Genotoxicity of Mercury and Its Derivatives Demonstrated In Vitro and In Vivo in Human Populations Studies. Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. In-Vitro Genotoxic Effects for Inorganic (i)Hg Compounds
3.1.1. Mercury Chloride (HgCl2)
3.1.2. Mercury Nitrate
3.2. In-Vitro Genotoxic Effects for Organic Compounds
Methylmercury (MeHg or CH3Hg)
3.3. Genotoxic Effects in Exposed Individuals
3.3.1. Accidental Exposures
3.3.2. Exposure from Contaminated Food
3.3.3. Occupational or Environmental Exposure
3.3.4. Amalgams
4. Compounds against Hg Genotoxicity
5. Mechanism of Hg Genotoxic Action
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- De Flora, S.; Bennicelli, C.; Bagnasco, M. Genotoxicity of mercury compounds. A review. Mutat. Res. 1994, 317, 57–79. [Google Scholar] [CrossRef]
- Amorim, M.I.; Mergler, D.; Bahia, M.O.; Dubeau, H.; Miranda, D.; Lebel, J.; Burbano, R.R.; Lucotte, M. Cytogenetic damage related to low levels of methyl mercury contamination in the Brazilian Amazon. An. Acad. Bras. Cienc. 2000, 72, 497–507. [Google Scholar] [CrossRef]
- Westphal, G.A.; Asgari, S.; Schulz, T.G.; Bünger, J.; Müller, M.; Hallier, E. Thimerosal induces micronuclei in the cytochalasin B block micronucleus test with human lymphocytes. Arch. Toxicol. 2003, 77, 50–55. [Google Scholar] [CrossRef] [PubMed]
- Cebulska-Wasilewska, A.; Panek, A.; Zabiński, Z.; Moszczyński, P.; Au, W.W. Occupational exposure to mercury vapour on genotoxicity and DNA repair. Mutat. Res. 2005, 586, 102–114. [Google Scholar] [CrossRef]
- Crespo-López, M.E.; Herculano, A.M.; Corvelo, T.C.; Do Nascimento, J.L. Mercurio y neurotoxicidad. Rev. Nerol. 2005, 40, 441–447. [Google Scholar] [CrossRef]
- Crespo-López, M.E.; Lima de Sá, A.; Herculano, A.M.; Rodríguez Burbano, R.; Martins do Nascimento, J.L. Methylmercury genotoxicity: A novel effect in human cell lines of the central nervous system. Environ. Int. 2007, 33, 141–146. [Google Scholar] [CrossRef]
- Nersesyan, A.; Kundi, M.; Waldherr, M.; Setayesh, T.; Mišík, M.; Wultsch, G.; Filipic, M.; Mazzaron Barcelos, G.R.; Knasmueller, S. Results of micronucleus assays with individuals who are occupationally and environmentally exposed to mercury, lead and cadmium. Mutat. Res. 2016, 770 Pt A, 119–139. [Google Scholar] [CrossRef]
- Tchounwou, P.B.; Ayensu, W.K.; Ninashvili, N.; Sutton, D. Environmental exposure to mercury and its toxicopathologic implications for public health. Environ. Toxicol. 2003, 18, 149–175. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Guidance for Identifying Populations at Risk from Mercury Exposure; Mercury Publications; IOMC Inter-Organization Programme for the Sound Management of Chemicals (UNEP. UNEP DTIE Chemicals Branch and WHO Department of Food Safety, Zoonoses and Foodborne Diseases): Geneva, Switzerland, 2008; 180p, Available online: https://www.who.int/foodsafety/publications/chem/mercuryexposure.pdf (accessed on 12 October 2021).
- Graeme, K.A.; Pollack, C.V., Jr. Heavy metal toxicity, Part I: Arsenic and mercury. J. Emerg. Med. 1998, 16, 45–56. [Google Scholar] [CrossRef]
- Mergler, D.; Anderson, H.A.; Chan, L.H.; Mahaffey, K.R.; Murray, M.; Sakamoto, M.; Stern, A.H.; Panel on Health Risks and Toxicological Effects of Methylmercury. Methylmercury exposure and health effects in humans: A worldwide concern. Ambio 2007, 36, 3–11. [Google Scholar] [CrossRef]
- Sunderland, E.M.; Mason, R.P. Human impacts on open ocean mercury concentrations. Glob. Biogeochem. Cycles 2007, 21, 1–15. [Google Scholar] [CrossRef]
- Batrakova, N.; Travnikov, O.; Rozovskaya, O. Chemical and physical transformations of mercury in the ocean: A review. Ocean Sci. 2014, 10, 1047–1063. [Google Scholar] [CrossRef] [Green Version]
- United Nations Environment Programme (UNEP). Global Mercury Assessment. UNEP Chemicals Mercury Programme. 2002. Available online: https://wedocs.unep.org/bitstream/handle/20.500.11822/12297/final-assessment-report-Nov05-Spanish.pdf?sequence=4&isAllowed=y (accessed on 16 October 2021).
- Ha, E.; Basu, N.; Bose-O’Reilly, S.; Dórea, J.G.; McSorley, E.; Sakamoto, M.; Chan, H.M. Current progress on understanding the impact of mercury on human health. Environ. Res. 2017, 152, 419–433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- US Environmental Protection Agency (USEPA)/Food and Drug Administration (FDA). Consumption Advice. Joint Federal Advisory for Mercury in Fish. What You Need to Know About Mercury in Fish and Shellfish. EPA and FDA Advice for Women Who Might Become Pregnant, Women Who Are Pregnant, Nursing Mothers, Young Children. 2004. Available online: https://www.fda.gov/food/metals-and-your-food/fdaepa-2004-advice-what-you-need-know-about-mercury-fish-and-shellfish (accessed on 13 October 2021).
