Unraveling the Drivers of Continuous Summer Ozone Pollution Episodes in Bozhou, China: Toward Targeted Control Strategies
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Sources
2.2. Ozone Formation Potential
2.3. Positive Matrix Factorization Model
2.4. Observation-Based Model
3. Results and Discussion
3.1. Overview of Ozone Pollution
3.2. Ozone Formation Mechanisms
3.2.1. Ozone Formation Sensitivity
3.2.2. Photochemical Ozone Formation Budget
3.3. Atmospheric Oxidation Capacity and Radical Chemistry
3.4. Sources Apportionment of VOCs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, Q.; Zheng, Y.; Tong, D.; Shao, M.; Wang, S.; Zhang, Y.; Xu, X.; Wang, J.; He, H.; Liu, W.; et al. Drivers of improved PM2.5 air quality in China from 2013 to 2017. Proc. Natl. Acad. Sci. USA 2019, 116, 24463–24469. [Google Scholar] [CrossRef]
- Jiang, X.; Li, G.; Fu, W. Government environmental governance, structural adjustment and air quality: A quasi-natural experiment based on the Three-year Action Plan to Win the Blue Sky Defense War. J. Environ. Manag. 2021, 277, 111470. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Chen, D.; Kwan, M.-P.; Chen, B.; Gao, B.; Zhuang, Y.; Li, R.; Xu, B. The control of anthropogenic emissions contributed to 80% of the decrease in PM2.5 concentrations in Beijing from 2013 to 2017. Atmos. Chem. Phys. 2019, 19, 13519–13533. [Google Scholar] [CrossRef]
- Feng, Y.; Ning, M.; Lei, Y.; Sun, Y.; Liu, W.; Wang, J. Defending blue sky in China: Effectiveness of the “Air Pollution Prevention and Control Action Plan” on air quality improvements from 2013 to 2017. J. Environ. Manag. 2019, 252, 109603. [Google Scholar] [CrossRef] [PubMed]
- MEE. China Ecological and Environmental Bulletin (2019); Ministry of Ecology and Environment of China (MEE): Beijing, China, 2020. [Google Scholar]
- Wu, Z.; Wang, Z.; Zhang, Q.; Lu, K.; Li, X.; Hu, J.; Guo, S.; Xing, J.; Tong, D.; Wang, D.; et al. Strategical research on refined regulations for regional air quality with climate synergy. Chin. J. Eng. Sci. 2022, 24, 164. [Google Scholar] [CrossRef]
- Sicard, P. Ground-level ozone over time: An observation-based global overview. Curr. Opin. Environ. Sci. Health 2021, 19, 100226. [Google Scholar] [CrossRef]
- Vingarzan, R. A review of surface ozone background levels and trends. Atmos. Environ. 2004, 38, 3431–3442. [Google Scholar] [CrossRef]
- Cooper, O.R.; Schultz, M.G.; Schröder, S.; Chang, K.-L.; Gaudel, A.; Benítez, G.C.; Cuevas, E.; Fröhlich, M.; Galbally, I.E.; Molloy, S.; et al. Multi-decadal surface ozone trends at globally distributed remote locations. Elem. Sci. Anthr. 2020, 8, 23. [Google Scholar] [CrossRef]
- Xu, W.; Xu, X.; Lin, M.; Lin, W.; Tarasick, D.; Tang, J.; Ma, J.; Zheng, X. Long-term trends of surface ozone and its influencing factors at the Mt Waliguan GAW station, China—Part 2: The roles of anthropogenic emissions and climate variability. Atmos. Chem. Phys. 2018, 18, 773–798. [Google Scholar] [CrossRef]
