Enhanced Degradation of Petroleum and Chlorinated Hydrocarbons by a Dual-Bacteria System
Abstract
1. Introduction
2. Materials and Methods
2.1. Screening and Isolation of Strains
2.2. Morphological Observation of Strains and Analysis of 16S rRNA Sequence
2.3. Cultivation of Microorganisms
2.4. Strain Growth Determination
2.5. Strain Degradation Determination
2.6. Graphical Summary Generation
3. Results and Discussion
3.1. Screening and Identification of Strains
3.1.1. Morphological Observation of Strains
3.1.2. Sequence Analysis and Phylogenetic Tree Construction
3.1.3. Strain Growth
3.2. Degradation of Petroleum Hydrocarbons
3.2.1. Degradation of Petroleum Hydrocarbons by TB-1
3.2.2. Degradation of Petroleum by Additional Strains BL5
3.2.3. Degradation of Petroleum by Mixed Bacteria
3.3. Degradation of Mixed Petroleum and Chlorinated Hydrocarbons by the Dual-Bacteria System
3.3.1. Degradation of Mixed Pollutants by the Dual-Bacteria System
3.3.2. Optimize the Degradation of Mixed Pollutants by the Dual-Bacteria System
3.4. Limitations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| PAHs | Polycyclic aromatic hydrocarbons |
| MSM | Mineral salt medium |
| PHE | phenanthrene |
| HEX | Hexadecane |
| DCA | 1,2-Dichloroethane |
| MCB | Chlorobenzene |
References
- Bôto, M.L.; Magalhães, C.; Perdigão, R.; Alexandrino, D.A.M.; Fernandes, J.P.; Bernabeu, A.M.; Ramos, S.; Carvalho, M.F.; Semedo, M.; LaRoche, J.; et al. Harnessing the Potential of Native Microbial Communities for Bioremediation of Oil Spills in the Iberian Peninsula NW Coast. Front. Microbiol. 2021, 12, 633659. [Google Scholar] [CrossRef] [PubMed]
- Figueroa-Gonzalez, P.A.; Bornemann, T.L.V.; Adam, P.S.; Plewka, J.; Révész, F.; von Hagen, C.A.; Táncsics, A.; Probst, A.J. Saccharibacteria as organic carbon sinks in hydrocarbon-fueled communities. Front. Microbiol. 2020, 11, 587782. [Google Scholar] [CrossRef] [PubMed]
- Maia, M.L.; Paíga, P.; Ramalhosa, M.J.; Delerue-Matos, C.; Calhau, C.; Domingues, V.F. Seasonal and spatial comparison of polycyclic aromatic hydrocarbons among decapod shrimp from coastal portugal. Bull. Environ. Contam. Toxicol. 2022, 109, 511–517. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.; Tang, P.; Lyu, S.; Brusseau, M.L.; Xue, Y.; Zhang, X.; Qiu, Z.; Sui, Q. Enhanced redox degradation of chlorinated hydrocarbons by the fe(II)-catalyzed calcium peroxide system in the presence of formic acid and citric acid. J. Hazard Mater. 2019, 368, 506–513. [Google Scholar] [CrossRef]
- Rossi, M.M.; Alfano, S.; Amanat, N.; Andreini, F.; Lorini, L.; Martinelli, A.; Petrangeli Papini, M. A polyhydroxybutyrate (PHB)-biochar reactor for the adsorption and biodegradation of trichloroethylene: Design and startup phase. Bioengineering 2022, 9, 192. [Google Scholar] [CrossRef]
- Chlorine Isotope Effects from Isotope Ratio Mass Spectrometry Suggest Intramolecular C-cl Bond Competition in Trichloroethene (TCE) Reductive Dehalogenation—PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/24853618/ (accessed on 7 December 2025).
