Biochar Amendment Reduces the Availability of Pb in the Soil and Its Uptake in Lettuce
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Collection
2.2. Soil Culture
2.3. Hydroponic Culture
2.4. Physical and Chemical Soil Properties
2.5. Total and Extractable Pb in the Soil
2.6. Total Pb in Lettuce
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tóth, G.; Hermann, T.; Da Silva, M.R.; Montanarella, L. Heavy Metals in Agricultural Soils of the European Union with implications for food safety. Environ. Int. 2016, 88, 299–309. [Google Scholar] [CrossRef] [PubMed]
- WHO 2019. Exposure to Lead: A Major Public Health Concern. Available online: https://www.who.int/publications/i/item/WHO-CED-PHE-EPE-19.4.7-eng (accessed on 1 March 2021).
- Wu, J.; Boyle, E.A. Lead in the Western North Atlantic Ocean: Completed Response to Leaded Gasoline Phaseout. Geochim. Cosmochim. 1997, 61, 3279–3283. [Google Scholar] [CrossRef]
- Entwistle, J.A.; Amaibi, P.M.; Dean, J.R.; Deary, M.E.; Medock, D.; Morton, J.; Rodushkin, I.; Bramwell, L. An Apple a Day? Assessing gardeners’ lead exposure in urban agriculture sites to improve the derivation of soil assessment criteria. Environ. Int. 2019, 122, 130–141. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, J.H.; Salazar, M.J.; Steffan, L.; Pignata, M.L.; Franzaring, J.; Klumpp, A.; Fangmeier, A. Assessment of Pb and Zn Contents in Agricultural Soils and Soybean Crops near to a Former Battery Recycling Plant in Córdoba, Argentina. J. Geochem. Explor. 2014, 145, 129–134. [Google Scholar] [CrossRef]
- Egendorf, S.P.; Groffman, P.; Moore, G.; Cheng, Z. The limits of lead (Pb) phytoextraction and possibilities of phytostabilization in contaminated soil: A critical review. Int. J. Phytoremediation 2020, 22, 916–930. [Google Scholar] [CrossRef] [PubMed]
- Hagemann, N.; Spokas, K.; Schmidt, H.-P.; Kägi, R.; Böhler, M.A.; Bucheli, T.D. Activated Carbon, Biochar and Charcoal: Linkages and Synergies across Pyrogenic Carbon’s ABCs. Water 2018, 10, 182. [Google Scholar] [CrossRef] [Green Version]
- International Biochar Association 2018. Available online: https://biochar-international.org/faqs/ (accessed on 23 January 2021).
- Yao, Z.; You, S.; Ge, T.; Wang, C.H. Biomass gasification for syngas and biochar co-production: Energy application and economic evaluation. Appl. Energy 2018, 209, 43–55. [Google Scholar] [CrossRef] [Green Version]
- Kan, T.; Strezov, V.; Evans, T.J. Lignocellulosic biomass pyrolysis: A review of product properties and effects of pyrolysis parameters. Renew. Sustain. Energy Rev. 2016, 57, 126–1140. [Google Scholar] [CrossRef]
- Yargicoglu, E.N.; Sadasivam, B.Y.; Reddy, K.R.; Spokas, K. Physical and chemical characterization of waste wood derived biochars. Waste Manag. 2015, 36, 256–268. [Google Scholar] [CrossRef]
- Lugato, E.; Vaccari, F.P.; Genesio, L.; Baronti, S.; Pozzi, A.; Rack, M.; Woods, J.; Simonetti, G.; Montanarella, L.; Maglietta, F. An energy-biochar chain involving biomass gasification and rice cultivation in Northern Italy. Gcb Bioenergy 2013, 5, 192–201. [Google Scholar] [CrossRef]
- Oliveira, F.R.; Patel, A.K.; Jaisi, D.P.; Adhikari, S.; Lu, H.; Khanal, S.K. Environmental application of biochar: Current status and perspectives. Bioresour. Technol. 2017, 246, 110–122. [Google Scholar] [CrossRef]
- Albert, H.A. Influence of Biochar and Soil Properties on Soil and Plant Tissue Concentrations of Cd and Pb: A Meta-Analysis. Sci. Total Environ. 2021, 12. [Google Scholar]
- Boni, M.R.; Chiavola, A.; Marzeddu, S. Remediation of lead-contaminated water by virgin coniferous wood biochar adsorbent: Batch and column application. Water Air Soil Pollut. 2020, 231, 1–16. [Google Scholar] [CrossRef]
- STATISTA. 2021. Available online: https://www.statista.com/statistics/264065/global-production-of-vegetables-by-type/ (accessed on 17 February 2021).