- Zhu, B.; Akimoto, H.; Wang, Z.; Sudo, K.; Tang, J.; Uno, I. Why does surface ozone peak in summertime at Waliguan? Geophys. Res. Lett. 2004, 31, L17104. [Google Scholar] [CrossRef]
- Xu, W.; Lin, W.; Xu, X.; Tang, J.; Huang, J.; Wu, H.; Zhang, X. 2016. Long-term trends of surface ozone and its influencing factors at the Mt Waliguan GAW station, China—Part 1: Overall trends and characteristics. Atmos. Chem. Phys. 2016, 16, 6191–6205. [Google Scholar] [CrossRef]
- Liu, N.; Ma, J.; An, X.; Lin, W.; Xu, W.; Xu, X.; Li, D.; Li, R. Source contributions and regional representativeness of surface ozone at atmospheric background stations in China. Trans. Atmos. Sci. 2022, 45, 728–733. [Google Scholar] [CrossRef]
- Xue, L.; Wang, T.; Louie, P.K.K.; Luk, C.W.Y.; Blake, D.R.; Xu, Z. Increasing external effects negate local efforts to control ozone air pollution: A case study of Hong Kong and implications for other Chinese cities. Environ. Sci. Technol. 2014, 48, 10769–10775. [Google Scholar] [CrossRef] [PubMed]
- Hofzumahaus, A.; Rohrer, F.; Lu, K.; Bohn, B.; Brauers, T.; Chang, C.C.; Fuchs, H.; Holland, F.; Kita, K.; Kondo, Y.; et al. Amplified trace gas removal in the troposphere. Science 2009, 324, 1702–1704. [Google Scholar] [CrossRef]
- Liu, J.; Wu, D.; Fan, S.; Liao, Z.H.; Deng, T. Impacts of precursors and meteorological factors on ozone pollution in Pearl River Delta. China Environ. Sci. 2017, 37, 813–820. [Google Scholar] [CrossRef]
- An, J.L.; Zhu, B.; Wang, H.L.; Li, Y.Y.; Lin, X.; Yang, H. Characteristics and source apportionment of VOCs measured in an industrial area of Nanjing, Yangtze River Delta, China. Atmos. Environ. 2014, 97, 206–214. [Google Scholar] [CrossRef]
- Lyu, X.P.; Wang, N.; Guo, H.; Xue, L.K.; Jiang, F.; Zeren, Y.Z.; Cheng, H.R.; Cai, Z.; Han, L.H.; Zhou, Y. Causes of a continuous summertime O3 pollution event in Jinan, a central city in the North China Plain. Atmos. Chem. Phys. 2019, 19, 3025–3042. [Google Scholar] [CrossRef]
- Chen, D.Y.; Zhou, L.; Wang, C.; Liu, H.F.; Qiu, Y.; Shi, G.M.; Song, D.L.; Tan, Q.W.; Yang, F.M. Characteristics of ambient volatile organic compounds during spring O3 pollution episode in Chengdu, China. J. Environ. Sci-China 2022, 114, 115–125. [Google Scholar] [CrossRef]
- Lei, Y.; Wu, K.; Zhang, X.L.; Kang, P.; Du, Y.S.; Yang, F.M.; Fan, J.; Hou, J.W. Role of meteorology-driven regional transport on O3 pollution over the Chengdu Plain, southwestern China. Atmos. Res. 2023, 285, 106619. [Google Scholar] [CrossRef]
- Li, L.; Li, Z.L.; Fang, W.K.; Wang, X.C.; Pu, X.; Wang, L.T.; Yuan, R.; Zhang, W.D.; Zhai, C.Z. Speciated Emission Inventory of VOCs from Industrial Sources and Their Ozone Formation Potential in Chongqing. Environ. Sci. 2022, 43, 1756–1765. [Google Scholar] [CrossRef]
- Luo, L.T.; Zhang, Y.L.; Lin, Y.Q.; Mozaffar, A.; Cao, M.Y. Analysis of Photochemical Characteristics and Sensitivity of Atmospheric Ozone in Nanjing in Summer. Environ. Sci. 2024, 45, 1382–1391. [Google Scholar] [CrossRef]