- Bernhoft, R.A. Mercury toxicity and treatment: A review of the literature. J. Environ. Public Health 2012, 2012, 460508. [Google Scholar] [CrossRef] [PubMed]
- Syversen, T.; Kaur, P. The toxicology of mercury and its compounds. J. Trace Elem. Med. Biol. 2012, 26, 215–226. [Google Scholar] [CrossRef]
- Rice, K.M.; Walker, E.M., Jr.; Wu, M.; Gillette, C.; Blough, E.R. Environmental mercury and its toxic effects. J. Prev. Med. Public Health 2014, 47, 74–83. [Google Scholar] [CrossRef] [PubMed]
- Sheehan, M.C.; Burke, T.A.; Navas-Acien, A.; Breysse, P.N.; McGready, J.; Fox, M.A. Global methylmercury exposure from seafood consumption and risk of developmental neurotoxicity: A systematic review. Bull. World Health Organ. 2014, 92, 254–269F. [Google Scholar] [CrossRef] [PubMed]
- Brownawell, A.M.; Berent, S.; Brent, R.L.; Bruckner, J.V.; Doull, J.; Gershwin, E.M.; Hood, R.D.; Matanoski, G.M.; Rubin, R.; Weiss, B.; et al. The potential adverse health effects of dental amalgam. Toxicol. Rev. 2005, 24, 1–10. [Google Scholar] [CrossRef]
- Crespo-López, M.E.; Macêdo, G.L.; Pereira, S.I.; Arrifano, G.P.; Picanço-Diniz, D.L.; do Nascimento, J.L.; Herculano, A.M. Mercury and human genotoxicity: Critical considerations and possible molecular mechanisms. Pharmacol. Res. 2009, 60, 212–220. [Google Scholar] [CrossRef]
- Patrick, L. Mercury toxicity and antioxidants: Part 1: Role of glutathione and alpha-lipoic acid in the treatment of mercury toxicity. Altern. Med. Rev. 2002, 7, 456–471. [Google Scholar]
- WHO. Preventing Disease through Healthy Environments: Mercury in Skin Lightening Products. World Health Organization. 2019. Available online: https://apps.who.int/iris/handle/10665/330015 (accessed on 12 October 2021).
- WHO. Mercury and Human Health: Educational Course; WHO Regional Office for Europe: Copenhagen, Denmark, 2021; Available online: https://apps.who.int/iris/bitstream/handle/10665/345443/9789289055888-eng.pdf (accessed on 12 October 2021).
- WHO. Exposure to Mercury: A Major Public Health Concern, Second Edition. Preventing Disease through Healthy Environments; Department of Environment, Climate Change and Health, World Health Organization: Geneva, Switzerland, 2021; Available online: https://www.who.int/docs/default-source/chemical-safety/mercury/mercury-2007.pdf?sfvrsn=39552921_2 (accessed on 12 October 2021).
- Counter, S.A.; Buchanan, L.H. Mercury exposure in children: A review. Toxicol. Appl. Pharmacol. 2004, 198, 209–230. [Google Scholar] [CrossRef] [PubMed]
- Holmes, P.; James, K.A.; Levy, L.S. Is low-level environmental mercury exposure of concern to human health? Sci. Total Environ. 2009, 408, 171–182. [Google Scholar] [CrossRef]
- Paton, G.R.; Allison, A.C. Chromosome damage in human cell cultures induced by metal salts. Mutat. Res. 1972, 16, 332–336. [Google Scholar] [CrossRef]
- Morimoto, K.; Iijima, S.; Koizumi, A. Selenite prevents the induction of sister-chromatid exchanges by methyl mercury and mercuric chloride in human whole-blood cultures. Mutat. Res. 1982, 102, 183–192. [Google Scholar] [CrossRef]
- Verschaeve, L.; Kirsch-Volders, M.; Hens, L.; Susanne, C. Comparative in vitro cytogenetic studies in mercury-exposed human lymphocytes. Mutat. Res. 1985, 157, 221–226. [Google Scholar] [CrossRef]
- Bérces, J.; Otos, M.; Szirmai, S.; Crane-Uruena, C.; Köteles, G.J. Using the micronucleus assay to detect genotoxic effects of metal ions. Environ. Health Perspect. 1993, 101 (Suppl. 3), 11–13. [Google Scholar] [CrossRef] [Green Version]
- Ogura, H.; Takeuchi, T.; Morimoto, K. A comparison of the 8-hydroxydeoxyguanosine, chromosome aberrations and micronucleus techniques for the assessment of the genotoxicity of mercury compounds in human blood lymphocytes. Mutat. Res. 1996, 340, 175–182. [Google Scholar] [CrossRef]
- Bahia, M.O.; De Amorim, M.I.; Burbano, R.R.; Vincent, S.; Dubeau, H. Genotoxic effects of mercury on in vitro cultures of human cells. An. Acad. Bras. Cienc. 1999, 71 3 Pt 1, 437–443. [Google Scholar]
- Bucio, L.; García, C.; Souza, V.; Hernández, E.; González, C.; Betancourt, M.; Gutiérrez-Ruiz, M.C. Uptake, cellular distribution and DNA damage produced by mercuric chloride in a human fetal hepatic cell line. Mutat. Res. 1999, 423, 65–72. [Google Scholar] [CrossRef]
- Ben-Ozer, E.Y.; Rosenspire, A.J.; McCabe, M.J., Jr.; Worth, R.G.; Kindzelskii, A.L.; Warra, N.S.; Petty, H.R. Mercuric chloride damages cellular DNA by a non-apoptotic mechanism. Mutat. Res. 2020, 470, 19–27. [Google Scholar] [CrossRef]
- Rao, M.V.; Chinoy, N.J.; Suthar, M.B.; Rajvanshi, M.I. Role of ascorbic acid on mercuric chloride-induced genotoxicity in human blood cultures. Toxicol. In Vitro 2001, 15, 649–654. [Google Scholar] [CrossRef]
