Changes in the Treatment of Some Physico-Chemical Properties of Cassava Mill Effluents Using Saccharomyces cerevisiae
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Isolation of Saccharomyces cerevisae Used for the Study
2.3. Identification of Saccharomyces cerevisae Used for the Study
2.3.1. Identification Using Lacto-Phenol Cotton Blue Stain Methylene Blue
2.3.2. Carbon Fermentation Test
2.3.3. Carbon Assimilation Test
2.3.4. Growth Based on Temperature Using Glucose–Peptone–Yeast Extract Broth
2.4. Preparation of S. cerevisiae Inoculum and Cassava Mill Effluent for Yeast Growth
2.5. Effluents Treatment Studies
2.6. Laboratory Analysis
2.6.1. In-Situ Analysis
Determination of pH
Determination of Turbidity
Determination of Electrical Conductivity, Salinity, Temperature, and Total Dissolved Solid
Determination of Dissolved Oxygen
2.6.2. Determination of Nutrient (Phosphate, Sulphate, and Nitrate) and Chemical Oxygen Demand
2.7. Statistical Analysis
3. Results and Discussion
3.1. pH
3.2. Electrical Conductivity
3.3. Salinity
3.4. Total Dissolved Solid
3.5. Dissolved Oxygen
3.6. Turbidity
3.7. Temperature
3.8. Chemical Oxygen Demand (COD)
3.9. Sulphate
3.10. Nitrate
3.11. Phosphate
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Ohimain, E.I.; Silas-Olu, D.I.; Zipamoh, J.T. Biowastes generation by small scale cassava processing centres in Wilberforce Island, Bayelsa State, Nigeria. Greener J. Environ. Manag. Public Saf. 2013, 2, 51–59. [Google Scholar] [CrossRef]
- Ohimain, E.I. Environmental impacts of smallholder ethanol production from cassava feedstock for the replacement of kerosene household cooking fuel in Nigeria. Energy Sources Part A Recov. Utilizat. Environ. Effects 2013, 35, 1–6. [Google Scholar] [CrossRef]
- Izah, S.C.; Ohimain, E.I. Bioethanol production from cassava mill effluents supplemented with solid agricultural residues using bakers’ yeast [Saccharomyces cerevisiae]. J. Environ. Treat. Techniq. 2015, 3, 47–54. [Google Scholar]
- Orhue, E.R.; Imasuen, E.E.; Okunima, D.E. Effect of Cassava mill effluent on some soil chemical properties and the growth of fluted pumpkin (Telfairia occidentalis Hook F.). J. Appl. Nat. Sci. 2014, 6, 320–325. [Google Scholar]
- Olorunfemi, D.; Lolodi, O. Effect of cassava processing effluents on antioxidant enzyme activities in Allium cepa L. Biokemistri 2011, 23, 49–61. [Google Scholar]
- Patrick, U.A.; Egwuonwn, N.; Augustine, O-A. Distribution of cyanide in a cassava-mill-effluent polluted eutric tropofluvent soils of Ohaji Area, South-eastern Nigeria. J. Soil Sci. Environ. Manag. 2011, 2, 49–57. [Google Scholar]
- Rim-Rukeh, A. Microbiologically Influenced Corrosion of S45c Mild Steel in Cassava Mill Effluent. Res. J. Eng. Appl. Sci. 2012, 1, 284–290. [Google Scholar]
- Federal Environmental Protection Agency (FEPA). National Environmental Protection (Effluent Limitation) Regulation, Section 40, Title 3. 1991.