- Wang, Y.; Guo, H.; Zou, S.C.; Lyu, X.P.; Ling, Z.H.; Cheng, H.R.; Zeren, Y.Z. Surface O3 photochemistry over the South China Sea: Application of a near-explicit chemical mechanism box model. Environ. Pollut. 2018, 234, 155–166. [Google Scholar] [CrossRef] [PubMed]
- Ju, T.; Wu, K.; Zhang, L.; Wang, G.; Yan, Y.; Liu, H.; Li, J.; Chen, X. A characteristic analysis of various air pollutants and their correlation with O3; in the Jiangsu, Shandong, Henan, and Anhui provinces of China. Sustainability 2022, 14, 13737. [Google Scholar] [CrossRef]
- Wei, N.N.; Zhao, W.X.; Yao, Y.C.; Wang, H.R.; Liu, Z.; Xu, X.Z.; Rahman, M.; Zhang, C.H.; Fittschen, C.; Zhang, W.J. Peroxy radical chemistry during ozone photochemical pollution season at a suburban site in the boundary of Jiangsu–Anhui–Shandong–Henan region, China. Sci. Total Environ. 2023, 904, 166355. [Google Scholar] [CrossRef]
- Wu, K.; Wang, X.Z.; Zhang, D.D.; Zhu, H.L.; Yan, Y.X.; Li, F.X.; Wu, Z.H.; Zheng, Z.W.; Gao, Q.K. Evolution characteristics and typical pollution episodes of PM2.5 and O3 complex pollution in Bozhou City from 2017 to 2022. Environ. Sci. 2024, 45, 5715–5728. [Google Scholar] [CrossRef]
- HJ/T 193-2005; Automated Methods for Ambient Air Quality Monitorin. Ministry of Ecology and Environment of China (MEE): Beijing, China, 2005.
- HJ 1010-2018; Specifications and Test Procedures for Ambient Air Quality Continuous Monitoring System with Gas Chromatography for Volatile Organic Compounds. Ministry of Ecology and Environment of China (MEE): Beijing, China, 2018.
- GB 3095-2012; Ambient Air Quality Standards. Ministry of Ecology and Environment of China (MEE): Beijing, China, 2012.
- Atkinson, R.; Arey, J. Atmospheric degradation of volatile organic compounds. Chem. Rev. 2003, 103, 4605–4638. [Google Scholar] [CrossRef]
- Carter, W.P.L. Development of Ozone Reactivity Scales for Volatile Organic Compounds. Air Waste 1994, 44, 881–899. [Google Scholar] [CrossRef]
- Brown, S.G.; Frankel, A.; Hafner, H.R. Source apportionment of VOCs in the Los Angeles area using positive matrix factorization. Atmos. Environ. 2007, 41, 227–237. [Google Scholar] [CrossRef]
- USEPA. Positive Matrix Factorization (PMF) 5.0 Fundamentals and User Guide; USEPA Office of Research and Development: Washington, DC, USA, 2014. [Google Scholar]
- Wolfe, G.M.; Marvin, M.R.; Roberts, S.J.; Travis, K.R.; Liao, J. The framework for 0-D atmospheric modeling (F0AM) v3.1. Geosci. Model. Dev. 2016, 9, 3309–3319. [Google Scholar] [CrossRef]
- Saunders, S.M.; Jenkin, M.E.; Derwent, R.G.; Pilling, M.J. Protocol for the development of the Master Chemical Mechanism, MCM v3 (Part A): Tropospheric degradation of non-aromatic volatile organic compounds. Atmos. Chem. Phys. 2003, 3, 161–180. [Google Scholar] [CrossRef]
- Jenkin, M.E.; Young, J.C.; Rickard, A.R. The MCM v3.3.1 degradation scheme for isoprene. Atmos. Chem. Phys. 2015, 15, 11433–11459. [Google Scholar] [CrossRef]
