Fungal Degradation of Microplastics—An Environmental Need
Abstract
1. Introduction
2. Conventional Degradation of Microplastics
3. Common Mechanisms of Microbial Biodegradation
4. Bacterial Microplastic Degradation
4.1. Impact of Bacterial Species
4.2. Challenges of Bacteria-Assisted Microplastic Degradation
5. Fungal Microplastic Degradation
5.1. Impact of Fungal Species
5.2. Fungal Species Biodegradation Modes of Action
5.2.1. Activation of Pentose Phosphate Pathway (PPP)
5.2.2. Penetration of Fungal Hyphae
5.2.3. Extracellular and Intracellular Enzymatic Biodegradation
5.3. Advantages of Fungal Biodegradation
- (a)
- Fungi are extremely adaptable to extreme and diverse environmental conditions, such as those whose pH, temperature, moisture, or other environmental parameters may not be suitable for bacteria. For example, some Aspergillus and Penicillium species can survive in environments with a pH ranging from 2 to 11 [97]. A study testing 14 fungal species found that all except 1 could tolerate at least 40 °C at high humidity, and 9 species tolerated at least 50 °C [98]. Under dry conditions, all fungi tolerated 70 °C while several tolerated more than 100 °C [98].
- (b)
- Fungi have a stronger plastic affinity than bacteria, which can be attributed to the involvement of fungal-specific hydrophobins. Such hydrophobins help attach hyphae to plastic surfaces [99]. As noted earlier, hyphae can also produce HsbA proteins to improve absorptive characteristics of enzymes as well [84].
- (c)
- Fungi have a diverse range of highly efficient enzymes. The hydrolase found in fungal extracellular enzymes is effective at hydroxylation of long-chain compounds, while multiple enzymes in the oxidoreductase system have plastic-degrading capabilities [89,100]. For example, white rot fungi (Phanerochaete chrysosporium) produce a host of ligninolytic enzymes that have demonstrated plastic-degrading properties [93,101].
- (d)
- Fungi form symbiotic relationships with plants. More than 80% of land plants partner with fungi to assist with nutrient extraction through mycorrhizal associations [102,103]. Although many biodegradation studies have been conducted in laboratory settings, there is the additional possible benefit to plants and biodiversity when biodegradation happens in nature. Symbiosis also enhances the overall effectiveness of fungal biodegradation as it allows for the expansion of fungi through the root network of plants, potentially accessing additional microplastics [104].
- (e)
- Fungi use mechanical force to help degrade plastics. As noted above, hydrolytic extracellular enzymes weaken plastic and form cracks or pits, through which the hyphae can apply mechanical force [86]. Wu et al. [93] noted significant pitting and erosion from white rot fungi on plastic that then resulted in fragmentation.
- (f)
- Fungi offer superior versatility for microplastic biodegradation. Fungi microplastic biodegradation is effective in water and on land, as well as in situ and ex situ [104].
- (g)
- Fungi have a higher carbon use efficiency and release less CO2. Carbon use efficiency is 40–55% for fungi compared to only 20–30% for bacteria [105]. This was further confirmed by researchers who heated sterile soil inoculated with either bacteria or fungi and found the fungal soil released less CO2 [106]. It is suggested that fungi are able to produce enzymes capable of building more stable organic building blocks [106].
5.4. Limitations to Fungal Biodegradation
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hu, K.; Tian, W.; Yang, Y.; Nie, G.; Zhou, P.; Wang, Y.; Duan, X.; Wang, S. Microplastics Remediation in Aqueous Systems: Strategies and Technologies. Water Res. 2021, 198, 117144. [Google Scholar] [CrossRef]
- Zeghal, E.; Vaksmaa, A.; Vielfaure, H.; Boekhout, T.; Niemann, H. The Potential Role of Marine Fungi in Plastic Degradation—A Review. Front. Mar. Sci. 2021, 8, 738877. [Google Scholar] [CrossRef]