- Silva-Pereira, L.C.; Cardoso, P.C.; Leite, D.S.; Bahia, M.O.; Bastos, W.R.; Smith, M.A.; Burbano, R.R. Cytotoxicity and genotoxicity of low doses of mercury chloride and methylmercury chloride on human lymphocytes in vitro. Braz. J. Med. Biol. Res. 2005, 38, 901–907. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rozgaj, R.; Milić, M.; Kašuba, V.; Želježić, D. Mercury chloride genotoxicity evaluated by micronucleus test in human lymphocyte culture. Toxicol. Lett. 2006, 164, S195. [Google Scholar] [CrossRef]
- Milić, M.; Rozgaj, R.; Želježić, D.; Kašuba, V. Mercury chloride genotoxicity in human lymphocyte culture assessed by the alkaline comet assay. Toxicol. Lett. 2006, 164, S195. [Google Scholar] [CrossRef]
- Schmid, K.; Sassen, A.; Staudenmaier, R.; Kroemer, S.; Reichl, F.X.; Harréus, U.; Hagen, R.; Kleinsasser, N. Mercuric dichloride induces DNA damage in human salivary gland tissue cells and lymphocytes. Arch. Toxicol. 2007, 81, 759–767. [Google Scholar] [CrossRef] [PubMed]
- Guillamet, E.; Creus, A.; Farina, M.; Sabbioni, E.; Fortaner, S.; Marcos, R. DNA-damage induction by eight metal compounds in TK6 human lymphoblastoid cells: Results obtained with the alkaline Comet assay. Mutat. Res. 2008, 654, 22–28. [Google Scholar] [CrossRef]
- Lee, C.H.; Lin, R.H.; Liu, S.H.; Lin-Shiau, S.Y. Distinct genotoxicity of phenylmercury acetate in human lymphocytes as compared with other mercury compounds. Mutat. Res. 1997, 392, 269–276. [Google Scholar] [CrossRef]
- USEPA. Water Quality Criterion for the Protection of Human Health: Merhylmercury; EPA-823-R.01-001; Office af Science and Rechnology, Office of Water: Washigton, DC, USA, 2001; 308p. Available online: https://nepis.epa.gov/Exe/ZyPDF.cgi/20003UU4.PDF?Dockey=20003UU4.PDF (accessed on 13 October 2021).
- Umeda, M.; Saito, K.; Hirose, K.; Saito, M. Cytotoxic effect of inorganic, phenyl, and alkyl mercuric compounds on HeLa cells. Jpn J. Exp. Med. 1969, 39, 47–58. [Google Scholar]
- Betti, C.; Davini, T.; Barale, R. Genotoxic activity of methyl mercury chloride and dimethyl mercury in human lymphocytes. Mutat. Res. 1992, 281, 255–260. [Google Scholar] [CrossRef]
- Eke, D.; Celik, A. Genotoxicity of thimerosal in cultured human lymphocytes with and without metabolic activation sister chromatid exchange analysis proliferation index and mitotic index. Toxicol. In Vitro 2008, 22, 927–934. [Google Scholar] [CrossRef] [PubMed]
- Dórea, J.G.; Farina, M.; Rocha, J.B. Toxicity of ethylmercury (and Thimerosal): A comparison with methylmercury. J. Appl. Toxicol. 2013, 33, 700–711. [Google Scholar] [CrossRef]
- Betti, C.; Davini, T.; He, J.; Barale, R. Liquid holding effects on methylmercury genotoxicity in human lymphocytes. Mutat. Res. 1993, 301, 267–273. [Google Scholar] [CrossRef]
- Kato, R.; Nakamura, A. Chromosome breakage associated with organic mercury in human leukocytes in vitro and in vivo. Jpn. J. Hum. Genet. 1976, 20, 256–257. [Google Scholar]
- Crespo-López, M.E.; Macêdo, G.L.; Arrifano, G.P.; Pinheiro, M.C.; do Nascimento, J.L.; Herculano, A.M. Genotoxicity of mercury: Contributing for the analysis of Amazonian populations. Environ. Int. 2011, 37, 136–141. [Google Scholar] [CrossRef]
- Crespo-López, M.E.; Costa-Malaquias, A.; Oliveira, E.H.; Miranda, M.S.; Arrifano, G.P.; Souza-Monteiro, J.R.; Sagica, F.E.; Fontes-Junior, E.A.; Maia, C.S.; Macchi, B.M.; et al. Is low non-lethal concentration of methylmercury really safe? A Report on genotoxicity with delayed cell proliferation. PLoS ONE 2016, 11, e0162822. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patnaik, R.; Padhy, R.N. Comparative study on toxicity of methylmercury chloride and methylmercury hydroxide to the human neuroblastoma cell line SH-SY5Y. Environ. Sci. Pollut. Res. Int. 2018, 25, 20606–20614. [Google Scholar] [CrossRef]
- Skerfving, S.; Hansson, K.; Lindsten, J. Chromosome breakage in humans exposed to methyl mercury through fish consumption. Preliminary communication. Arch. Environ. Health 1970, 21, 133–139. [Google Scholar] [CrossRef]
- Skerfving, S.; Hansson, K.; Mangs, C.; Lindsten, J.; Ryman, N. Methylmercury-induced chromosome damage in man. Environ. Res. 1974, 7, 83–98. [Google Scholar] [CrossRef]
- Monsalve, M.V.; Chiappe, C. Genetic effects of methylmercury in human chromosomes: I. A cytogenetic study of people exposed through eating contaminated fish. Environ. Mol. Mutagen. 1987, 10, 367–376. [Google Scholar] [CrossRef] [PubMed]
- Rosales-Rimache, J.A.; Elizabeth Malca, N.; Alarcón, J.J.; Chávez, M.; Gonzáles, M.A. Daño genotóxico en trabajadores de minería artesanal expuestos al mercurio [Genotoxic damage among artisanal and small-scale mining workers exposed to mercury]. Rev. Peru Med. Exp. Salud Publica 2013, 30, 595–600. (In Spanish) [Google Scholar]