- Wang, W.T.; Gu, C.; Li, L.M.; Li, X.Q.; Zheng, Z.S.; Geng, C.M.; Wang, X.L.; Yang, W. Photochemical mechanism and control strategy optimization for summertime ozone pollution in Yining City. Environ. Sci. 2024, 45, 668–677. [Google Scholar] [CrossRef]
- Xue, L.K.; Gu, R.R.; Wang, T.; Wang, X.F.; Saunders, S.; Blake, D.; Louie, P.K.K.; Luk, C.W.Y.; Simpson, I.; Xu, Z.; et al. Oxidative capacity and radical chemistry in the polluted atmosphere of Hong Kong and Pearl River Delta region: Analysis of a severe photochemical smog episode. Atmos. Chem. Phys. 2016, 16, 9891–9903. [Google Scholar] [CrossRef]
- Xue, L.K.; Wang, T.; Gao, J.; Ding, A.J.; Zhou, X.H.; Blake, D.R.; Wang, X.F.; Saunders, S.M.; Fan, S.J.; Zuo, H.C.; et al. Ground-level ozone in four Chinese cities: Precursors, regional transport and heterogeneous processes. Atmos. Chem. Phys. 2014, 14, 13175–13188. [Google Scholar] [CrossRef]
- Liu, X.F.; Lyu, X.P.; Wang, Y.; Jiang, F.; Guo, H. Intercomparison of O3 formation and radical chemistry in the past decade at a suburban site in Hong Kong. Atmos. Chem. Phys. 2019, 19, 5127–5145. [Google Scholar] [CrossRef]
- Willmott, C.J. On the Validation of Models. Phys. Geogr. 1981, 2, 184–194. [Google Scholar] [CrossRef]
- Huang, J.P.; Fung, J.C.H.; Lau, A.K.H.; Qin, Y. Numerical simulation and process analysis of typhoon-related ozone episodes in Hong Kong. J. Geophys. Res. Atmos. 2005, 110. [Google Scholar] [CrossRef]
- Hu, B.Y.; Liu, T.T.; Hong, Y.W.; Xu, L.L.; Li, M.G.; Wu, X.; Wang, H.; Chen, J.H.; Chen, J.S. Characteristics of peroxyacetyl nitrate (PAN) in a coastal city of southeastern China: Photochemical mechanism and pollution process. Sci. Total Environ. 2020, 719, 137493. [Google Scholar] [CrossRef]
- Elshorbany, Y.F.; Kurtenbach, R.; Wiesen, P.; Lissi, E.; Rubio, M.; Villena, G.; Gramsch, E.; Rickard, A.R.; Pilling, M.J.; Kleffmann, J. Oxidation capacity of the city air of Santiago, Chile. Atmos. Chem. Phys. 2009, 9, 2257–2273. [Google Scholar] [CrossRef]
- Wang, H.; Lyu, X.; Guo, H.; Wang, Y.; Zou, S.; Ling, Z.; Wang, X.; Jiang, F.; Zeren, Y.; Pan, W.; et al. Ozone pollution around a coastal region of South China Sea: Interaction between marine and continental air. Atmos. Chem. Phys. 2018, 18, 4277–4295. [Google Scholar] [CrossRef]
- Liu, X.F.; Guo, H.; Zeng, L.W.; Lyu, X.P.; Wang, Y.; Zeren, Y.Z.; Yang, J.; Zhang, L.Y.; Zhao, S.Z.; Li, J.; et al. Photochemical ozone pollution in five Chinese megacities in summer 2018. Sci. Total Environ. 2021, 801, 149603. [Google Scholar] [CrossRef] [PubMed]
- Song, S.K.; Shon, Z.H.; Kang, Y.H.; Kim, K.H.; Han, S.B.; Kang, M.S.; Bang, J.H.; Oh, I. Source apportionment of VOCs and their impact on air quality and health in the megacity of Seoul. Environ. Pollut. 2019, 247, 763–774. [Google Scholar] [CrossRef] [PubMed]
- Na, K.; Kim, Y.P. Seasonal characteristics of ambient volatile organic compounds in Seoul, Korea. Atmos. Environ. 2001, 35, 2603–2614. [Google Scholar] [CrossRef]