- Fan, P.; Tan, W.; Yu, H. Effects of Different Concentrations and Types of Microplastics on Bacteria and Fungi in Alkaline Soil. Ecotoxicol. Environ. Saf. 2022, 229, 113045. [Google Scholar] [CrossRef]
- Zhang, X.; Li, H.-N.; Zhu, C.-Y.; Huang, X.-J.; Greiner, A.; Xu, Z.-K. Biomimetic Gill-Inspired Membranes with Direct-through Micropores for Water Remediation by Efficiently Removing Microplastic Particles. Chem. Eng. J. 2022, 434, 134758. [Google Scholar] [CrossRef]
- Zhou, Y.; Sun, Y.; Liu, J.; Ren, X.; Zhang, Z.; Wang, Q. Effects of Microplastics on Humification and Fungal Community during Cow Manure Composting. Sci. Total Environ. 2022, 803, 150029. [Google Scholar] [CrossRef]
- Abe, M.; Kobayashi, K.; Honma, N.; Nakasaki, K. Microbial Degradation of Poly(Butylene Succinate) by Fusarium Solani in Soil Environments. Polym. Degrad. Stab. 2010, 95, 138–143. [Google Scholar] [CrossRef]
- Anik, A.H.; Hossain, S.; Alam, M.; Binte Sultan, M.; Hasnine, M.T.; Rahman, M.M. Microplastics Pollution: A Comprehensive Review on the Sources, Fates, Effects, and Potential Remediation. Environ. Nanotechnol. Monit. Manag. 2021, 16, 100530. [Google Scholar] [CrossRef]
- Goh, P.S.; Kang, H.S.; Ismail, A.F.; Khor, W.H.; Quen, L.K.; Higgins, D. Nanomaterials for Microplastic Remediation from Aquatic Environment: Why Nano Matters? Chemosphere 2022, 299, 134418. [Google Scholar] [CrossRef]
- Ziani, K.; Ioniță-Mîndrican, C.-B.; Mititelu, M.; Neacșu, S.M.; Negrei, C.; Moroșan, E.; Drăgănescu, D.; Preda, O.-T. Microplastics: A Real Global Threat for Environment and Food Safety: A State of the Art Review. Nutrients 2023, 15, 617. [Google Scholar] [CrossRef] [PubMed]
- Drummond, J.D.; Schneidewind, U.; Li, A.; Hoellein, T.J.; Krause, S.; Packman, A.I. Microplastic Accumulation in Riverbed Sediment via Hyporheic Exchange from Headwaters to Mainstems. Sci. Adv. 2022, 8, eabi9305. [Google Scholar] [CrossRef]
- Urbanek, A.K.; Strzelecki, M.C.; Mirończuk, A.M. The Potential of Cold-Adapted Microorganisms for Biodegradation of Bioplastics. Waste Manag. 2021, 119, 72–81. [Google Scholar] [CrossRef]
- Chia, W.Y.; Ying Tang, D.Y.; Khoo, K.S.; Kay Lup, A.N.; Chew, K.W. Nature’s Fight against Plastic Pollution: Algae for Plastic Biodegradation and Bioplastics Production. Environ. Sci. Ecotechnology 2020, 4, 100065. [Google Scholar] [CrossRef]
- Ali, S.S.; Elsamahy, T.; Al-Tohamy, R.; Zhu, D.; Mahmoud, Y.A.-G.; Koutra, E.; Metwally, M.A.; Kornaros, M.; Sun, J. Plastic Wastes Biodegradation: Mechanisms, Challenges and Future Prospects. Sci. Total Environ. 2021, 780, 146590. [Google Scholar] [CrossRef]
- Ikuno, Y.; Tsujino, H.; Haga, Y.; Asahara, H.; Higashisaka, K.; Tsutsumi, Y. Impact of Degradation of Polyethylene Particles on Their Cytotoxicity. Microplastics 2023, 2, 192–201. [Google Scholar] [CrossRef]
- Xiao, Y.; Tian, Y.; Xu, W.; Zhu, J. Photodegradation of Microplastics through Nanomaterials: Insights into Photocatalysts Modification and Detailed Mechanisms. Materials 2024, 17, 2755. [Google Scholar] [CrossRef] [PubMed]
- Madsen, J.; Rech, A.; Hartmann, N.B.; Daugaard, A.E. Preparation of Block Copolymer-Stabilised Microspheres of Common Polymers and Their Use as Microplastics Proxies in Degradation Studies. Langmuir 2024, 40, 18988–18998. [Google Scholar] [CrossRef] [PubMed]
- Feo, L.; Pullar, R.; Zaoui, A. Microplastic Removal via Physical and Chemical Methods. Exp. Theor. Nanotechnol. 2023, 7, 1–16. [Google Scholar] [CrossRef]
- Hu, B.; Guo, P.; Han, S.; Jin, Y.; Nan, Y.; Deng, J.; He, J.; Wu, Y.; Chen, S. Distribution Characteristics of Microplastics in the Soil of Mangrove Restoration Wetland and the Effects of Microplastics on Soil Characteristics. Ecotoxicology 2022, 31, 1120–1136. [Google Scholar] [CrossRef]
- Wang, C.; Tang, J.; Yu, H.; Wang, Y.; Li, H.; Xu, S.; Li, G.; Zhou, Q. Microplastic Pollution in the Soil Environment: Characteristics, Influencing Factors, and Risks. Sustainability 2022, 14, 13405. [Google Scholar] [CrossRef]