- Zhou, H.; Gao, X.; Wang, S.; Zhang, Y.; Coulon, F.; Cai, C. Enhanced bioremediation of aged polycyclic aromatic hydrocarbons in soil using immobilized microbial consortia combined with strengthening remediation strategies. Int. J. Environ. Res. Public Health 2023, 20, 1766. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, H.-P.; Zhu, L. Iron sulfide enhanced the dechlorination of trichloroethene by dehalococcoides mccartyi strain 195. Front. Microbiol. 2021, 12, 665281. [Google Scholar] [CrossRef]
- Armstrong, R. Towards the microbial home: An overview of developments in next-generation sustainable architecture. Microb. Biotechnol. 2023, 16, 1112–1130. [Google Scholar] [CrossRef]
- Shah, B.A.; Malhotra, H.; Papade, S.E.; Dhamale, T.; Ingale, O.P.; Kasarlawar, S.T.; Phale, P.S. Microbial degradation of contaminants of emerging concern: Metabolic, genetic and omics insights for enhanced bioremediation. Front. Bioeng. Biotechnol. 2024, 12, 1470522. [Google Scholar] [CrossRef]
- Wang, C.; Wan Jaafar, W.Z.; Lai, S.H.; Li, J. Emerging contaminants of perfluoroalkyl carboxylic acids (PFCAs): A review of sources, occurrence, and accumulation in plants. Environ. Geochem. Health 2025, 47, 456. [Google Scholar] [CrossRef]
- Vieira, R.I.M.; Peixoto, A.D.S.; Monclaro, A.V.; Ricart, C.A.O.; Filho, E.X.F.; Miller, R.N.G.; Gomes, T.G. Fungal coculture: Unlocking the potential for efficient bioconversion of lignocellulosic biomass. J. Fungi 2025, 11, 458. [Google Scholar] [CrossRef] [PubMed]
- Mercer, E.M.; Arrieta, M.-C. Probiotics to improve the gut microbiome in premature infants: Are we there yet? Gut Microbes 2023, 15, 2201160. [Google Scholar] [CrossRef] [PubMed]
- Trellu, C.; Pechaud, Y.; Oturan, N.; Mousset, E.; van Hullebusch, E.D.; Huguenot, D.; Oturan, M.A. Remediation of soils contaminated by hydrophobic organic compounds: How to recover extracting agents from soil washing solutions? J. Hazard. Mater. 2021, 404, 124137. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Dupuis, K.T.; Aly, N.A.; Zhou, Y.; Smith, F.B.; Tang, K.; Smith, R.D.; Baker, E.S. Utilizing ion mobility spectrometry and mass spectrometry for the analysis of polycyclic aromatic hydrocarbons, polychlorinated biphenyls, polybrominated diphenyl ethers and their metabolites. Anal. Chim. Acta 2018, 1037, 265–273. [Google Scholar] [CrossRef]
- Willumsen, P.A.; Karlson, U. Effect of calcium on the surfactant tolerance of a fluoranthene degrading bacterium. Biodegradation 1998, 9, 369–379. [Google Scholar] [CrossRef]
- Copley, S.D. Evolution of efficient pathways for degradation of anthropogenic chemicals. Nat. Chem. Biol. 2009, 5, 559–566. [Google Scholar] [CrossRef]
- Cui, J.-Q.; He, Z.-Q.; Ntakirutimana, S.; Liu, Z.-H.; Li, B.-Z.; Yuan, Y.-J. Artificial mixed microbial system for polycyclic aromatic hydrocarbons degradation. Front. Microbiol. 2023, 14, 1207196. [Google Scholar] [CrossRef]
- Santos, D.K.F.; Resende, A.H.M.; de Almeida, D.G.; Soares da Silva, R.d.C.F.; Rufino, R.D.; Luna, J.M.; Banat, I.M.; Sarubbo, L.A. Candida lipolytica UCP0988 biosurfactant: Potential as a bioremediation agent and in formulating a commercial related product. Front. Microbiol. 2017, 8, 767. [Google Scholar] [CrossRef]
- Nassar, H.N.; Rabie, A.M.; Abu Amr, S.S.; El-Gendy, N.S. Kinetic and statistical perspectives on the interactive effects of recalcitrant polyaromatic and sulfur heterocyclic compounds and in-vitro nanobioremediation of oily marine sediment at microcosm level. Environ. Res. 2022, 209, 112768. [Google Scholar] [CrossRef]