- Xue, L.K.; Wang, T.; Guo, H.; Blake, D.R.; Tang, J.; Zhang, X.C.; Saunders, S.M.; Wang, W.X. Sources and photochemistry of volatile organic compounds in the remote atmosphere of western China: Results from the Mt. Waliguan Observatory. Atmos. Chem. Phys. 2013, 13, 8551–8567. [Google Scholar] [CrossRef]
- Sun, J.; Shen, Z.X.; Wang, R.N.; Li, G.H.; Zhang, Y.; Zhang, B.; He, K.; Tang, Z.Y.; Xu, H.M.; Qu, L.L.; et al. A comprehensive study on ozone pollution in a megacity in North China Plain during summertime: Observations, source attributions and ozone sensitivity. Environ. Int. 2021, 146, 106279. [Google Scholar] [CrossRef]
- Sun, J.; Shen, Z.X.; Zhang, Y.; Zhang, Z.; Zhang, Q.; Zhang, T.; Niu, X.Y.; Huang, Y.; Cui, L.; Xu, H.M.; et al. Urban VOC profiles, possible sources, and its role in ozone formation for a summer campaign over Xi’an, China. Environ. Sci. Pollut. Res. 2019, 26, 27769–27782. [Google Scholar] [CrossRef]
- Lu, X.B.; Wang, M.; Ding, F.; Yu, Y.Y.; Zhang, Z.H.; Hu, K. Changes in O3-VOCs-NOx Sensitivity and VOCs Sources at an Urban Site of Nanjing Between 2020 and 2021. Environ. Sci. 2023, 44, 1943–1953. [Google Scholar] [CrossRef]
- Jiang, M.Q.; Lu, K.D.; Su, R.; Tan, Z.F.; Wang, H.L.; Li, L.; Fu, Q.Y.; Zhai, C.Z.; Tan, Q.W.; Yue, D.L.; et al. Ozone formation and key VOCs in typical Chinese city clusters. Chin. Sci. Bull. 2018, 63, 1130–1141. [Google Scholar] [CrossRef]
- Wang, M.; Hu, K.; Chen, W.; Shen, X.; Li, W.; Lu, X. Ambient non-methane hydrocarbons (NMHCs) measurements in Baoding, China: Sources and roles in ozone formation. Atmosphere 2020, 11, 1205. [Google Scholar] [CrossRef]
- Lu, H.X.; Lyu, X.P.; Cheng, H.R.; Ling, Z.H.; Guo, H. Overview on the spatial–temporal characteristics of the ozone formation regime in China. Environ. Sci. Process. Impacts 2019, 21, 916–929. [Google Scholar] [CrossRef]
- Han, X.; Zhu, L.Y.; Wang, S.L.; Meng, X.Y.; Zhang, M.G.; Hu, J. Modeling study of impacts on surface ozone of regional transport and emissions reductions over North China Plain in summer 2015. Atmos. Chem. Phys. 2018, 18, 12207–12221. [Google Scholar] [CrossRef]
- Zhang, Y.X.; An, J.L.; Wang, J.X.; Shi, Y.Z.; Liu, J.D.; Liang, J.S. Source analysis of volatile organic compounds in the Nanjing industrial area and evaluation of their contribution to ozone. Environ. Sci. 2018, 39, 502–510. [Google Scholar] [CrossRef]
- Cheng, H.R.; Guo, H.; Wang, X.M.; Saunders, S.M.; Lam, S.H.M.; Jiang, F.; Wang, T.J.; Ding, A.J.; Lee, S.C.; Ho, K.F. On the relationship between ozone and its precursors in the Pearl River Delta: Application of an observation-based model (OBM). Environ. Sci. Pollut. Res. 2010, 17, 547–560. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Xue, L.K.; Brimblecombe, P.; Lam, Y.F.; Li, L.; Zhang, L. Ozone pollution in China: A review of concentrations, meteorological influences, chemical precursors, and effects. Sci. Total Environ. 2017, 575, 1582–1596. [Google Scholar] [CrossRef]