- Produce Marketing Association. 2021. Available online: https://www.pma.com/content/articles/2017/05/top-20-fruits-and-vegetables-sold-in-the-us (accessed on 24 February 2021).
- Kim, M.J.; Moona, Y.; Toub, J.C.; Mouc, B.; Waterlanda, N.L. Nutritional value, bioactive compounds and health benefits of lettuce (Lactuca sativa L.). J. Food Compos. Anal. 2016, 49, 19–34. [Google Scholar] [CrossRef]
- Cid, C.V.; Rodriguez, J.H.; Salazar, M.J.; Blanco, A.; Pignata, M.L. Effects of Co-Cropping Bidens Pilosa (L.) and Tagetes Minuta (L.) on Bioaccumulation of Pb in Lactuca sativa (L.) Growing in Polluted Agricultural Soils. Int. J. Phytoremediation 2016, 18, 908–917. [Google Scholar] [CrossRef]
- BioDea. 2021. Available online: https://www.biodea.bio/il-biochar-biodea-ammendante-nel-terreno/ (accessed on 4 January 2021).
- Jafarova, M.; Vannini, A.; Monaci, F.; Loppi, S. Influence of Moderate Cd and Pb Soil Pollution on Seed Development, Photosynthetic Performance and Foliar Accumulation in the Medicinal Plant Hypericum perforatum. Pollutants 2021, 1, 1–9. [Google Scholar] [CrossRef]
- Boni, M.; Chiavola, A.; Marzeddu, S. Application of Biochar to the Remediation of Pb-Contaminated Solutions. Sustainability 2018, 10, 4440. [Google Scholar] [CrossRef] [Green Version]
- Gee, G.W.; Bauder, J.W. Particle-Size Analysis. Methods of Soil Analysis Part 1; Klute, A., Ed.; Soil Science Society of America Book Series 5: Madison, WI, USA, 1986; pp. 383–411. [Google Scholar]
- US EPA (United States Environmental Protection Agency). Method 9045D—Soil and Waste pH; US EPA: Washinghton, DC, USA, 2004.
- Hendershot, W.H.; Duquette, M. A simple barium chloride method for determining cation exchange capacity and exchangeable cations. Soil Sci. Soc. Am. J. 1986, 50, 605–608. [Google Scholar] [CrossRef]
- US EPA (United States Environmental Protection Agency). Method 3052—Microwave Assisted Acid Digestion of Siliceous and Organically Based Matrices; US EPA: Washington, DC, USA, 1996.
- Marguí, E.; Salvadó, V.; Queralt, I.; Hidalgo, M. Comparison of three-stage sequential extraction and toxicity characteristic leaching tests to evaluate metal mobility in mining wastes. Anal. Chim. Acta 2004, 524, 151–159. [Google Scholar] [CrossRef]
- Ruiz, E.; Alonso-Azcárate, J.; Rodríguez, L. Lumbricus terrestris L. activity increases the availability of metals and their accumulation in maize and barley. Environ. Pollut. 2011, 159, 722–728. [Google Scholar] [CrossRef] [PubMed]
- Rauret, G.; López-Sánchez, J.F.; Sahuquillo, A.; Rugio, R.; Davidson, C.; Ure, A.; Quevauiller, P.H. Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials. J. Environ. Monit. 1999, 1, 57–61. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020; Available online: https://www.R-project.org/ (accessed on 4 January 2021).