- Verschaeve, L.; Kirsch-Volders, M.; Susanne, C.; Groetenbriel, C.; Haustermans, R.; Lecomte, A.; Roossels, D. Genetic damage induced by occupationally low mercury exposure. Environ. Res. 1976, 12, 306–316. [Google Scholar] [CrossRef]
- Verschaeve, L.; Kirsch-Volders, M.; Hens, L.; Susanne, C. Chromosome distribution studies in phenyl mercury acetate exposed subjects and in age-related controls. Mutat. Res. 1978, 57, 335–337. [Google Scholar] [CrossRef]
- Mudry de Pargament, M.D.; Larripa, I.; Labal de Vinuesa, M.; Barlotti, M.; De Biase, P.; Brieux de Salum, S. L’echange des chromatides soeurs et l’exposition accidnetelle a l’acetate de phenyl-mercure [Sister chromatid exchange and accidental exposure to phenyl-mercury acetate]. Bol. Estud. Med. Biol. 1987, 35, 207–211. (In French) [Google Scholar]
- Verschaeve, L.; Tassignon, J.P.; Lefevre, M.; De Stoop, P.; Susanne, C. Cytogenetic investigation on leukocytes of workers exposed to metallic mercury. Environ. Mutagen. 1979, 1, 259–268. [Google Scholar] [CrossRef]
- Mabille, V.; Roels, H.; Jacquet, P.; Léonard, A.; Lauwerys, R. Cytogenetic examination of leucocytes of workers exposed to mercury vapour. Int. Arch. Occup. Environ. Health 1984, 53, 257–260. [Google Scholar] [CrossRef] [PubMed]
- Calao, C.R.; Marrugo, J.L. Efectos genotóxicos asociados a metales pesados en una población humana de la región de La Mojana, Colombia, 2013. Biomédica 2015, 35, 139–151. Available online: https://www.redalyc.org/articulo.oa?id=84340725015 (accessed on 26 October 2021). [CrossRef] [Green Version]
- Popescu, H.I.; Negru, L.; Lancranjan, I. Chromosome aberrat ions induced by occupational exposure to mercury. Arch. Environ. Health 1979, 34, 461–463. [Google Scholar] [CrossRef]
- Wulf, H.C.; Kromann, N.; Kousgaard, N.; Hansen, J.C.; Niebuhr, E.; Albøge, K. Sister chromatid exchange (SCE) in Greenlandic Eskimos. Dose-response relationship between SCE and seal diet, smoking, and blood cadmium and mercury concentrations. Sci. Total Environ. 1986, 48, 81–94. [Google Scholar] [CrossRef]
- Mottironi, V.D.; Harrison, B.; Pollara, B.; Gooding, R.; Banks, S. Possible synergistic effect of mercury and smoking on sister-chromatid-exchange (SCE) rates in humans. Fed. Proc. Fed. Am. Soc. Exp. Biol. 1986, 45, CONF-8604222-. [Google Scholar]
- Barregård, L.; Högstedt, B.; Schütz, A.; Karlsson, A.; Sällsten, G.; Thiringer, G. Effects of occupational exposure to mercury vapor on lymphocyte micronuclei. Scand. J. Work Environ. Health 1991, 17, 263–268. [Google Scholar] [CrossRef] [Green Version]
- Hansteen, I.L.; Ellingsen, D.G.; Clausen, K.O.; Kjuus, H. Chromosome aberrations in chloralkali workers previously exposed to mercury vapor. Scand. J. Work Environ. Health 1993, 19, 375–381. [Google Scholar] [CrossRef] [Green Version]
- Shamy, M.Y.; El-Gazzar, R.M.; Taleb, A.N.; Christie, N.T.; El Said, K.F. Somatic cell mutation in workers occupationally exposed to mercury vapors. J. Environ. Pathol. Toxicol. Oncol. 1995, 14, 165–171. [Google Scholar]
- Queiroz, M.L.; Bincoletto, C.; Quadros, M.R.; De Capitani, E.M. Presence of micronuclei in lymphocytes of mercury exposed workers. Immunopharmacol. Immunotoxicol. 1999, 21, 141–150. [Google Scholar] [CrossRef] [PubMed]
- Lazutka, J.R.; Lekevicius, R.; Dedonyte, V.; Maciuleviciute-Gervers, L.; Mierauskiene, J.; Rudaitiene, S.; Slapsyte, G. Chromosomal aberrations and sister-chromatid exchanges in Lithuanian populations: Effects of occupational and environmental exposures. Mutat. Res. 1999, 445, 225–239. [Google Scholar] [CrossRef]
- Wegner, R.; Radon, K.; Heinrich-Ramm, R.; Seemann, B.; Riess, A.; Koops, F.; Poschadel, B.; Szadkowski, D. Biomonitoring results and cytogenetic markers among harbour workers with potential exposure to river silt aerosols. Occup. Environ. Med. 2004, 61, 247–253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anwar, W.A.; Gabal, M.S. Cytogenetic study in workers occupationally exposed to mercury fulminate. Mutagenesis 1991, 6, 189–192. [Google Scholar] [CrossRef]
- Al-Sabti, K.; Lloyd, D.C.; Edwards, A.A.; Stegnar, P. A survey of lymphocyte chromosomal damage in Slovenian workers exposed to occupational clastogens. Mutat. Res. 1992, 280, 215–223. [Google Scholar] [CrossRef]
- Franchi, E.; Loprieno, G.; Ballardin, M.; Petrozzi, L.; Migliore, L. Cytogenetic monitoring of fishermen with environmental mercury exposure. Mutat. Res. 1994, 320, 23–29. [Google Scholar] [CrossRef]
- Soto-Ríos, M.L.; Rothenberg, S.; Gonsebatt, M.E.; Talavera-Mendoza, O. Cytogenotoxicity in uroepithelial cells of women exposed to mercury in a mining area. Occup. Environ. Med. 2010, 67, 620–624. [Google Scholar] [CrossRef] [PubMed]