- Gao, D.F.; Zhang, Y.H.; Cao, Y.Q. Process analysis of ozone formation in Guangzhou: Application of observation-based model. Res. Environ. Sci. 2007, 20, 47–51. [Google Scholar] [CrossRef]
- Tan, Z.F.; Lu, K.D.; Jiang, M.Q.; Su, R.; Dong, H.B.; Zeng, L.M.; Xie, S.D.; Tan, Q.W.; Zhang, Y.H. Exploring ozone pollution in Chengdu, southwestern China: A case study from radical chemistry to O3-VOC-NOx sensitivity. Sci. Total Environ. 2018, 636, 775–786. [Google Scholar] [CrossRef]
- Guan, X.Y.; Lu, K.D.; Zhang, N.N.; Li, X.; Ma, X.F.; Yang, X.P.; Dong, H.B.; Chen, S.Y.; Cao, J.; Zeng, L.M.; et al. Analysis of the photochemical characteristics and sensitivity of ozone pollution in Xi’an. Chin. Sci. Bull. 2021, 66, 561–4573. [Google Scholar] [CrossRef]
- Chen, T.S.; Xue, L.K.; Zheng, P.G.; Zhang, Y.N.; Liu, Y.H.; Sun, J.J.; Han, G.X.; Li, H.Y.; Zhang, X.; Li, Y.F.; et al. Volatile organic compounds and ozone air pollution in an oil production region in northern China. Atmos. Chem. Phys. 2020, 20, 7069–7086. [Google Scholar] [CrossRef]
- Sun, X.Y.; Zhao, M.; Shen, H.Q.; Liu, Y.; Du, M.Y.; Zhang, W.J.; Xu, H.Y.; Fan, G.L.; Gong, H.L.; Li, Q.S.; et al. Ozone formation and key VOCs of a continuous summertime O3 pollution event in Ji’nan. Environ. Sci. 2022, 43, 686–695. [Google Scholar] [CrossRef]
- Lu, X.C.; Chen, N.; Wang, Y.H.; Cao, W.X.; Zhu, B.; Yao, T.; Fung, J.C.H.; Lau, A.K.H. Radical budget and ozone chemistry during autumn in the atmosphere of an urban site in central China. J. Geophys. Res. Atmos. 2017, 122, 3672–3685. [Google Scholar] [CrossRef]
- Zhao, Y.Y.; Chen, L.H.; Li, K.W.; Han, L.X.; Zhang, X.; Wu, X.C.; Gao, X.; Azzi, M.; Cen, K.F. Atmospheric ozone chemistry and control strategies in Hangzhou, China: Application of a 0-D box model. Atmos. Res. 2020, 246, 105109. [Google Scholar] [CrossRef]
- Michoud, V.; Kukui, A.; Camredon, M.; Colomb, A.; Borbon, A.; Miet, K.; Aumont, B.; Beekmann, M.; Durand-Jolibois, R.; Perrier, S.; et al. Radical budget analysis in a suburban European site during the MEGAPOLI summer field campaign. Atmos. Chem. Phys. 2012, 12, 11951–11974. [Google Scholar] [CrossRef]
- Mihelcic, D.; Holland, F.; Hofzumahaus, A.; Hoppe, L.; Konrad, S.; Müsgen, P.; Pätz, H.-W.; Schäfer, H.J.; Schmitz, T.; Volz-Thomas, A.; et al. Peroxy radicals during BERLIOZ at Pabstthum: Measurements, radical budgets and ozone production. J. Geophys. Res. Atmos. 2003, 108, 8254. [Google Scholar] [CrossRef]
- Emmerson, K.M.; Carslaw, N.; Carslaw, D.C.; Lee, J.D.; McFiggans, G.; Bloss, W.J.; Gravestock, T.; Heard, D.E.; Hopkins, J.; Ingham, T.; et al. Free radical modelling studies during the UK TORCH Campaign in Summer 2003. Atmos. Chem. Phys. 2007, 7, 167–181. [Google Scholar] [CrossRef]
- Anderson, D.C.; Pavelec, J.; Daube, C.; Herndon, S.C.; Knighton, W.B.; Lerner, B.M.; Roscioli, J.R.; Yacovitch, T.I.; Wood, E.C. Characterization of ozone production in San Antonio, Texas, using measurements of total peroxy radicals. Atmos. Chem. Phys. 2019, 19, 2845–2860. [Google Scholar] [CrossRef]
