values
4.4. The Influence of Dispersant of BSA
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- O’Connell, M.J. Carbon Nanotubes: Properties and Applications; Taylor & Francis: New York, NY, USA, 2018. [Google Scholar]
- Sgobba, V.; Guldi, D.M. Carbon nanotubes—Electronic/electrochemical properties and application for nanoelectronics and photonics. Chem. Soc. Rev. 2009, 38, 165–184. [Google Scholar] [CrossRef] [PubMed]
- De Volder, M.F.; Tawfick, S.H.; Baughman, R.H.; Hart, A.J. Carbon nanotubes: Present and future commercial applications. Science 2013, 339, 535–539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, K.; Ren, M.; Zhitomirsky, I. Activated carbon-coated carbon nanotubes for energy storage in supercapacitors and capacitive water purification. ACS Sustain. Chem. Eng. 2014, 2, 1289–1298. [Google Scholar] [CrossRef]
- Srivastava, A.; Srivastava, O.N.; Talapatra, S.; Vajtai, R.; Ajayan, P.M. Carbon nanotube filters. Nat. Mater. 2004, 3, 610–614. [Google Scholar] [CrossRef]
- Antiohos, D.; Romano, M.; Chen, J.; Razal, J.M. Carbon nanotubes for energy applications. In Syntheses and Applications of Carbon Nanotubes and Their Composites; Suzuki, S., Ed.; IntechOpen: London, UK, 2013; Available online: https://www.intechopen.com/chapters/38922 (accessed on 14 September 2021). [CrossRef] [Green Version]
- Li, C.; Thostenson, E.T.; Chou, T.-W. Sensors and actuators based on carbon nanotubes and their composites: A review. Compos. Sci. Technol. 2008, 68, 1227–1249. [Google Scholar] [CrossRef]
- Tan, C.W.; Tan, K.H.; Ong, Y.T.; Mohamed, A.R.; Zein, S.H.S.; Tan, S.H. Energy and environmental applications of carbon nanotubes. Environ. Chem. Lett. 2012, 10, 265–273. [Google Scholar] [CrossRef]
- González, M.; Mokry, G.; de Nicolás, M.; Baselga, J.; Pozuelo, J. Carbon nanotube composites as electromagnetic shielding materials in GHz range. In Carbon Nanotubes—Current Progress of Their Polymer Composites; Berber, M.R., Hafez, I.H., Eds.; IntechOpen: London, UK, 2016; Available online: https://www.intechopen.com/chapters/50299 (accessed on 14 September 2021). [CrossRef] [Green Version]
- Yano Research Institute Ltd. Global CNT (Carbon Nanotube) Market: Key Research Findings 2018. 2019. Available online: https://www.yanoresearch.com/en/press-release/show/press_id/2081 (accessed on 14 September 2021).