- Hajri, A.K.; Alsharif, I.; Albalawi, M.A.; Alshareef, S.A.; Albalawi, R.K.; Jamoussi, B. Utilizing mixed cultures of microalgae to up-cycle and remove nutrients from dairy wastewater. Biology 2024, 13, 591. [Google Scholar] [CrossRef]
- Bekele, G.K.; Gebrie, S.A.; Mekonen, E.; Fida, T.T.; Woldesemayat, A.A.; Abda, E.M.; Tafesse, M.; Assefa, F. Isolation and characterization of diesel-degrading bacteria from hydrocarbon-contaminated sites, flower farms, and soda lakes. Int. J. Microbiol. 2022, 2022, 5655767. [Google Scholar] [CrossRef] [PubMed]
- Santisi, S.; Cappello, S.; Catalfamo, M.; Mancini, G.; Hassanshahian, M.; Genovese, L.; Giuliano, L.; Yakimov, M.M. Biodegradation of crude oil by individual bacterial strains and a mixed bacterial consortium. Braz. J. Microbiol. 2015, 46, 377–387. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.; Deng, J.; Niu, H.; Liang, J.; Arslan, M.; Gamal El-Din, M.; Wang, Q.; Guo, S.; Chen, C. Establishing and optimizing a bacterial consortia for effective biodegradation of petroleum contaminants: Advancing classical microbiology via experimental and mathematical approach. Water 2021, 13, 3311. [Google Scholar] [CrossRef]
- Rezaei, Z.; Moghimi, H. Fungal-bacterial consortia: A promising strategy for the removal of petroleum hydrocarbons. Ecotoxicol. Environ. Saf. 2024, 280, 116543. [Google Scholar] [CrossRef]
- Silva Monteiro, J.P.; da Silva, A.F.; Delgado Duarte, R.T.; José Giachini, A. Exploring novel fungal–bacterial consortia for enhanced petroleum hydrocarbon degradation. Toxics 2024, 12, 913. [Google Scholar] [CrossRef]
- Nnabuife, O.O.; Ogbonna, J.C.; Anyanwu, C.; Ike, A.C.; Eze, C.N.; Enemuor, S.C. Mixed bacterial consortium can hamper the efficient degradation of crude oil hydrocarbons. Arch. Microbiol. 2022, 204, 306. [Google Scholar] [CrossRef]
- Elenga-Wilson, P.S.; Kayath, C.A.; Mokemiabeka, N.S.; Nzaou, S.A.E.; Nguimbi, E.; Ahombo, G. Profiling of indigenous biosurfactant-producing bacillus isolates in the bioremediation of soil contaminated by petroleum products and olive oil. Int. J. Microbiol. 2021, 2021, 9565930. [Google Scholar] [CrossRef]
- Qattan, S.Y.A. Harnessing bacterial consortia for effective bioremediation: Targeted removal of heavy metals, hydrocarbons, and persistent pollutants. Environ. Sci. Eur. 2025, 37, 85. [Google Scholar] [CrossRef]
- Bala, S.; Garg, D.; Thirumalesh, B.V.; Sharma, M.; Sridhar, K.; Inbaraj, B.S.; Tripathi, M. Recent strategies for bioremediation of emerging pollutants: A review for a green and sustainable environment. Toxics 2022, 10, 484. [Google Scholar] [CrossRef]
- Cao, Z.; Yan, W.; Ding, M.; Yuan, Y. Construction of microbial consortia for microbial degradation of complex compounds. Front. Bioeng. Biotechnol. 2022, 10, 1051233. [Google Scholar] [CrossRef]
- Kalia, A.; Sharma, S.; Semor, N.; Babele, P.K.; Sagar, S.; Bhatia, R.K.; Walia, A. Recent advancements in hydrocarbon bioremediation and future challenges: A review. 3 Biotech 2022, 12, 135. [Google Scholar] [CrossRef]
- Mekonnen, B.A.; Aragaw, T.A.; Genet, M.B. Bioremediation of petroleum hydrocarbon contaminated soil: A review on principles, degradation mechanisms, and advancements. Front. Environ. Sci. 2024, 12. [Google Scholar] [CrossRef]
- Pavlova, O.N.; Adamovich, S.N.; Novikova, A.S.; Gorshkov, A.G.; Izosimova, O.N.; Ushakov, I.A.; Oborina, E.N.; Mirskova, A.N.; Zemskaya, T.I. Protatranes, effective growth biostimulants of hydrocarbon-oxidizing bacteria from lake baikal, russia. Biotechnol. Rep. 2019, 24, e00371. [Google Scholar] [CrossRef] [PubMed]