- Li, M.; Yu, H.; Wang, Y.; Li, J.; Ma, G.; Wei, X. QSPR Models for Predicting the Adsorption Capacity for Microplastics of Polyethylene, Polypropylene and Polystyrene. Sci. Rep. 2020, 10, 14597. [Google Scholar] [CrossRef]
- Chen, W.; Almuhtaram, H.; Andrews, R.; Peng, H. Unanticipated Thio-Oxidation of Organophosphite Chemical Additives in PVC Microplastics Following In-Situ Weathering. ChemRxiv 2023. [Google Scholar] [CrossRef]
- Dawson, A.L.; Bose, U.; Ni, D.; Nelis, J.L.D. Unravelling Protein Corona Formation on Pristine and Leached Microplastics. Microplast. Nanoplast. 2024, 4, 9. [Google Scholar]
- Li, J. A Study of the Effects of Microplastics on Microbial Communities in Marine Sediments. Highlights Sci. Eng. Technol. 2024, 99, 136–140. [Google Scholar] [CrossRef]
- Chen, J.; Wang, W.; Liu, H.; Xu, X.; Xia, J. A Review on the Occurrence, Distribution, Characteristics, and Analysis Methods of Microplastic Pollution in Ecosystems. Environ. Pollut. Bioavailab. 2021, 33, 227–246. [Google Scholar] [CrossRef]
- Tang, K.H.D. Climate Change and Plastic Pollution: A Review of Their Connections. Trop. Environ. Biol. Technol. 2023, 1, 110–120. [Google Scholar] [CrossRef]
- Viel, T.; Manfra, L.; Zupo, V.; Libralato, G.; Cocca, M.; Costantini, M. Biodegradation of Plastics Induced by Marine Organisms: Future Perspectives for Bioremediation Approaches. Polymers 2023, 15, 2673. [Google Scholar] [CrossRef]
- Pivato, A.F.; Miranda, G.M.; Prichula, J.; Lima, J.E.A.; Ligabue, R.A.; Seixas, A.; Trentin, D.S. Hydrocarbon-Based Plastics: Progress and Perspectives on Consumption and Biodegradation by Insect Larvae. Chemosphere 2022, 293, 133600. [Google Scholar] [CrossRef]
- Srikanth, M.; Sandeep, T.S.R.S.; Sucharitha, K.; Godi, S. Biodegradation of Plastic Polymers by Fungi: A Brief Review. Bioresour. Bioprocess. 2022, 9, 42. [Google Scholar] [CrossRef]
- Chen, S.; Su, L.; Chen, J.; Wu, J. Cutinase: Characteristics, Preparation, and Application. Biotechnol. Adv. 2013, 31, 1754–1767. [Google Scholar] [CrossRef] [PubMed]
- Shekoohiyan, S.; Moussavi, G.; Naddafi, K. The Peroxidase-Mediated Biodegradation of Petroleum Hydrocarbons in a H2O2-Induced SBR Using in-Situ Production of Peroxidase: Biodegradation Experiments and Bacterial Identification. J. Hazard. Mater. 2016, 313, 170–178. [Google Scholar] [CrossRef]
- Vertommen, M.A.M.E.; Nierstrasz, V.A.; van der Veer, M.; Warmoeskerken, M.M.C.G. Enzymatic Surface Modification of Poly(Ethylene Terephthalate). J. Biotechnol. 2005, 120, 376–386. [Google Scholar] [CrossRef]
- Hu, Q.; Jayasinghe-Arachchige, V.M.; Prabhakar, R. Degradation of a Main Plastic Pollutant Polyethylene Terephthalate by Two Distinct Proteases (Neprilysin and Cutinase-like Enzyme). J. Chem. Inf. Model. 2021, 61, 764–776. [Google Scholar] [CrossRef]
- Jakubowicz, I. Evaluation of Degradability of Biodegradable Polyethylene (PE). Polym. Degrad. Stab. 2003, 80, 39–43. [Google Scholar] [CrossRef]
- Weiland, M.; Daro, A.; David, C. Biodegradation of Thermally Oxidized Polyethylene. Polym. Degrad. Stab. 1995, 48, 275–289. [Google Scholar] [CrossRef]
- Alsafadi, D.; Abu Nuwar, M.; Abdelhadi, A.; Alqaruoti, T.; Siwwan, L.; Al Amaireh, A. Environmental Degradation of Plastics Containing Pro-Oxidant Additives and Their Toxicological Impact in Desert Ecosystems. Case Stud. Chem. Environ. Eng. 2025, 13, 101311. [Google Scholar] [CrossRef]
- Liu, X.; Li, Y.; Tang, J.; Wang, D.; Guo, S.; Liu, Q.; Giesy, J.P. Nano- and Microplastics Aided by Extracellular Polymeric Substances Facilitate the Conjugative Transfer of Antibiotic Resistance Genes in Bacteria. ACS EST Water 2022, 2, 2528–2537. [Google Scholar] [CrossRef]
- Hossain, S.; Shukri, Z.N.A.; Waiho, K.; Ibrahim, Y.S.; Kamaruzzan, A.S.; Rahim, A.I.A.; Draman, A.S.; Wahab, W.; Khatoon, H.; Kasan, N.A. Biodegradation of Polyethylene (PE), Polypropylene (PP), and Polystyrene (PS) Microplastics by Floc-Forming Bacteria, Bacillus Cereus Strain SHBF2, Isolated from a Commercial Aquafarm. Environ. Sci. Pollut. Res. 2024, 31, 32225–32245. [Google Scholar] [CrossRef] [PubMed]