- Lope, V.; Pollán, M.; Fernández, M.; de León, A.; González, M.J.; Sanz, J.C.; Iriso, A.; Pérez-Gómez, B.; Gil, E.; Pérez-Meixeira, A.M.; et al. Cytogenetic status in newborns and their parents in Madrid: The BioMadrid study. Environ. Mol. Mutagen. 2010, 51, 267–277. [Google Scholar] [CrossRef]
- Cruz-Esquivel, Á.; Marrugo-Negrete, J.; Calao-Ramos, C. Genetic damage in human populations at mining sites in the upper basin of the San Jorge River, Colombia. Environ. Sci. Pollut. Res. Int. 2019, 26, 10961–10971. [Google Scholar] [CrossRef] [PubMed]
- Verschaeve, L.; Susanne, L. Genetic hazards of mercury exposure in dental surgery. Mutat. Res. 1979, 64, 149. [Google Scholar] [CrossRef]
- Di Pietro, A.; Visalli, G.; La Maestra, S.; Micale, R.; Baluce, B.; Matarese, G.; Cingano, L.; Scoglio, M.E. Biomonitoring of DNA damage in peripheral blood lymphocytes of subjects with dental restorative fillings. Mutat. Res. 2008, 650, 115–122. [Google Scholar] [CrossRef]
- Visalli, G.; Baluce, B.; La Maestra, S.; Micale, R.T.; Cingano, L.; De Flora, S.; Di Pietro, A. Genotoxic damage in the oral mucosa cells of subjects carrying restorative dental fillings. Arch. Toxicol. 2013, 87, 179–187. [Google Scholar] [CrossRef]
- Castaño Arias, P.A.; Arroyave Hoyos, C.L.; Acevedo Toro, P.A.; Vásquez Palacio, G. Correlación entre la concentración urinaria de malondialdehído y daño en el ADN de personas expuestas a mercurio. Iatreia 2014, 27, 155–164. [Google Scholar]
- Mary, S.J.; Girish, K.L.; Joseph, T.I.; Sathyan, P. Genotoxic effects of silver amalgam and composite restorations: Micronuclei-based cohort and case-control study in oral exfoliated cells. Contemp. Clin. Dent. 2018, 9, 249–254. [Google Scholar] [CrossRef] [PubMed]
- Halliwell, B. Oxidative stress and cancer: Have we moved forward? Biochem. J. 2007, 401, 1–11. [Google Scholar] [CrossRef]
- IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Beryllium, Cadmium, Mercury, and Exposures in the Glass Manufacturing Industry; IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, No. 58; International Agency for Research on Cancer: Lyon, France, 1993. Available online: https://www.ncbi.nlm.nih.gov/books/NBK499756/ (accessed on 26 October 2021).
- Homme, K.G.; Kern, J.K.; Haley, B.E.; Geier, D.A.; King, P.G.; Sykes, L.K.; Geier, M.R. New science challenges old notion that mercury dental amalgam is safe. Biometals 2014, 27, 19–24. [Google Scholar] [CrossRef] [Green Version]
- Pinheiro, M.C.; Macchi, B.M.; Vieira, J.L.; Oikawa, T.; Amoras, W.W.; Guimarães, G.A.; Costa, C.A.; Crespo-López, M.E.; Herculano, A.M.; Silveira, L.C.; et al. Mercury exposure and antioxidant defenses in women: A comparative study in the Amazon. Environ. Res. 2008, 107, 53–59. [Google Scholar] [CrossRef]
- Purohit, A.R.; Rao, M.V. Mitigative role of melatonin and α-tocopherol against mercury-induced genotoxicity. Drug Chem. Toxicol. 2014, 37, 221–226. [Google Scholar] [CrossRef]
- Patel, T.A.; Rao, M.V. Ameliorative effect of certain antioxidants against mercury induced genotoxicity in peripheral blood lymphocytes. Drug Chem. Toxicol. 2015, 38, 408–414. [Google Scholar] [CrossRef] [PubMed]
- Ali, H.M. Mitigative role of garlic and vitamin E against cytotoxic, genotoxic, and apoptotic effects of lead acetate and mercury chloride on WI-38 cells. Pharmacol. Rep. 2018, 70, 804–811. [Google Scholar] [CrossRef] [PubMed]
- Knasmüller, S.; Nersesyan, A.; Misík, M.; Gerner, C.; Mikulits, W.; Ehrlich, V.; Hoelzl, C.; Szakmary, A.; Wagner, K.H. Use of conventional and -omics based methods for health claims of dietary antioxidants: A critical overview. Br. J. Nutr. 2008, 99 (Suppl. 1), ES3–ES52. [Google Scholar] [CrossRef] [PubMed]
Compound | Cell Type | Assay | Concentrations | Results | References |
---|---|---|---|---|---|
mercury chloride (HgCl2) | L | CA | <3.0 × 10−8 M | No significant differences (p > 0.05) | Paton and Allison 1972 [29] |
WB | SCE | 8 × 10−8 M–2.5 × 10−4 M | Dose-dependent increase from 4 × 10−7 M, 10.57 ± 0.55 SCE/cell (p < 0.05) up to 5 × 10−5 M, 16.54 ± 0.69 SCE/cell (p < 0.001) vs. 8.86 SCE/cell in control | Morimoto et al. 1982 [30] | |
Ly | CA | 1–150 µM | Significant increase from 50 µM, with 5.00% of chromatid- or chromosome-type aberrations (p < 0.05) up to 150 µM with 7.00% of chromatid-type aberrations (p < 0.01) vs. 1.67% of chromatid- or chromosome-type aberrations in the control, unrelated to increased concentration. | Verschaeve et al. 1985 [31] | |
WB | MN | 10−3–10−1 M | A linear increase in MN frequency. | Bérces et al. 1993 [32] | |