- Medić, A.; Lješević, M.; Inui, H.; Beškoski, V.; Kojić, I.; Stojanović, K.; Karadžić, I. Efficient biodegradation of petroleum n-alkanes and polycyclic aromatic hydrocarbons by polyextremophilic pseudomonas aeruginosa san ai with multidegradative capacity. RSC Adv. 2020, 10, 14060–14070. [Google Scholar] [CrossRef] [PubMed]
- Pantsyrnaya, T.; Delaunay, S.; Goergen, J.-L.; Guédon, E.; Paris, C.; Poupin, P.; Guseva, E.; Boudrant, J. Biodegradation of phenanthrene by pseudomonas putida and a bacterial consortium in the presence and in the absence of a surfactant. Indian J. Microbiol. 2012, 52, 420–426. [Google Scholar] [CrossRef]
- Chen, R.; Zuo, X.; Bai, H.; Qin, R.; Chen, Z.; Liu, Y.; Cao, W.; Song, J.; Jia, X. Screening and pilot-scale evaluation of a highly efficient pesticide-degrading pseudomonas sp. strain BL5. Chin. J. Chem. Eng. 2024, 74, 287–294. [Google Scholar] [CrossRef]
- Pandolfo, E.; Barra Caracciolo, A.; Rolando, L. Recent advances in bacterial degradation of hydrocarbons. Water 2023, 15, 375. [Google Scholar] [CrossRef]
- Abdelaziz, A.A.; Kamer, A.M.A.; Al-Monofy, K.B.; Al-Madboly, L.A. Pseudomonas aeruginosa’s greenish-blue pigment pyocyanin: Its production and biological activities. Microb. Cell Fact. 2023, 22, 110. [Google Scholar] [CrossRef]
- Chen, Z.; Cao, W.; Bai, H.; Zhang, R.; Liu, Y.; Li, Y.; Song, J.; Liu, J.; Ren, G. Review on the degradation of chlorinated hydrocarbons by persulfate activated with zero-valent iron-based materials. Water Sci. Technol. 2023, 87, 761–782. [Google Scholar] [CrossRef]
- Alori, E.T.; Gabasawa, A.I.; Elenwo, C.E.; Agbeyegbe, O.O. Bioremediation techniques as affected by limiting factors in soil environment. Front. Soil Sci. 2022, 2. [Google Scholar] [CrossRef]
- Hibbing, M.E.; Fuqua, C.; Parsek, M.R.; Peterson, S.B. Bacterial competition: Surviving and thriving in the microbial jungle. Nat. Rev. Microbiol. 2010, 8, 15–25. [Google Scholar] [CrossRef]
- Abdoli, P.; Vulin, C.; Lepiz, M.; Chase, A.B.; Weihe, C.; Rodríguez-Verdugo, A. Substrate complexity buffers negative interactions in a synthetic community of leaf litter degraders. FEMS Microbiol. Ecol. 2024, 100, fiae102. [Google Scholar] [CrossRef]
- Otiniano, N.M.; Rojas-Villacorta, W.; De La Cruz-Noriega, M.; Lora-Cahuas, C.; Mendoza-Villanueva, K.; Benites, S.M.; Gallozzo-Cardenas, M.; Rojas-Flores, S. Effect of inoculum concentration on the degradation of diesel 2 by a microbial consortium. Sustainability 2022, 14, 16750. [Google Scholar] [CrossRef]
- Pozdnyakova, N.; Muratova, A.; Turkovskaya, O. Degradation of polycyclic aromatic hydrocarbons by co-culture of pleurotus ostreatus florida and azospirillum brasilense. Appl. Microbiol. 2022, 2, 735–748. [Google Scholar] [CrossRef]






Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Zhang, H.; Yang, Y.; Qi, H.; Liu, J.; Jia, X. Enhanced Degradation of Petroleum and Chlorinated Hydrocarbons by a Dual-Bacteria System. Toxics 2026, 14, 119. https://doi.org/10.3390/toxics14020119
Zhang H, Yang Y, Qi H, Liu J, Jia X. Enhanced Degradation of Petroleum and Chlorinated Hydrocarbons by a Dual-Bacteria System. Toxics. 2026; 14(2):119. https://doi.org/10.3390/toxics14020119
Chicago/Turabian StyleZhang, Haochen, Yibin Yang, Haishan Qi, Juncheng Liu, and Xiaoqiang Jia. 2026. "Enhanced Degradation of Petroleum and Chlorinated Hydrocarbons by a Dual-Bacteria System" Toxics 14, no. 2: 119. https://doi.org/10.3390/toxics14020119
APA StyleZhang, H., Yang, Y., Qi, H., Liu, J., & Jia, X. (2026). Enhanced Degradation of Petroleum and Chlorinated Hydrocarbons by a Dual-Bacteria System. Toxics, 14(2), 119. https://doi.org/10.3390/toxics14020119