- Dudek, K.L.; Cruz, B.N.; Polidoro, B.; Neuer, S. Microbial Colonization of Microplastics in the Caribbean Sea. Limnol. Oceanogr. Lett. 2020, 5, 5–17. [Google Scholar] [CrossRef]
- Cao, Y.; Bian, J.; Han, Y.; Liu, J.; Ma, Y.; Feng, W.; Deng, Y.; Yu, Y. Progress and Prospects of Microplastic Biodegradation Processes and Mechanisms: A Bibliometric Analysis. Toxics 2024, 12, 463. [Google Scholar] [CrossRef] [PubMed]
- Carr, C.M.; de Oliveira, B.F.R.; Jackson, S.A.; Laport, M.S.; Clarke, D.J.; Dobson, A.D.W. Identification of BgP, a Cutinase-Like Polyesterase From a Deep-Sea Sponge-Derived Actinobacterium. Front. Microbiol. 2022, 13, 888343. [Google Scholar] [CrossRef]
- Wu, X.; He, F.; Xu, X.; Wu, L.; Rong, J.; Lin, S. Environmental Health and Safety Implications of the Interplay Between Microplastics and the Residing Biofilm. Environ. Health 2024, 3, 118–132. [Google Scholar] [CrossRef]
- Irawan, N.; Pranita, S.D.; Edelwis, T.W.; Pardi, H.; Ramadhani, S.Y. The Role Of Bacteria In Microplastic Bioremediation And Implications For Marine Ecosystems. BIO Web Conf. 2024, 134, 05009. [Google Scholar] [CrossRef]
- Tao, X.; Ouyang, H.; Zhou, A.; Wang, D.; Matlock, H.; Morgan, J.S.; Ren, A.T.; Mu, D.; Pan, C.; Zhu, X.; et al. Polyethylene Degradation by a Rhodococcous Strain Isolated from Naturally Weathered Plastic Waste Enrichment. Environ. Sci. Technol. 2023, 57, 13901–13911. [Google Scholar] [CrossRef]
- Teitelbaum, Y.; Shimony, T.; Saavedra Cifuentes, E.; Dallmann, J.; Phillips, C.B.; Packman, A.I.; Hansen, S.K.; Arnon, S. A Novel Framework for Simulating Particle Deposition With Moving Bedforms. Geophys. Res. Lett. 2022, 49, e2021gl097223. [Google Scholar] [CrossRef]
- Wang, Q.; Hong, L.; Wu, K.; Li, M.; Zhang, J.; Li, X.; Jin, J.; Liu, B. Research Progress in Microbial Degradation of Microplastics. J. Phys. Conf. Ser. 2024, 2706, 012043. [Google Scholar] [CrossRef]
- Klavins, M.; Klavins, L.; Stabnikova, O.; Stabnikov, V.; Marynin, A.; Ansone-Bertina, L.; Mezulis, M.; Vaseashta, A. Interaction between Microplastics and Pharmaceuticals Depending on the Composition of Aquatic Environment. Microplastics 2022, 1, 520–535. [Google Scholar] [CrossRef]
- Fackelmann, G.; Pham, C.K.; Rodríguez, Y.; Mallory, M.L.; Provencher, J.F.; Baak, J.E.; Sommer, S. Current Levels of Microplastic Pollution Impact Wild Seabird Gut Microbiomes. Nat. Ecol. Evol. 2023, 7, 698–706. [Google Scholar] [CrossRef]
- Piazza, V.; Uheida, A.; Gambardella, C.; Garaventa, F.; Faimali, M.; Dutta, J. Ecosafety Screening of Photo-Fenton Process for the Degradation of Microplastics in Water. Front. Mar. Sci. 2022, 8, 791431. [Google Scholar] [CrossRef]
- Zhang, Y.; Lu, J.; Wu, J.; Wang, J.; Luo, Y. Potential Risks of Microplastics Combined with Superbugs: Enrichment of Antibiotic Resistant Bacteria on the Surface of Microplastics in Mariculture System. Ecotoxicol. Environ. Saf. 2020, 187, 109852. [Google Scholar] [CrossRef]
- Hou, D.; Hong, M.; Wang, Y.; Dong, P.; Cheng, H.; Yan, H.; Yao, Z.; Li, D.; Wang, K.; Zhang, D. Assessing the Risks of Potential Bacterial Pathogens Attaching to Different Microplastics during the Summer-Autumn Period in a Mariculture Cage. Microorganisms 2021, 9, 1909. [Google Scholar] [CrossRef] [PubMed]
- Sathya, K. Unveiling the Potential of Metagenomics for Eradicating Microplastics from Drinking Water. Int. J. Nat. Sci. 2024, 1, 20–32. [Google Scholar] [CrossRef]
- Nikolopoulou, I.; Piperagkas, O.; Moschos, S.; Karayanni, H. Bacteria Release from Microplastics into New Aquatic Environments. Diversity 2023, 15, 115. [Google Scholar] [CrossRef]
- Sutradhar, M. A Review of Microplastics Pollution and Its Remediation Methods: Current Scenario and Future Aspects. Arch. Agric. Environ. Sci. 2022, 7, 288–293. [Google Scholar] [CrossRef]