Ly | CA | 2–50 µM | Dose-dependent increase from 5 × 10−6 M with 7.3 ± 0.9 CA (p < 0.05) up to 20 × 10−6 M with 14.3 ± 0.9 CA (p < 0.001) vs. 2.7 ± 1.2 in the control. | Ogura et al. 1996 [33] | |
MN | Significant increase at 20 × 10−6 and 50 × 10−6 M with 43 and 65 cells with MN cells respectively (p < 0.001) vs. 25 cells with MN in the control in 3000 cells. | ||||
8-OHdG | 5–20 µM | Significant increase of 8-OHdG levels at 10 × 10−6 M (1.047 ± 0.202) and 20 × 10−6 M (2.091 ± 0.539) (p < 0.05) vs. 0.394 ± 0.144 in the control. | |||
TK6 | CA | 10–2000 ppb | No significant differences (p > 0.05) | Bahia et al. 1999 [34] | |
HPRT | 0.1–1000 ppb | ||||
WRL-68 | SCGE | 0.5 µM, 5 µM | Significant differences (p < 0.05) at 0.5 × 10−6 M (TL 43.4 ± 2.1 µm) and 5 × 10−6 M (TL 69.6 ± 0.7 µm) vs. TL 31.7 ± 1.6 in the control with 3 h treatment. TL 74.4 ± 0.7 was induced with 7 h treatment (p < 0.05) | Bucio et al. 1999 [35] | |
U-937 | SCGE | 1–50 µM | With 5 µM mean TL at 24 h was 5.5 ± 0.06 mm; at 48 h, 7.2 ± 0.06 mm; and at 72 h, 8.9 ± 0.04 mm. | Ben-Ozer et al. 2000 [36] | |
L | SCE | 1.052, 5.262 and 10.524 µM | Significant increase for lowest (p < 0.5) and higher concentration (p < 0.001) with 6.382 ± 0.067 and 8.732 ± 0.111 respectivelly vs. 5.747 ± 0.110 in the control | Rao et al. 2001 [37] | |
L | CA | Significant increase at higher concentrations for C-anaphases (p < 0.001) with mean values of 2.75 ± 0.25 and 3.75 ± 0.40 vs. 1.00 ± 0.00 in the control | |||
Ly | CA | 0.1–1000 μg/L | Significant gaps and breaks increase (p < 0.5) at 0.1 (1.4%) and 1000 (1.3%) µg/L vs. 0.7% in the control | Silva-Pereira et al. 2005 [38] | |
Ly | CBMN | 10, 50, 100, and 200 mM | 24 h exposure- no significant difference. 48 h- no dose-related-MN frequency increase | Rozgaj et al. 2006 [39] | |
WB | SCGE | 10, 50, 100 and 200 mM | 24 h exposure- TL increase at 50, 100 mM (p < 0.05). 48 h- TL, TM, TI significant increase at 200 mM (p < 0.05) | Milić et al. 2006 [40] | |
Ly | SCGE | 1–50 µM | A significant (p < 0.05) dose-dependent increase in OTM;TL;TI from 2.5 µM (2.593 ± 0.913; 53.960 ± 13.663; 3.887 ± 0.810) up to 50 µM (93.292 ± 18.218; 234.326 ± 14.846; 74.113 ± 13.238) vs. control (1.924 ± 0.722; 44.830 ± 4.943; 3.125 ± 1.007) | Schmid et al. 2007 [41] | |
PSG | A significant p < 0.05) dose-dependent increase in OTM;TL;TI from 2.5 µM (3.234 ± 1.244; 54.941 ± 11.062; 4.887 ± 1.611) up to 50 µM (26.021 ± 10.922; 118.644 ± 21.685; 31.035 ± 13.406) vs. control (2.239 ± 0.598; 48.273 ± 4.403; 3.658 ± 0.817) | ||||
TK6 | SCGE | 0.01–2 µM | A significant dose-dependent increment in OTM from 0.1 µM (p < 0.05) up 2 µM (p < 0.001) | Guillamet et al. 2008 [42] | |
Hg nitrate (Hg2+) | Ly | SCE | 1–30 µM | No significant differences (p > 0.05) | Lee et al. 1997 [43] |
EM | 30 µM | Significant increase (p < 0.05) 3.4 ± 0.6% compaed with 0.4 ± 0.3% in control |
Compound | Cell type | Assay | Concentrations | Results | References |
---|---|---|---|---|---|
C2H5HgCl, C6H5HgCl | HeLa | CA | 1.0–1.8 µg/mL | Significant increase | Umeda et al. 1969 [45] |
methyl mercury (CH3HgX) | Ly | CA | 0.05–0.5 ppm | 18.7% chromosome breakage, 2.6% chromosome reunions and rearrangements | Kato and Nakamura 1976 [50] |
PB | SCE | 8 × 10−8–2.5 × 10−4 M | Significant increase from 8 × 10−8 (10.49 ± 0.55 SCE/cell) up to 2 × 10−6 M (12.69 ± 0.60 SCE/cell) vs. control (8.86 ± 0.50) (p < 0.05), no cell growth in major concentrations | Morimoto et al. 1982 [30] | |
Ly | CA | 5–30 µM | Significant increase of chromatid type aberrations from 5 µM (12.87%) up to 30 µM (24%) vs. control (1.00%) and chromosome type aberrations from 5 µM (3.96%) up to 30 µM (16.00%) vs. control (0.00%) (p < 0.001) | Verschaeve et al. 1985 [31] | |
Ly | CA | 0.12–25 µM | Significant increase from 0.6 × 10−6 M up to 25 × 10−6 M in structural CA (10.00 ± 1.63–23.00 ± 3.46) vs. control (4.50 ± 2.51) and numerical CA (2.50 ± 3.00–10.50 ± 3.41) vs. control (0.00) (p < 0.001) | Betti et al. 1992 [46] | |
Ly | CA | 3–25 µM | Significant increase from 5 µM (6.00 ± 2.82) up to 25 µM (12.00 ± 8.48) (p < 0.05) vs. control (0.00) | Betti et al. 1993 [49] | |
SCE | Significant increase at 5 µM (7.44 ± 2.44% SCE) and 15 µM (8.04 ± 2.90% SCE) vs. control (5.92 ± 1.84) µM (p < 0.05) | ||||
PB/Ly | CA | 1–10 µM | Significant increase at 5 µM (9.3 ± 1.7) and 10 µM (22.3 ± 5.9) vs. control (3.0 ± 0.0)(p < 0.01) | Ogura et al. 1996 [33] | |
MN | Significant increase of MN in 3000 cells at 5 µM (43) and 10 µM (65) (p < 0.01) vs. control (25) | ||||
PB/Ly | 8-OHdG | 1–10 µM | The level of 8-OHdG was also significantly (p < 0.05) elevated (1.111 ± 0.221; 5 × 10 µM) vs. control (0.373 ± 0.116) | Ogura et al. 1996 [33] | |