- Reimann, C.; de Caritat, P. Chemical Elements in the Environment; Springer: Berlin/Heidelberg, Germany, 1988. [Google Scholar]
- De Vos, W.; Tarvainen, T. (Eds.) Interpretation of Geochemical Maps—Additional Tables, Figures, Maps, and Related Publications. Geochemical Atlas of Europe—Part 2; Geological Survey of Finland: Espoo, Finland, 2006. [Google Scholar]
- Nannoni, F.; Protano, G.; Riccobono, F. Fractionation and geochemical mobility of heavy elements in soils of a mining area in northern Kosovo. Geoderma 2011, 161, 63–73. [Google Scholar] [CrossRef]
- Cui, L. Continuous Immobilization of Cadmium and Lead in Biochar Amended Contaminated Paddy Soil: A Five-Year Field Experiment. Ecol. Eng. 2016, 93, 1–8. [Google Scholar] [CrossRef]
- Ahmad, M.; Soo Lee, S.; Yang, J.E.; Ro, H.-M.; Han Lee, Y.; Sik Ok, Y. Effects of Soil Dilution and Amendments (Mussel Shell, Cow Bone, and Biochar) on Pb Availability and Phytotoxicity in Military Shooting Range Soil. Ecotoxicol. Environ. Saf. 2012, 79, 225–231. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, M.; Rajapaksha, A.U.; Lim, J.E.; Zhang, M.; Bolan, N.; Mohan, D.; Vithanage, M.; Lee, S.S.; Ok, Y.S. Biochar as a Sorbent for Contaminant Management in Soil and Water: A Review. Chemosphere 2014, 99, 19–33. [Google Scholar] [CrossRef] [PubMed]
- Dume, B.; Mosissa, T.; Nebiyu, A. Effect of biochar on soil properties and lead (Pb) availability in a military camp in South West Ethiopia. Afr. J. Environ. Sci. Technol. 2016, 10, 77–85. [Google Scholar] [CrossRef] [Green Version]
- Lu, H.; Zhang, W.; Yang, Y.; Huang, X.; Wang, S.; Qiu, R. Relative Distribution of Pb2+ Sorption Mechanisms by Sludge-Derived Biochar. Water Res. 2012, 46, 854–862. [Google Scholar] [CrossRef]
- Li, H.; Dong, X.; da Silva, E.B.; de Oliveira, L.M.; Chen, Y.; Ma, L.Q. Mechanisms of metal sorption by biochars: Biochar characteristics and modifications. Chemosphere 2017, 178, 466–478. [Google Scholar] [CrossRef]
- Cao, X.D.; Ma, L.Q.; Gao, B.; Harris, W. Dairy-manure derived biochar effectively sorbs lead and atrazine. Environ. Sci. Technol. 2009, 43, 3285e3291. [Google Scholar] [CrossRef]
- Chintala, R. Effect of Biochar on Chemical Properties of Acidic Soil. Arch. Agron. Soil Sci. 2013, 60, 393–404. [Google Scholar] [CrossRef]
- Chen, D. Effects of Biochar on Availability and Plant Uptake of Heavy Metals—A Meta-Analysis. J. Environ. Manag. 2018, 3, 404–418. [Google Scholar] [CrossRef]
- Rooney, C.P.; McLaren, R.G.; Condron, L.M. Control of Lead Solubility in Soil Contaminated with Lead Shot: Effect of Soil PH. Environ. Pollut. 2007, 149, 149–157. [Google Scholar] [CrossRef]
- Kumar, A.; Kumar, A.; M.M.S., C.P.; Chaturvedi, A.K.; Shabnam, A.A.; Subrahmanyam, G.; Mondal, R.; Gupta, D.K.; Malyan, S.K.; Kumar, S.S.; et al. Lead Toxicity: Health Hazards, Influence on Food Chain, and Sustainable Remediation Approaches. Int. J. Environ. Res. Public Health 2020, 17, 2179. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.S. Effect of Biochar on Heavy Metal Immobilization and Uptake by Lettuce (Lactuca sativa L.) in Agricultural Soil. Environ. Earth Sci. 2015, 74, 1249–1259. [Google Scholar] [CrossRef]
- Khan, A.Z.; Khan, S.; Ayaz, T.; Brusseau, M.L.; Khan, M.A.; Nawab, J.; Muhammad, S. Popular Wood and Sugarcane Bagasse Biochars Reduced Uptake of Chromium and Lead by Lettuce from Mine-Contaminated Soil. Environ. Pollut. 2020, 263, 114446. [Google Scholar] [CrossRef] [PubMed]
- Commission Regulation (EC) No 1881/2006 of 19 December 2006 Setting Maximum Levels for Certain Contaminants in Foodstuffs (Text with EEA Relevance). Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32006R1881 (accessed on 17 February 2021).