- Das, R.; Leo, B.F.; Murphy, F. The toxic truth about carbon nanotubes in water purification: A perspective view. Nanoscale Res. Lett. 2018, 13, 183. [Google Scholar] [CrossRef] [Green Version]
- Su, Y.; Yan, X.; Pu, Y.; Xiao, F.; Wang, D.; Yang, M. Risks of single-walled carbon nanotubes acting as contaminants-carriers: Potential release of phenanthrene in Japanese medaka (Oryzias latipes). Environ. Sci. Technol. 2013, 47, 4704–4710. [Google Scholar] [CrossRef]
- Mercer, R.R.; Scabilloni, J.F.; Hubbs, A.F.; Wang, L.; Battelli, L.A.; McKinney, W.; Castranova, V.; Porter, D.W. Extrapulmonary transport of MWCNT following inhalation exposure. Part. Fibre Toxicol. 2013, 10, 38. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, N.; Izumi, H.; Morimoto, Y. Review of toxicity studies of carbon nanotubes. J. Occup. Health 2017, 59, 394–407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Francis, A.P.; Devasena, T. Toxicity of carbon nanotubes: A review. Toxicol. Ind. Health 2018, 34, 200–210. [Google Scholar] [CrossRef] [PubMed]
- Parks, A.N.; Portis, L.M.; Schierz, P.A.; Washburn, K.M.; Perron, M.M.; Burgess, R.M.; Ho, K.T.; Chandler, G.T.; Ferguson, P.L. Bioaccumulation and toxicity of single-walled carbon nanotubes to benthic organisms at the base of the marine food chain. Environ. Toxicol. Chem. 2013, 32, 1270–1277. [Google Scholar] [CrossRef] [PubMed]
- Zhu, B.; Zhu, S.; Li, J.; Hui, X.; Wang, G.-X. The developmental toxicity, bioaccumulation and distribution of oxidized single walled carbon nanotubes in Artemia salina. Toxicol. Res. (Camb.) 2018, 7, 897–906. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sohn, E.K.; Chung, Y.S.; Johari, S.A.; Kim, T.G.; Kim, J.K.; Lee, J.H.; Lee, Y.H.; Kang, S.W.; Yu, I.J. Acute toxicity comparison of single-walled carbon nanotubes in various freshwater organisms. Biomed. Res. Int. 2015, 2015, 323090. [Google Scholar] [CrossRef] [Green Version]
- Wei, L.; Thakkar, M.; Chen, Y.; Ntim, S.A.; Mitra, S.; Zhang, X. Cytotoxicity effects of water dispersible oxidized multiwalled carbon nanotubes on marine alga, dunaliella tertiolecta. Aquat. Toxicol. 2010, 100, 194–201. [Google Scholar] [CrossRef]
- Cimbaluk, G.V.; Ramsdorf, W.A.; Perussolo, M.C.; Santos, H.K.F.; de Assis, H.C.D.S.; Schnitzler, M.C.; Schnitzler, D.C.; Carneiro, P.G.; Cestari, M.M. Evaluation of multiwalled carbon nanotubes toxicity in two fish species. Ecotoxicol. Environ. Saf. 2018, 150, 215–223. [Google Scholar] [CrossRef]
- Bisesi, J.H., Jr.; Merten, J.; Liu, K.; Parks, A.N.; Afrooz, A.R.M.N.; Glenn, J.B.; Klaine, S.J.; Kane, A.S.; Saleh, N.B.; Ferguson, P.L.; et al. Tracking and quantification of single-walled carbon nanotubes in fish using near infrared fluorescence. Environ. Sci. Technol. 2014, 48, 1973–1983. [Google Scholar] [CrossRef]
- Sargent, L.M.; Porter, D.W.; Staska, L.M.; Hubbs, A.F.; Lowry, D.T.; Battelli, L.; Siegrist, K.J.; Kashon, M.L.; Mercer, R.R.; Bauer, A.K.; et al. Promotion of lung adenocarcinoma following inhalation exposure to multi-walled carbon nanotubes. Part. Fibre Toxicol. 2014, 11, 3. [Google Scholar] [CrossRef] [Green Version]
- Rittinghausen, S.; Hackbarth, A.; Creutzenberg, O.; Ernst, H.; Heinrich, U.; Leonhardt, A.; Schaudien, D. The carcinogenic effect of various multi-walled carbon nanotubes (MWCNTs) after intraperitoneal injection in rats. Part. Fibre Toxicol. 2014, 11, 59. [Google Scholar] [CrossRef] [Green Version]
- Kasai, T.; Umeda, Y.; Ohnishi, M.; Mine, T.; Kondo, H.; Takeuchi, T.; Matsumoto, M.; Fukushima, S. Lung carcinogenicity of inhaled multi-walled carbon nanotube in rats. Part. Fibre Toxicol. 2016, 13, 53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shinohara, N.; Nakazato, T.; Ohkawa, K.; Tamura, M.; Kobayashi, N.; Morimoto, Y.; Oyabu, T.; Myojo, T.; Shimada, M.; Yamamoto, K.; et al. Long-term retention of pristine multi-walled carbon nanotubes in rat lungs after intratracheal instillation. J. Appl. Toxicol. 2016, 36, 501–509. [Google Scholar] [CrossRef]
- Lam, C.W.; James, J.T.; McCluskey, R.; Hunter, R.L. Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol. Sci. 2004, 77, 126–134. [Google Scholar] [CrossRef] [Green Version]
- IARC. Some Nanomaterials and Some Fibres. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans Volume 111. 2017. Available online: https://publications.iarc.fr/Book-And-Report-Series/Iarc-Monographs-On-The-Identification-Of-Carcinogenic-Hazards-To-Humans/Some-Nanomaterials-And-Some-Fibres-2017 (accessed on 14 September 2021).