Ly | SCE | 0.3–20 µM | Significant increase at 20 µM (11.4 ± 0.5 SCE/cell) vs. control 7.0 ± 0.4) (p < 0.05) | Lee et al. 1997 [43] | |
EM | 20 µM | Significant increase (p < 0.05) 4.2 ± 0.5% compaed with 0.4 ± 0.3% in the control | |||
Ly | CA | 0.1–1000 μg/L | Significant increment of CA from 13.5% at 0.1 μg/L to 12.2% at 1000 μg/L not dose related and polyploidy from 13.0 ± 1.3546 at 0.1 μg/L to 64.3 ± 1.8961 dose related (p < 0.5) | Silva-Pereira et al. 2005 [38] | |
U373 | CBMN | 0.1 and 1 μM | Significant increase between 11–12% in the frequency of micronucleated cells (p < 0.05) | Crespo-López et al. 2007 [6] | |
B103 | Non-significant increase in frequency of MN cells between 6–8% in the frequency of micronucleated cells (p > 0.05) | ||||
TK6 | SCGA | 0.01–3 μM | Significant increment inn OTM (p < 0.001) at 3 μM | Guillamet et al. 2008 [42] | |
PB | MN, CA | 1–500 μg/L or 0.004–2 μM | Loss of cells proliferative capacity, very low frequency of MN (0.3 at 1, 10 and 50 μg/L), no correlation with Hg concentration, no CA | Crespo-López et al. 2011 [51] | |
C6 | SCGE, CBMN | 3 μM | Significant increase of TI, MN and NA (p < 0.01) | Crespo-López et al. 2016 [52] | |
SH-SY5Y | SCGE | 3–30 mg/L CH3HgCl | Significant increase of fragmentation index from 7 ± 2.64% at 3 mg/L up to 98.6 ± 0.57% at 30 mg/L and TL from 1.6 ± 0.25 µm at 3 mg/L up to 32.8 ± 1.53 µm at 30 mg/L | Patnaik and Padhy 2018 [53] | |
3–42 mg/L CH3HgOH | Significant increase of fragmentation index from 3 ± 1.73% at 3 mg/L up 98 ± 0.57% at 30 mg/L and TL from 2.2 ± 0.95 µm at 3 mg/L up to 20.4 ± 0.77 µm at 30 mg/L | ||||
[(CH3)2Hg] | Ly | CA | 0.34–434 µM | Significant increase in structural CA at 43.4 × 10−6 M (9.00 ± 2.58), 217 × 10−6 M (9.50 ± 3.00 and 434 × 10−6 M (12.00 ± 2.82) vs. control (4.50 ± 2.51) and numerical CA from 1.73 (2.50 ± 1.00) up to 434 (5 ± 2) vs. control (0.00) (p < 0.05) | Betti et al. 1992 [46] |
PMA | Ly | SCE | 1–30 µM | Significant SCE increase from 10 µM (9.5 ± 0.4 SCE/cell) up to 30 (14.9 ± 0.6) µM vs. control (7.0 ± 0.4) (p < 0.05) | Lee et al. 1997 [43] |
EM | Significant increase from 3 µM (3.1 ± 0.7) up to 30 (15.2 ± 0.9) µM vs. control (0.4 ± 0.3) (p < 0.05) | ||||
thiomersal | Ly | CBMN | 0.05 and 0.6 µg/mL | Significant induction (p < 0.05) was seen at concentrations between 0.05–0.5 µg/mL in 14 out of 16 experiments, with individual and intraindividual variations among the different donors. | Westphal et al. 2003 [3] |
Ly | SCE, ±S9 metabolic activation | 0.2–0.6 µg/mL | Significant SCE induction (p < 0.001) between 0.2 and 0.6 µg/mL compared with negative control. A significant decrease (p < 0.001) in MI and PRI compared with control cultures | Eke and Celik 2008 [47] |
Compound | Cell Type/Assay | Exposure Biomarker | Origin of Hg | E/C (N) | Results | Country | Reference |
---|---|---|---|---|---|---|---|
methylmercury (CH3Hg) | Ly/CA | Hg levels in RBC | dietary contaminantes fish | 9/4 | CA-Hg conc significant correlation | Sweden | Skerfving et al. 1970 [54] |
Ly/CA | Hg levels in BC | dietary contaminantes fish | 23/16 | CA-Hg conc significant correlation | Sweden | Skerfving et al. 1974 [55] | |
PB/SCE, CA | Hg hair and PB levels | dietary contaminantes fish | 16/14 | No significant correlation of Hg hair levels and structural CA or SCE | Colombia | Monsalve and Chiappe 1987 [56] | |
PB Ly/cytogenetic damage | Hg hair levels | Tapajós River | 98 adults | CH3Hg contamination correlates with cytogenetic damage | Brazil | Amorim et al. 2000 [2] | |
iHg | Buccal cells/MN | Hg urine levels | artisanal and small-scale mining | 83 workers | 18.1% of exposed people had elevated MN levels | Perú | Rosales-Rimanche et al. 2013 [57] |
mHg, amalgams C6H5Hg, C2H5Hg+ | WB Ly/CA | Hg blood and urine levels | Hg intoxication (10) and accidental exposure (18) | 28/7 | Significant blood and urine Hg correlation; and both with total amount of cells with CA | Belgium | Verschaeve et al. 1976 [58] |
CH3COOHgC6H5 | Ly/CA | Hg blood levels | PMA exposure | 16/12 | significant increase in hyperploidy | Belgium | Verschaeve et al. 1978 [59] |
PB/SCE | Diapers interruption lapse: 9, >9 months | diapers | 38 | Significant increase (p < 0.001) | Argentina | Mudry de Pargament et al. 1987 [60] | |
mHg | L/CA | Hg urine levels | chloralkali plant | 28/20 | No significant correlation | Belgium | Verschaeve et al. 1979 [61] |
PB Ly/CA | Hg blood and urine levels | hg-Zn amalgamation and chloralkali plants | 22/25 | No increase in structural CA | Belgium | Mabille et al. 1984 [62] | |
PB Ly/SCE, SCGE | Hg blood and urine levels | chlorine production department | 25/50 | Not significant difference between workers and controls | Poland | Cebulska-Wasilewska et al. 2005 [4] | |