- Sharifan, H.; Ma, X.; Moore, J.M.; Habib, M.R.; Evans, C. Zinc Oxide Nanoparticles Alleviated the Bioavailability of Cadmium and Lead and Changed the Uptake of Iron in Hydroponically Grown Lettuce (Lactuca sativa L. var. longifolia). ACS Sustain. Chem. Eng. 2019, 7, 16401–16409. [Google Scholar] [CrossRef]
- El-Banna, M.F.; Mosa, A.; Gao, B.; Yin, Y.; Ahmad, Z. Sorption of lead ions onto oxidized bagasse-biochar mitigates Pb-induced oxidative stress on hydroponically grown chicory: Experimental observations and mechanisms. Chemosphere 2018, 208, 887–898. [Google Scholar] [CrossRef]
Particle Diameter (µm) | <500 |
---|---|
Nitrogen (%) | <0.5 |
Potassium (mg/kg) | 3020 |
Phosphorous (mg/kg) | 340 |
Calcium (mg/kg) | 9920 |
Magnesium (mg/kg) | 852 |
Sodium (mg/kg) | 291 |
Total carbon (%) | 65% |
Water holding capacity (Max, %) | 210 |
pH | 9.9 |
Hash content (%) | 7 |
* Cation exchange capacity (cmol/kg) | 96.5 ± 2.2 |
* Total lead (mg/kg) | 12.4 ± 0.6 |
Recommended dosage (%) | 2–10 |
Solution A | Amount |
---|---|
Nitrogen | 4.85% |
Phosphorous | 0.15% |
Potassium | 4.73% |
Sodium | 0.19% |
Calcium | 3.79% |
Magnesium | 1.32% |
Sulphur | 0.11% |
Iron | 0.04% |
Boron | 0.001% |
Solution B | Amount |
Phosphorus | 4.1% |
Potassium | 5.7% |
Boron | 0.01% |
Manganese | 0.03% |
Molybdenum | 0.001% |
Zinc | 0.039% |
Treatment | ||
---|---|---|
Without Biochar | With Biochar | |
Soil particle size distribution | ||
Sand (%) | 13.3 | 13.8 |
Silt (%) | 82.5 | 82.0 |
Clay (%) | 4.2 | 4.2 |
Texture | silt | silt |
Chemical properties | ||
Soil pH | 7.9 ± 0.002 a | 8.7 ± 0.005 b |
Soil CEC (cmol/kg) | 24.8 ± 0.4 a | 26.3 ± 0.4 b |
Hydroponic solution pH | 5.7 ± 0.001 a | 9.7 ± 0.007 b |
Pb (mg/kg) | ||
Soil total | 562 ± 112 | 519 ± 109 |
Soil extractable fraction | 59.2 ± 11.4 a | 29.7 ± 5.1 b |
Lettuce grown in the soil | 7.2 ± 1.7 a | 3.7 ± 0.4 b |
Lettuce grown hydroponically | 30.2 ± 2.2 a | 6.3 ± 0.7 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vannini, A.; Bianchi, E.; Avi, D.; Damaggio, N.; Di Lella, L.A.; Nannoni, F.; Protano, G.; Loppi, S. Biochar Amendment Reduces the Availability of Pb in the Soil and Its Uptake in Lettuce. Toxics 2021, 9, 268. https://doi.org/10.3390/toxics9100268
Vannini A, Bianchi E, Avi D, Damaggio N, Di Lella LA, Nannoni F, Protano G, Loppi S. Biochar Amendment Reduces the Availability of Pb in the Soil and Its Uptake in Lettuce. Toxics. 2021; 9(10):268. https://doi.org/10.3390/toxics9100268
Chicago/Turabian StyleVannini, Andrea, Elisabetta Bianchi, Diego Avi, Nicole Damaggio, Luigi Antonello Di Lella, Francesco Nannoni, Giuseppe Protano, and Stefano Loppi. 2021. "Biochar Amendment Reduces the Availability of Pb in the Soil and Its Uptake in Lettuce" Toxics 9, no. 10: 268. https://doi.org/10.3390/toxics9100268