- Omomowo, I.O.; Omomowo, O.I.; Adeeyo, A.O.; Adebayo, E.A.; Oladipo, E.K. Bacteriological Screening and Pathogenic Potential of Soil Receiving Cassava Mill Effluents. Int. J. Basic Appl. Sci. 2015, 3, 26–36. [Google Scholar]
- Igbinosa, E.O.; Igiehon, O.N. The impact of cassava effluent on the microbial and physicochemical characteristics on soil dynamics and structure. Jordan J. Biol. Sci. 2015, 8, 107–112. [Google Scholar] [CrossRef]
- Igbinosa, E.O. Effect of cassava mill effluent on biological activity of soil microbial community. Environ. Monit. Assess. 2015, 187, 418. [Google Scholar] [CrossRef] [PubMed]
- Ezeigbo, O.R.; Ike-Amadi, C.A.; Okeke, U.P.; Ekaoko, M.U. The effect of cassava mill effluent on soil microorganisms in Aba, Nigeria. Int. J. Curr. Res. Biosci. Plant Biol. 2014, 1, 21–26. [Google Scholar]
- Eze, V.C.; Onyilide, D.M. Microbiological and physiochemical characteristics of soil receiving cassava effluents in Elele, Rivers state, Nigeria. J. Appl. Environ. Microbiol. 2015, 3, 20–24. [Google Scholar]
- Okechi, R.N.; Ihejirika, C.E.; Chiegboka, N.A.; Chukwura, E.I.; Ibe, I.J. Evaluation of the effects of cassava mill effluents on the microbial populations and physicochemical parameters at different soil depths. Int. J. Biosci. 2012, 2, 139–145. [Google Scholar]
- Omotioma, M.; Mbah, G.O.; Akpan, I.J.; Ibezim, O.B. Impact assessment of cassava effluents on barika stream in Ibadan, Nigeria. Int. J. Environ. Sci. Manag. Eng. Res. 2013, 2, 50–56. [Google Scholar]
- Nwaugo, V.O.; Onyeagba, R.A.; Umeham, S.N.; Azu, N. Effect of physicochemical properties and attachment surfaces on biofilms in cassava mill effluent polluted Oloshi River, Nigeria. Estud. Biol. 2007, 29, 53–61. [Google Scholar]
- Nwaugo, V.O.; Etok, C.A.; Chima, G.N.; Ogbonna, C.E. Impact of Cassava Mill Effluent (CME) on Soil Physicochemical and Microbial Community Structure and Functions. Niger. J. Microbiol. 2008, 22, 1681–1688. [Google Scholar]
- Ehiagbonare, J.E.; Enabulele, S.A.; Babatunde, B.B.; Adjarhore, R. Effect of cassava effluents on Okada denizens. Sci. Res. Essay 2009, 4, 310–313. [Google Scholar]
- Ibe, I.J.; Ogbulie, J.N.; Odum, D.C.; Onyirioha, C.; Peter-Ogu, P.; Okechi, R.N. Effects of cassava mill effluent on some groups of soil bacteria and soil enzymes. Int. J. Curr. Microbiol. Appl. Sci. 2014, 3, 284–289. [Google Scholar]
- Nwakaudu, M.S.; Kamen, F.L.; Afube, G.; Nwakaudu, A.A.; Ike, I.S. Impact of Cassava Processing Effluent on Agricultural Soil: A Case Study of Maize Growth. J. Emerg. Trends Eng. Appl. Sci. 2012, 3, 881–885. [Google Scholar]
- Osakwe, S.A. Effect of Cassava Processing Mill Effluent on Physical and Chemical Properties of Soils in Abraka and Environs, Delta State, Nigeria. Chem. Mater. Res. 2012, 2, 27–40. [Google Scholar]
- Izonfuo, W.-A.L.; Bariweni, P.A.; George, D.M.C. Soil contamination from cassava wastewater discharges in a rural community in the Niger Delta, Nigeria. J. Appl. Sci. Environ. Manag. 2013, 17, 105–110. [Google Scholar]
- Chinyere, C.G.; Iroha, A.E.; Amadike, U.E. Effect of altering palm oil and cassava mill effluents pH before dumping on dumpsite soils physicochemical parameters and selected enzyme activities. J. Biodivers. Environ. Sci. 2013, 3, 46–58. [Google Scholar]
- Eneje, R.; Ifenkwe, I. Effect of agricultural and industrial wastes on the physicochemical properties of a sandy clay loam soil. Intern. J. Appl. Agric. Res. 2012, 7, 187–196. [Google Scholar]
- Asogwa, C.N.; Ezenwajiaku, F.O.; Okolo, C.A.; Ekeh, F.N.; Nwibo, D.D.; Chukwuka, C.O. Behavioural and biochemical responses of juvenile catfish (Clarias gariepinus) exposed to graded concentrations of cassava waste water. Anim. Res. Int. 2015, 12, 2136–2142. [Google Scholar]
- Adeyemo, O.K. Haematological and histopathological effects of cassava mill effluent in Clarias gariepinus. Afr. J. Biomed. Res. 2005, 8, 179–183. [Google Scholar] [CrossRef]
- The Effect of Cassava Waste on the Environment and Its Implication on the National Economy. Available online: http://www.globalacademicgroup.com/journals/the%20nigerian%20academic%20forum/Nosa32.pdf (accessed on 20 November 2016).