- Khoiriyah, S.; Dian Syaputra, M. Bioremediation to Overcome Microplastic Contamination in The Water Environment. IOP Conf. Ser. Earth Environ. Sci. 2024, 1317, 012027. [Google Scholar] [CrossRef]
- Ekanayaka, A.H.; Tibpromma, S.; Dai, D.; Xu, R.; Suwannarach, N.; Stephenson, S.L.; Dao, C.; Karunarathna, S.C. A Review of the Fungi That Degrade Plastic. J. Fungi 2022, 8, 772. [Google Scholar] [CrossRef]
- Daccò, C.; Girometta, C.; Asemoloye, M.D.; Carpani, G.; Picco, A.M.; Tosi, S. Key Fungal Degradation Patterns, Enzymes and Their Applications for the Removal of Aliphatic Hydrocarbons in Polluted Soils: A Review. Int. Biodeterior. Biodegrad. 2020, 147, 104866. [Google Scholar] [CrossRef]
- Boyce, K.J.; Andrianopoulos, A. Fungal Dimorphism: The Switch from Hyphae to Yeast Is a Specialized Morphogenetic Adaptation Allowing Colonization of a Host. FEMS Microbiol. Rev. 2015, 39, 797–811. [Google Scholar] [CrossRef]
- Ishii, N.; Inoue, Y.; Shimada, K.; Tezuka, Y.; Mitomo, H.; Kasuya, K. Fungal Degradation of Poly(Ethylene Succinate). Polym. Degrad. Stab. 2007, 92, 44–52. [Google Scholar] [CrossRef]
- Russell, J.R.; Huang, J.; Anand, P.; Kucera, K.; Sandoval, A.G.; Dantzler, K.W.; Hickman, D.; Jee, J.; Kimovec, F.M.; Koppstein, D.; et al. Biodegradation of Polyester Polyurethane by Endophytic Fungi. Appl. Environ. Microbiol. 2011, 77, 6076–6084. [Google Scholar] [CrossRef] [PubMed]
- Radzi, N.-A.-S.M.; Tay, K.-S.; Abu Bakar, N.-K.; Uche Emenike, C.; Krishnan, S.; Shahul Hamid, F.; Abas, M.-R. Degradation of Polycyclic Aromatic Hydrocarbons (Pyrene and Fluoranthene) by Bacterial Consortium Isolated from Contaminated Road Side Soil and Soil Termite Fungal Comb. Environ. Earth Sci. 2015, 74, 5383–5391. [Google Scholar] [CrossRef]
- Gao, R.; Liu, R.; Sun, C. A Marine Fungus Alternaria Alternata FB1 Efficiently Degrades Polyethylene. J. Hazard. Mater. 2022, 431, 128617. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.-K.; Gong, Z.; Wang, B.-T.; Hu, S.; Zhuo, Y.; Jin, C.-Z.; Jin, L.; Lee, H.-G.; Jin, F.-J. Biodegradation of Low-Density Polyethylene by Mixed Fungi Composed of Alternaria Sp. and Trametes Sp. Isolated from Landfill Sites. BMC Microbiol. 2024, 24, 321. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.; Nadir, S.; Shah, Z.U.; Shah, A.A.; Karunarathna, S.C.; Xu, J.; Khan, A.; Munir, S.; Hasan, F. Biodegradation of Polyester Polyurethane by Aspergillus tubingensis. Environ. Pollut. 2017, 225, 469–480. [Google Scholar] [CrossRef]
- Alshehrei, F. Biodegradation of Low Density Polyethylene by Fungi Isolated from Red Sea Water. Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 1703–1709. [Google Scholar] [CrossRef]
- Singh, J.; Gupta, K.C. Screening and Identification of Low Density Polyethylene (LDPE) Degrading Soil Fungi Isolated from Polythene Polluted Sites around Gwalior City (M.P.). Int. J. Curr. Microbiol. Appl. Sci. 2014, 3, 443–448. [Google Scholar]
- Kathiresan, K. Polyethylene and Plastics-Degrading Microbes from the Mangrove Soil. Rev. Biol. Trop. 2003, 51, 629–633. [Google Scholar]
- Safdar, A.; Ismail, F.; Iftikhar, H.; Majid Khokhar, A.; Javed, A.; Imran, M.; Safdar, B. Determination of Biodegradation Potential of Aspergillus niger, Candida albicans, and Acremonium sclerotigenum on Polyethylene, Polyethylene Terephthalate, and Polystyrene Microplastics. Int. J. Microbiol. 2024, 2024, 7682762. [Google Scholar] [CrossRef]
- Munir, E.; Harefa, R.S.M.; Priyani, N.; Suryanto, D. Plastic Degrading Fungi Trichoderma Viride and Aspergillus nomius Isolated from Local Landfill Soil in Medan. IOP Conf. Ser. Earth Environ. Sci. 2018, 126, 012145. [Google Scholar] [CrossRef]
- Sangale, M.K.; Shahnawaz, M.; Ade, A.B. Potential of Fungi Isolated from the Dumping Sites Mangrove Rhizosphere Soil to Degrade Polythene. Sci. Rep. 2019, 9, 5390. [Google Scholar] [CrossRef]