- Hansen, S.F.; Lennquist, A. Carbon nanotubes added to the SIN List as a nanomaterial of very high concern. Nat. Nanotechnol. 2020, 15, 3–4. [Google Scholar] [CrossRef]
- Zhang, M.; Deng, Y.; Yang, M.; Nakajima, H.; Yudasaka, M.; Iijima, S.; Okazaki, T. A simple method for removal of carbon nanotubes from wastewater using hypochlorite. Sci. Rep. 2019, 9, 1284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Block, M.S.; Rowan, B.G. Hypochlorous acid: A review. J. Oral. Maxillofac. Surg. 2020, 78, 1461–1466. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Yang, M.; Nakajima, H.; Yudasaka, M.; Iijima, S.; Okazaki, T. Diameter-dependent degradation of 11 types of carbon nanotubes: Safety implications. ACS Appl. Nano Mater. 2019, 2, 4293–4301. [Google Scholar] [CrossRef]
- Newman, L.; Lozano, N.; Zhang, M.; Iijima, S.; Yudasaka, M.; Bussy, C.; Kostarelos, K. Hypochlorite degrades 2D graphene oxide sheets faster than 1D oxidised carbon nanotubes and nanohorns. npj 2D Mater. Appl. 2017, 39, 774–776. [Google Scholar] [CrossRef] [Green Version]
- Nagaraju, K.; Reddy, R.; Reddy, N. A review on protein functionalized carbon nanotubes. J. Appl. Biomater. Funct. Mater. 2015, 13, e301–e312. [Google Scholar] [CrossRef]
- Hata, K.; Futaba, D.N.; Mizuno, K.; Namai, T.; Yumura, M.; Iijima, S. Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes. Science 2004, 306, 1362–1364. [Google Scholar] [CrossRef] [Green Version]
- Futaba, D.N.; Hata, K.; Yamada, T.; Hiraoka, T.; Hayamizu, Y.; Kakudate, Y.; Tanaike, O.; Hatori, H.; Yumura, M.; Iijima, S. Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes. Nat. Mater. 2006, 5, 987–994. [Google Scholar] [CrossRef] [PubMed]
- Futaba, D.N.; Hata, K.; Namai, T.; Yamada, T.; Mizuno, K.; Hayamizu, Y.; Yumura, M.; Iijima, S. 84% catalyst activity of water-assisted growth of single walled carbon nanotube forest characterization by a statistical and macroscopic approach. J. Phys. Chem. B 2006, 110, 8035–8038. [Google Scholar] [CrossRef]
- Fujita, K.; Endoh, S.; Maru, J.; Kato, H.; Nakamura, A.; Kinugasa, S.; Shinohara, N.; Uchino, K.; Fukuda, M.; Obara, S.; et al. Sample Preparation and Characterization for Safety Testing of Carbon Nanotubes, and In Vitro Cell-Based Assay. 2014. Available online: https://www.aist-riss.jp/downloads/tej%2020140507.pdf (accessed on 14 September 2021).