- Effects of Cassava Effluent on Egbema Denizens: A Case of Mmahu Community in Egbema. Available online: http://globalacademicgroup.com/journals/approaches/Effects%20of%20Cassava%20Effluent%20on%20Egbema%20Denizens.pdf (accessed on 20 November 2016).
- Okoduwa, S.I.R.; Igiri, B.; Udeh, C.B.; Edenta, C.; Gauje, B. Tannery Effluent Treatment by Yeast Species Isolates from Watermelon. Toxics 2017, 5, 6. [Google Scholar] [CrossRef]
- Benson, H.J. Microbiological Applications: Laboratory Manual in General Microbiology/Complete Version, 8th ed.; McGaraw-Hill: New York, NY, USA, 2002; 478p. [Google Scholar]
- Pepper, I.L.; Gerba, C.P. Environmental Microbiology. A Laboratory Manual, 2nd ed.; Elsevier Academic Press: Oxford, UK, 2004; 209p. [Google Scholar]
- Kurtzman, C.P.; Fell, J.W. The Yeasts: A Taxonomic Study, 4th ed.; Elsevier Science: Amsterdam, The Netherlands, 1998. [Google Scholar]
- American Public Health Association (APHA). Standard Methods for the Examination of Water and Wastewater, 22nd ed.; American Public Health Association: Washington, DC, USA, 2006. [Google Scholar]
- Iwuagwu, J.O.; Ugwuanyi, J.O. Treatment and Valorization of Palm Oil Mill Effluent through Production of Food Grade Yeast Biomass. J. Waste Manag. 2014. [Google Scholar] [CrossRef]
- Abioye, O.P.; Afolayan, E.O.; Aransiola, S.A. Treatment of Pharmaceutical Effluent by Saccharomyces cerevisiae and Torulaspora delbrueckii Isolated from Spoilt Water Melon. Res. J. Environ. Toxicol. 2015. [Google Scholar] [CrossRef]
- Abioye, O.P.; Mustapha, O.T.; Aransiola, S.A. Biological Treatment of Textile Effluent Using Candida zeylanoides and Saccharomyces cerevisiae Isolated from Soil. Adv. Biol. 2014. [Google Scholar] [CrossRef]
- Ellis, D.; Davis, S.; Alexiou, H.; Handke, R.; Bartley, R. Descriptions of Medical Fungi, 2nd ed.; Printed in Adelaide by Nexus Print Solutions: Underdale, South Australia, 2007. [Google Scholar]
- American Public Health Association (APHA). Standard Methods for the Examinations of Water and Wastewaters, 17th ed.; American Public Health Association: Washington, DC, USA, 1989. [Google Scholar]
- Okowa, I.P.; Kigigha, L.T.; Izah, S.C. Variation in physicochemical water quality parameters during fermentation of maize for Ogi production. Biotechnol. Res. 2016, 2, 125–131. [Google Scholar]
- Kigigha, L.T.; Kombo, N. Changes in microbial density and in-situ water quality parameters during fermentation of guinea corn medium. ASIO J. Microbiol. Food Sci. Biotechnol. Innov. 2017, 3, 17–21. [Google Scholar]
- Ong, S. A.; Toorisaka, E.; Hirata, M.; Hano, T. Decolorization of orange II using an anaerobic sequencing batch reactor with and without co-substrates. J. Environ. Sci. 2012, 24, 291–296. [Google Scholar] [CrossRef]
Table. Cont. | Initial (Day 0) Post Treatment | 5 days Post Treatment | 10 days Post Treatment | 15 days Post Treatment | Control after 15 Days |
---|---|---|---|---|---|
pH | 3.93 ± 0.06 a | 4.93 ± 0.15 b | 5.33 ± 0.06 c | 6.30 ± 0.10 d | 4.07 ± 0.06 a |
Conductivity, mS/cm | 14.37 ± 0.31 e | 12.94 ± 0.12 c | 12.34 ± 0.24 b | 11.07 ± 0.07 a | 13.52 ± 0.10 d |
TDS, g/L | 9.76 ± 0.12 c | 9.44 ± 0.43 c | 8.55 ± 0.30 b | 7.76 ± 0.16 a | 9.56 ± 0.10 c |