- Yu, X.; Zhang, Y.; Chen, S.; Chen, S.; Wan, C.; Wang, Y.; Zou, L.; Peng, L.; Ye, L.; Li, Q. Study on the Degradation Efficiency and Mechanism of Polystyrene Microplastics by Five Kinds of Edible Fungi. J. Hazard. Mater. 2025, 492, 138165. [Google Scholar] [CrossRef] [PubMed]
- Krueger, M.C.; Hofmann, U.; Moeder, M.; Schlosser, D. Potential of Wood-Rotting Fungi to Attack Polystyrene Sulfonate and Its Depolymerisation by Gloeophyllum Trabeum via Hydroquinone-Driven Fenton Chemistry. PLoS ONE 2015, 10, e0131773. [Google Scholar] [CrossRef]
- Sowmya, H.V.; Ramalingappa; Krishnappa, M.; Thippeswamy, B. Degradation of Polyethylene by Penicillium simplicissimum Isolated from Local Dumpsite of Shivamogga District. Environ. Dev. Sustain. 2015, 17, 731–745. [Google Scholar] [CrossRef]
- Khatoon, N.; Jamal, A.; Ali, M.I. Lignin Peroxidase Isoenzyme: A Novel Approach to Biodegrade the Toxic Synthetic Polymer Waste. Environ. Technol. 2019, 40, 1366–1375. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, L.; Lopes, I.; Magalhães, S.; Cardoso, P.; Venâncio, C. Comparative Biodegradation of Polyethylene Terephthalate by Two White-Rot Fungi: Trametes Versicolor and Pleurotus Sajor Caju. J. Clean. Prod. 2025, 533, 146892. [Google Scholar] [CrossRef]
- Paço, A.; Duarte, K.; Da Costa, J.P.; Santos, P.S.M.; Pereira, R.; Pereira, M.E.; Freitas, A.C.; Duarte, A.C.; Rocha-Santos, T.A.P. Biodegradation of Polyethylene Microplastics by the Marine Fungus Zalerion Maritimum. Sci. Total Environ. 2017, 586, 10–15. [Google Scholar] [CrossRef]
- Kijpornyongpan, T.; Schwartz, A.; Yaguchi, A.; Salvachúa, D. Systems Biology-Guided Understanding of White-Rot Fungi for Biotechnological Applications: A Review. iScience 2022, 25, 104640. [Google Scholar] [CrossRef] [PubMed]
- Okal, E.J.; Heng, G.; Magige, E.A.; Khan, S.; Wu, S.; Ge, Z.; Zhang, T.; Mortimer, P.E.; Xu, J. Insights into the Mechanisms Involved in the Fungal Degradation of Plastics. Ecotoxicol. Environ. Saf. 2023, 262, 115202. [Google Scholar] [CrossRef]
- Masi, A.; Mach, R.L.; Mach-Aigner, A.R. The Pentose Phosphate Pathway in Industrially Relevant Fungi: Crucial Insights for Bioprocessing. Appl. Microbiol. Biotechnol. 2021, 105, 4017–4031. [Google Scholar] [CrossRef]
- Wei, R.; Zimmermann, W. Microbial Enzymes for the Recycling of Recalcitrant Petroleum-based Plastics: How Far Are We? Microb. Biotechnol. 2017, 10, 1308–1322. [Google Scholar] [CrossRef]
- Pringle, A.; Taylor, J.W. The Fitness of Filamentous Fungi. Trends Microbiol. 2002, 10, 474–481. [Google Scholar] [CrossRef]
- Raghukumar, S. Fungi in Coastal and Oceanic Marine Ecosystems; Springer International Publisher: Cham, Switzerland, 2017. [Google Scholar]
- Klein, D.A.; Paschke, M.W. Filamentous Fungi: The Indeterminate Lifestyle and Microbial Ecology. Microb. Ecol. 2004, 47, 224–235. [Google Scholar] [CrossRef] [PubMed]
- Gooday, G.W. The Dynamics of Hyphal Growth. Mycol. Res. 1995, 99, 385–394. [Google Scholar] [CrossRef]
- Ohtaki, S.; Maeda, H.; Takahashi, T.; Yamagata, Y.; Hasegawa, F.; Gomi, K.; Nakajima, T.; Abe, K. Novel Hydrophobic Surface Binding Protein, HsbA, Produced by Aspergillus Oryzae. Appl. Environ. Microbiol. 2006, 72, 2407–2413. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, T.; Maeda, H.; Yoneda, S.; Ohtaki, S.; Yamagata, Y.; Hasegawa, F.; Gomi, K.; Nakajima, T.; Abe, K. The Fungal Hydrophobin RolA Recruits Polyesterase and Laterally Moves on Hydrophobic Surfaces. Mol. Microbiol. 2005, 57, 1780–1796. [Google Scholar] [CrossRef]
- Hyde, K.D.; Xu, J.; Rapior, S.; Jeewon, R.; Lumyong, S.; Niego, A.G.T.; Abeywickrama, P.D.; Aluthmuhandiram, J.V.S.; Brahamanage, R.S.; Brooks, S.; et al. The Amazing Potential of Fungi: 50 Ways We Can Exploit Fungi Industrially. Fungal Divers. 2019, 97, 1–136. [Google Scholar] [CrossRef]
- Zafar, R.; Park, S.Y.; Kim, C.G. Comparison of Surficial Modification of Micro-Sized Polyethylenein between by UV/O3 and UVO Submerged System. Environ. Eng. Res. 2021, 27, 210028. [Google Scholar] [CrossRef]