WB/SCGE | Hg blood levels | gold mining | 61/51 | Significant Hg and damage association | Colombia | Calao and Marrugo 2015 [63] | |
mHg, oHg | WB/CA | Hg urine levels | chemical plant | 22/10 | CA was significantly higher | Switzerland | Popescu et al. 1979 [64] |
oHg | WB/SCE | Hg blood levels | seal diet | 147 | Significant Hg and SCE correlation | Greenland | Wulf et al. 1986 [65] |
elemental Hg, iHg | Blood/SCE | Hg blood levels | caustic soda, copper sheets plants | 29/26 | Significant Hg and SCE correlation | United States | Mottironi et al. 1986 [66] |
Hg vapor | PB/CBMN | Hg urine, plasma, erythrocytes levels | chloralkali plant | 26/26 | No correlation between current Hg level and MN | Sweden | Barregård et al. 1991 [67] |
WB/CA and MN | Hg blood and urine levels | chloralkali plant | 29/29 | No significant differences in CA and MN frequencies. | Norway | Hansteen et al. 1993 [68] | |
Ly/MN, SCE and HGPRT | HG urine level | chloralkali industry | 30/30 | Higher levels of MN, SCE, and HGPRT mutations | Egypt | Shamy et al. 1995 [69] | |
WB Ly/MN | Hg urine levels | mercury producing plant | 15/15 | Significant increase of MN frequency | Brazil | Queiroz et al. 1999 [70] | |
Ly/CA | Hg levels in the air | stomatological cabinets | 40/24 | Significan increase with 7 or more years of exposure | Lithuania | Lazutka et al. 1999 [71] | |
battery plant | 114/26 | ||||||
WB/MN and SCE | Hg blood levels | river silt aerosols | 100/100 | No significant differences in MN and SCE frequencies. | Germany | Wegner et al. 2004 [72] | |
Hg fulminate | WB/CBMN, CA | Hg urine levels | explosives factory | 29/29 | Significant increase, no correlation with exposure duration nor Hg urine level | Egypt | Anwar y Gabal 1991 [73] |
iHg | WB/MN, CA, SCE | - | mercury mining | 10/10 | Significant increase | Slovenia | Al-Sabti et al. 1992 [74] |
oHg | PB Ly/MN | Hg blood levels | contaminated seafood | 51 fishermen | Significant correlation of MN frequency and total Hg in blood | Italy | Franchi et al. 1994 [75] |
iHg | uroepithelial cells/MN, NA | Hg urine levels | mining zone | 104 females | Possible association between cytogenotoxicity and Hg level | Mexico | Soto-Ríos et al. 2010 [76] |
blood/CBMN | Hg blood levels | environment | 110 newborns 136 pregnant, 134 fathers | Elevated blood Hg levels in fathers were associated with significantly higher MN | Madrid, Spain | Lope et al. 2010 [77] | |
blood/SCGE | Hg blood levels | mining sites | 50/50 | Statistical significant increase | Colombia | Cruz-Esquivel et al. 2019 [78] | |
oral mucosa cells/MN, NA | |||||||
amalgam | Ly/CA | - | dentistry | 10 /10 | Statistical significant increase | Belgium | Verschaeve and Susanne 1979 [79] |
Ly/SCGE | - | dental restaurative fillings | 44/24 | Association between dental fillings and DNA damage | Italy | Di Pietro et al. 2008 [80] | |
Buccal cells/ SCGE, MN | - | dental restaurative fillings | 63 | Association between dental fillings and DNA damage | Italy | Visalli et al. 2013 [81] | |
WB/SCGE | Hg urine levels | gold mining and burners | 32/32 | Greater genetic damage in those exposed than in controls | Colombia | Castaño Arias et al. 2014 [82] | |
Buccal cells/MN | - | dental restaurative fillings | 110 | Increase of genotoxic effect with dental fillings | India | Mary et al. 2018 [83] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sánchez-Alarcón, J.; Milić, M.; Bustamante-Montes, L.P.; Isaac-Olivé, K.; Valencia-Quintana, R.; Ramírez-Durán, N. Genotoxicity of Mercury and Its Derivatives Demonstrated In Vitro and In Vivo in Human Populations Studies. Systematic Review. Toxics 2021, 9, 326. https://doi.org/10.3390/toxics9120326
Sánchez-Alarcón J, Milić M, Bustamante-Montes LP, Isaac-Olivé K, Valencia-Quintana R, Ramírez-Durán N. Genotoxicity of Mercury and Its Derivatives Demonstrated In Vitro and In Vivo in Human Populations Studies. Systematic Review. Toxics. 2021; 9(12):326. https://doi.org/10.3390/toxics9120326
Chicago/Turabian StyleSánchez-Alarcón, Juana, Mirta Milić, Lilia Patricia Bustamante-Montes, Keila Isaac-Olivé, Rafael Valencia-Quintana, and Ninfa Ramírez-Durán. 2021. "Genotoxicity of Mercury and Its Derivatives Demonstrated In Vitro and In Vivo in Human Populations Studies. Systematic Review" Toxics 9, no. 12: 326. https://doi.org/10.3390/toxics9120326
APA StyleSánchez-Alarcón, J., Milić, M., Bustamante-Montes, L. P., Isaac-Olivé, K., Valencia-Quintana, R., & Ramírez-Durán, N. (2021). Genotoxicity of Mercury and Its Derivatives Demonstrated In Vitro and In Vivo in Human Populations Studies. Systematic Review. Toxics, 9(12), 326. https://doi.org/10.3390/toxics9120326