Salinity, ppt | 7.09 ± 0.05 e | 6.52 ± 0.19 c | 5.99 ± 0.05 b | 5.57 ± 0.13 a | 6.81 ± 0.10 d |
Temperature, °C | 27.67 ± 0.60 a | 27.57 ± 0.38 a | 27.60 ± 0.20 a | 27.20 ± 0.10 a | 27.17 ± 0.12 a |
Turbidity, NTU | 854.33 ± 58.16 b | 1020.67 ± 12.34 c | 1095.67 ± 8.50 d | 1174.67 ± 18.04 d | 717.00 ± 5.57 a |
Dissolved oxygen, mg/L | 2.70 ± 0.10 c | 2.07 ± 0.12 a | 1.93 ± 0.06 a | 1.90 ± 0.10 a | 2.40 ± 0.10 b |
Parameters | Sulphate (mg/L) | Nitrate (mg/L) | Phosphate (mg/L) | COD (mg/L) | pH | Conductivity (mS/cm) | TDS (g/L) | Salinity | Temperature (°C) | Turbidity (NTU) | Dissolved Oxygen (mg/L) |
---|---|---|---|---|---|---|---|---|---|---|---|
Sulphate | 1.000 | - | - | - | - | - | - | - | - | - | - |
Nitrate | 0.452 | 1.000 | - | - | - | - | - | - | - | - | - |
Phosphate | 0.542 * | 0.822 ** | 1.000 | - | - | - | - | - | - | - | - |
COD | 0.014 | 0.589 * | 0.431 | 1.000 | - | - | - | - | - | - | - |
pH | 0.129 | −0.620 * | −0.410 | −0.923 ** | 1.000 | - | - | - | - | - | - |
Conductivity | −0.100 | 0.596 * | 0.443 | 0.971 ** | −0.953 ** | 1.000 | - | - | - | - | - |
TDS | −0.133 | 0.429 | 0.294 | 0.829 ** | −0.849 ** | 0.850 ** | 1.000 | - | - | - | - |
Salinity | −0.083 | 0.592 * | 0.444 | 0.978 ** | −0.944 ** | 0.999 ** | 0.849 ** | 1.000 | - | - | - |
Temperature | 0.558 * | 0.272 | 0.460 | 0.111 | −0.026 | 0.063 | 0.341 | 0.076 | 1.000 | - | - |
Turbidity | 0.366 | −0.461 | −0.097 | −0.804 ** | 0.878 ** | −0.861 ** | −0.807 ** | −0.851 ** | 0.140 | 1.000 | - |
Dissolved oxygen | 0.143 | −0.552 * | −0.265 | −0.881 ** | 0.947 ** | −0.886 ** | −0.767 ** | −0.881 ** | 0.031 | 0.877 ** | 1.000 |
Days | Sulphate, mg/L | Nitrate, mg/L | Phosphate, mg/L | COD, mg/L |
---|---|---|---|---|
0 post treatment | 79.470 ± 4.056 c | 250.000 ± 14.731 d | 35.000 ± 6.000 c | 1663.333 ± 387.043 c |
5 post treatment | 91.700 ± 16.899 c | 105.000 ± 15.309 b | 0.000 ± 0.000 a | 862.533 ± 88.950 b |
10 post treatment | 176.300 ± 6.474 d | 240.000 ± 7.000 d | 20.000 ± 2.166 b | 700.000 ± 31.000 ab |
15 post treatment | 36.967 ± 7.323 b | 80.000 ± 6.900 a | 0.000 ± 0.000 a | 425.000 ± 46.360 a |
15 no treatment (Control) | 0.000 ± 0.00 a | 150.000 ± 12.490 c | 0.000 ± 0.000 a | 900.817 ± 88.228 b |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Izah, S.C.; Bassey, S.E.; Ohimain, E.I. Changes in the Treatment of Some Physico-Chemical Properties of Cassava Mill Effluents Using Saccharomyces cerevisiae. Toxics 2017, 5, 28. https://doi.org/10.3390/toxics5040028
Izah SC, Bassey SE, Ohimain EI. Changes in the Treatment of Some Physico-Chemical Properties of Cassava Mill Effluents Using Saccharomyces cerevisiae. Toxics. 2017; 5(4):28. https://doi.org/10.3390/toxics5040028
Chicago/Turabian StyleIzah, Sylvester Chibueze, Sunday Etim Bassey, and Elijah Ige Ohimain. 2017. "Changes in the Treatment of Some Physico-Chemical Properties of Cassava Mill Effluents Using Saccharomyces cerevisiae" Toxics 5, no. 4: 28. https://doi.org/10.3390/toxics5040028
APA StyleIzah, S. C., Bassey, S. E., & Ohimain, E. I. (2017). Changes in the Treatment of Some Physico-Chemical Properties of Cassava Mill Effluents Using Saccharomyces cerevisiae. Toxics, 5(4), 28. https://doi.org/10.3390/toxics5040028