- Temporiti, M.E.E.; Nicola, L.; Nielsen, E.; Tosi, S. Fungal Enzymes Involved in Plastics Biodegradation. Microorganisms 2022, 10, 1180. [Google Scholar] [CrossRef]
- Sánchez, C. Fungal Potential for the Degradation of Petroleum-Based Polymers: An Overview of Macro- and Microplastics Biodegradation. Biotechnol. Adv. 2020, 40, 107501. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, S.; Hiraga, K.; Takehana, T.; Taniguchi, I.; Yamaji, H.; Maeda, Y.; Toyohara, K.; Miyamoto, K.; Kimura, Y.; Oda, K. A Bacterium That Degrades and Assimilates Poly(Ethylene Terephthalate). Science 2016, 351, 1196–1199. [Google Scholar] [CrossRef] [PubMed]
- Salusjärvi, L.; Havukainen, S.; Koivistoinen, O.; Toivari, M. Biotechnological Production of Glycolic Acid and Ethylene Glycol: Current State and Perspectives. Appl. Microbiol. Biotechnol. 2019, 103, 2525–2535. [Google Scholar] [CrossRef]
- Bertels, L.-K.; Fernández Murillo, L.; Heinisch, J.J. The Pentose Phosphate Pathway in Yeasts–More Than a Poor Cousin of Glycolysis. Biomolecules 2021, 11, 725. [Google Scholar] [CrossRef]
- Wu, F.; Guo, Z.; Cui, K.; Dong, D.; Yang, X.; Li, J.; Wu, Z.; Li, L.; Dai, Y.; Pan, T. Insights into Characteristics of White Rot Fungus during Environmental Plastics Adhesion and Degradation Mechanism of Plastics. J. Hazard. Mater. 2023, 448, 130878. [Google Scholar] [CrossRef]
- Gao, W.; Xu, M.; Zhao, W.; Yang, X.; Xin, F.; Dong, W.; Jia, H.; Wu, X. Microbial Degradation of (Micro)Plastics: Mechanisms, Enhancements, and Future Directions. Fermentation 2024, 10, 441. [Google Scholar] [CrossRef]
- Cai, Z.; Li, M.; Zhu, Z.; Wang, X.; Huang, Y.; Li, T.; Gong, H.; Yan, M. Biological Degradation of Plastics and Microplastics: A Recent Perspective on Associated Mechanisms and Influencing Factors. Microorganisms 2023, 11, 1661. [Google Scholar] [CrossRef]
- Sharma, H.; Neelam, D.K. Understanding Challenges Associated with Plastic and Bacterial Approach toward Plastic Degradation. J. Basic Microbiol. 2023, 63, 292–307. [Google Scholar] [CrossRef]
- Wheeler, K.A.; Hurdman, B.F.; Pitt, J.I. Influence of pH on the Growth of Some Toxigenic Species of Aspergillus, Penicillium and Fusarium. Int. J. Food Microbiol. 1991, 12, 141–149. [Google Scholar] [CrossRef] [PubMed]
- Sterflinger, K. Temperature and NaCl- Tolerance of Rock-Inhabiting Meristematic Fungi. Antonie Leeuwenhoek 1998, 74, 271–281. [Google Scholar] [CrossRef]
- Gkoutselis, G.; Rohrbach, S.; Harjes, J.; Obst, M.; Brachmann, A.; Horn, M.A.; Rambold, G. Microplastics Accumulate Fungal Pathogens in Terrestrial Ecosystems. Sci. Rep. 2021, 11, 13214. [Google Scholar] [CrossRef] [PubMed]
- Daly, P.; Cai, F.; Kubicek, C.P.; Jiang, S.; Grujic, M.; Rahimi, M.J.; Sheteiwy, M.S.; Giles, R.; Riaz, A.; de Vries, R.P.; et al. From Lignocellulose to Plastics: Knowledge Transfer on the Degradation Approaches by Fungi. Biotechnol. Adv. 2021, 50, 107770. [Google Scholar] [CrossRef] [PubMed]
- Singh, D.; Chen, S. The White-Rot Fungus Phanerochaete Chrysosporium: Conditions for the Production of Lignin-Degrading Enzymes. Appl. Microbiol. Biotechnol. 2008, 81, 399–417. [Google Scholar] [CrossRef]
- Wang, B.; Qiu, Y.-L. Phylogenetic Distribution and Evolution of Mycorrhizas in Land Plants. Mycorrhiza 2006, 16, 299–363. [Google Scholar] [CrossRef] [PubMed]
- Brundrett, M.C. Mycorrhizal Associations and Other Means of Nutrition of Vascular Plants: Understanding the Global Diversity of Host Plants by Resolving Conflicting Information and Developing Reliable Means of Diagnosis. Plant Soil 2009, 320, 37–77. [Google Scholar] [CrossRef]
- Dinakarkumar, Y.; Ramakrishnan, G.; Gujjula, K.R.; Vasu, V.; Balamurugan, P.; Murali, G. Fungal Bioremediation: An Overview of the Mechanisms, Applications and Future Perspectives. Environ. Chem. Ecotoxicol. 2024, 6, 293–302. [Google Scholar] [CrossRef]
- Hoorman, J.J.; Islam, R. Understanding Soil Microbes and Nutrient Reycling. Available online: https://ohioline.osu.edu/factsheet/SAG-16 (accessed on 10 December 2025).