- International Organization for Standardization (ISO). Nanotechnologies—Characteristics of Working Suspensions of Nano-Objects for In Vitro Assays to Evaluate Inherent Nano-Object Toxicity; ISO Standard No: ISO/TS 19337: 2016; International Organization for Standardization (ISO): London, UK, 2016. [Google Scholar]
- Septiadi, D.; Rodriguez-Lorenzo, L.; Balog, S.; Spuch-Calvar, M.; Spiaggia, G.; Taladriz-Blanco, P.; Barosova, H.; Chortarea, S.; Clift, M.J.D.; Teeguarden, J.; et al. Quantification of carbon nanotube doses in adherent cell culture assays using UV-VIS-NIR spectroscopy. Nanomaterials 2019, 9, 1765. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, C.-W.; Bachilo, S.M.; Zheng, Y.; Tsedev, U.; Huang, S.; Weisman, R.B.; Belcher, A.M. Creating fluorescent quantum defects in carbon nanotubes using hypochlorite and light. Nat. Commun. 2019, 10, 2874. [Google Scholar] [CrossRef]
- Holst, G. The chemistry of bleaching and oxidizing agents. Chem. Rev. 1954, 54, 169–194. [Google Scholar] [CrossRef]
- Vanýsek, P. Electrochemical series. In CRC Handbook of Chemistry and Physics, 89th ed.; Lide, D.R., Ed.; CRC Press: Boca Raton, Florida, USA, 2008. [Google Scholar]
- Ohura, R.; Yoshikawa, S. Effect of bleaching by peroxide bleaching agent (part 4) redox potential of bleaching agents. J. Home Econ. Jpn. 1989, 40, 207–212. [Google Scholar] [CrossRef]
Treatment Conditions | NaClO Concentration (wt%) | Temperature | pH Values | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(37 °C, pH: 10.20; | (NaClO: 2.26 wt%, pH10.20; | (NaClO: 2.26 wt%, 37 °C | |||||||||||||
SG/BSA: 10 μg/mL) | SG/BSA: 10 μg/mL) | SG/BSA: 10 μg/mL) | |||||||||||||
0.22 | 0.45 | 1.13 | 2.26 | 4.52 | 25 °C | 37 °C | 50 °C | 70 °C | 80 °C | 3.94 | 6.88 | 10.2 | 12.42 | 13.5 | |
Half-life | 6.34 | 3.31 | 1.94 | 0.72 | 0.43 | 2.16 | 0.96 | 0.5 | 0.2 | 0.17 | 0.44 | 0.42 | 0.82 | 5 | 15 |
(h) | |||||||||||||||
Complete degradation | >8 days | ~144 h | ~72 h | ~54 h | ~41 h | ~120 h | ~48 h | ~24 h | ~3 h | ~2 h | ~48 h | ~48 h | ~48 h | >7 days | >7 days |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, M.; Okazaki, T.; Zhang, M. Removal of Carbon Nanotubes from Aqueous Solutions by Sodium Hypochlorite: Effects of Treatment Conditions. Toxics 2021, 9, 223. https://doi.org/10.3390/toxics9090223
Yang M, Okazaki T, Zhang M. Removal of Carbon Nanotubes from Aqueous Solutions by Sodium Hypochlorite: Effects of Treatment Conditions. Toxics. 2021; 9(9):223. https://doi.org/10.3390/toxics9090223
Chicago/Turabian StyleYang, Mei, Toshiya Okazaki, and Minfang Zhang. 2021. "Removal of Carbon Nanotubes from Aqueous Solutions by Sodium Hypochlorite: Effects of Treatment Conditions" Toxics 9, no. 9: 223. https://doi.org/10.3390/toxics9090223
APA StyleYang, M., Okazaki, T., & Zhang, M. (2021). Removal of Carbon Nanotubes from Aqueous Solutions by Sodium Hypochlorite: Effects of Treatment Conditions. Toxics, 9(9), 223. https://doi.org/10.3390/toxics9090223