- Domeignoz-Horta, L.A.; Shinfuku, M.; Junier, P.; Poirier, S.; Verrecchia, E.; Sebag, D.; DeAngelis, K.M. Direct Evidence for the Role of Microbial Community Composition in the Formation of Soil Organic Matter Composition and Persistence. ISME Commun. 2021, 1, 64. [Google Scholar] [CrossRef]
- Sang, B.-I.; Hori, K.; Unno, H. A Mathematical Description for the Fungal Degradation Process of Biodegradable Plastics. Math. Comput. Simul. 2004, 65, 147–155. [Google Scholar] [CrossRef]


| Species | Plastic | Source | Degradation Rate (%/day) | Reference |
|---|---|---|---|---|
| Alternaria alternata | PE | Coastal plastic | n/a | [61] |
| Alternaria sp. | LDPE | Landfill | 0.33 | [62] |
| Aspergillis tubingensis | PUR | Soil | 1.50 | [63] |
| Aspergillus flavus | PE | Seawater | 0.54 | [64] |
| Aspergillus flavus | LDPE | Soil | 1.07 | [65] |
| Aspergillus fumigatus | PE | Seawater | 0.68 | [64] |
| Aspergillus glaucus | PE | Mangrove soil | 0.95 | [66] |
| Aspergillus japonicas | LDPE | Soil | 1.29 | [65] |
| Aspergillus niger | PE | Seawater | 0.65 | [64] |
| Aspergillus niger | PE | Mangrove soil | 0.58 | [66] |
| Aspergillus niger | PE | Laboratory | 0.53 | [67] |
| Aspergillus niger | PET | Laboratory | 0.10 | [67] |
| Aspergillus niger | PS | Laboratory | 0.13 | [67] |
| Aspergillus nomius | LDPE | Soil | 0.15 | [68] |
| Aspergillus sclerotiorum | PE | Laboratory | 0.20 | [67] |
| Aspergillus sclerotiorum | PET | Laboratory | 0.15 | [67] |
| Aspergillus sclerotiorum | PS | Laboratory | 0.27 | [67] |
| Aspergillus sydowii | PE | Mangrove dumpsite | 0.63 | [69] |
| Aspergillus tereus | PE | Mangrove dumpsite | 0.70 | [69] |
| Aspergillus tereus | PE | Seawater | 0.73 | [64] |
| Auricularia auricula | PS | Laboratory | 0.11 | [70] |
| Candida albicans | PE | Laboratory | 0.17 | [67] |
| Candida albicans | PET | Laboratory | 0.07 | [67] |
| Candida albicans | PS | Laboratory | 0.07 | [67] |
| Fusarium sp. | LDPE | Soil | 1.14 | [65] |
| Ganoderma lucidum | PS | Laboratory | 0.05 | [70] |
| Gloeophyllum trabeum | PS | Laboratory | 2.50 | [71] |
| Mucor sp. | LDPE | Soil | 0.71 | [65] |
| Penicillium simplicissimum | PE | Soil | 0.42 | [72] |
| Penicillium sp. | PE | Seawater | 1.45 | [64] |
| Penicillium sp. | LDPE | Soil | 0.71 | [65] |
| Pestalotiopsis microspora | PUR | Plant stems | n/a | [59] |
| Phanerocheate chrysosporium | PVC | Laboratory | 1.11 | [73] |
| Pleurotus cornucopiae | PS | Laboratory | 0.11 | [70] |
| Pleurotus ostreatus | PS | Laboratory | 0.32 | [70] |
| Pleurotus pulmonarius | PS | Laboratory | 0.15 | [70] |
| Pleurotus sajor caju | PET | Laboratory | 1.45 | [74] |
| Trametes sp. | LDPE | Landfill | 0.32 | [62] |
| Trametes versicolor | PET | Laboratory | 0.06 | [74] |
| Zalerion maritimum | PE | Laboratory | 2.03 | [75] |
| Enzyme | Enzyme Class | Function | Plastics Degraded |
|---|---|---|---|
| Cutinases | Hydrolase | Cleaves cutin | PUR, PET |
| Esterases | Hydrolase | Hydrolyzes ester bonds | PUR |
| Hydroxylases | Oxidoreductase | Adds hydroxyl group | PE |
| Laccases | Oxidoreductase | Oxidizes aromatic compounds | PE |
| Lipases | Hydrolase | Hydrolyzes ester bonds | PUR, PET |
| Oxygenases | Oxidoreductase | Oxidizes aromatic compounds | PE |
| Peroxidases | Oxidoreductase | Oxidizes various substrates | PE |
| Polyesterases | Hydrolase | Hydrolyzes PET | PET |
| Urease | Hydrolase | Hydrolysis of urea | PUR |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
West, R.R.; MacDonald, M.T.; Emenike, C.U. Fungal Degradation of Microplastics—An Environmental Need. Toxics 2026, 14, 70. https://doi.org/10.3390/toxics14010070
West RR, MacDonald MT, Emenike CU. Fungal Degradation of Microplastics—An Environmental Need. Toxics. 2026; 14(1):70. https://doi.org/10.3390/toxics14010070
Chicago/Turabian StyleWest, Rachel R., Mason T. MacDonald, and Chijioke U. Emenike. 2026. "Fungal Degradation of Microplastics—An Environmental Need" Toxics 14, no. 1: 70. https://doi.org/10.3390/toxics14010070
APA StyleWest, R. R., MacDonald, M. T., & Emenike, C. U. (2026). Fungal Degradation of Microplastics—An Environmental Need. Toxics, 14(1), 70. https://doi.org/10.3390/toxics14010070