- Tan, Z.F.; Lu, K.D.; Hofzumahaus, A.; Fuchs, H.; Bohn, B.; Holland, F.; Liu, Y.H.; Rohrer, F.; Shao, M.; Sun, K.; et al. Experimental budgets of OH, HO2, and RO2 radicals and implications for ozone formation in the Pearl River Delta in China 2014. Atmos. Chem. Phys. 2019, 19, 7129–7150. [Google Scholar] [CrossRef]
- Rohrer, F.; Berresheim, H. Strong correlation between levels of tropospheric hydroxyl radicals and solar ultraviolet radiation. Nature 2006, 442, 184–187. [Google Scholar] [CrossRef]
- Ma, W.; Feng, Z.; Zhan, J.; Liu, Y.; Liu, P.; Liu, C.; Ma, Q.; Yang, K.; Wang, Y.; He, H.; et al. Influence of photochemical loss of volatile organic compounds on understanding ozone formation mechanism. Atmos. Chem. Phys. 2022, 22, 4841–4851. [Google Scholar] [CrossRef]
- Jenkin, M.E.; Valorso, R.; Aumont, B.; Rickard, A.R. Estimation of rate coefficients and branching ratios for reactions of organic peroxy radicals for use in automated mechanism construction. Atmos. Chem. Phys. 2019, 19, 7691–7717. [Google Scholar] [CrossRef]
- Cho, C.M.; Fuchs, H.; Hofzumahaus, A.; Holland, F.; Bloss, W.J.; Bohn, B.; Dorn, H.P.; Glowania, M.; Hohaus, T.; Liu, L.; et al. Experimental chemical budgets of OH, HO2, and RO2 radicals in rural air in western Germany during the JULIAC campaign 2019. Atmos. Chem. Phys. 2023, 23, 2003–2033. [Google Scholar] [CrossRef]
- Whalley, L.K.; Furneaux, K.L.; Goddard, A.; Lee, J.D.; Mahajan, A.; Oetjen, H.; Read, K.A.; Kaaden, N.; Carpenter, L.J.; Lewis, A.C.; et al. The chemistry of OH and HO2 radicals in the boundary layer over the tropical Atlantic Ocean. Atmos. Chem. Phys. 2010, 10, 1555–1576. [Google Scholar] [CrossRef]
- Zhang, K.; Huang, L.; Li, Q.; Huo, J.T.; Duan, Y.S.; Wang, Y.H.; Yaluk, E.; Wang, Y.J.; Fu, Q.Y.; Li, L. Explicit modeling of isoprene chemical processing in polluted air masses in suburban areas of the Yangtze River Delta region: Radical cycling and formation of ozone and formaldehyde. Atmos. Chem. Phys. 2021, 21, 5905–5917. [Google Scholar] [CrossRef]
- Liu, T.T.; Hong, Y.W.; Li, M.R.; Xu, L.L.; Chen, J.S.; Bian, Y.H.; Yang, C.; Dan, Y.B.; Zhang, Y.N.; Xue, L.K.; et al. Atmospheric oxidation capacity and ozone pollution mechanism in a coastal city of southeastern China: Analysis of a typical photochemical episode by an observation-based model. Atmos. Chem. Phys. 2022, 22, 2173–2190. [Google Scholar] [CrossRef]
- Civan, M.Y.; Elbir, T.; Seyfioglu, R.; Kuntasal, Ö.O.; Bayram, A.; Doğan, G.; Yurdakul, S.; Andiç, Ö.; Müezzinoğlu, A.; Sofuoglu, S.C.; et al. Spatial and temporal variations in atmospheric VOCs, NO2, SO2, and O3 concentrations at a heavily industrialized region in Western Turkey, and assessment of the carcinogenic risk levels of benzene. Atmos. Environ. 2015, 103, 102–113. [Google Scholar] [CrossRef]
- Chan, L.Y.; Chu, K.W.; Zou, S.C.; Chan, C.Y.; Wang, X.M.; Barletta, B.; Blake, D.R.; Guo, H.; Tsai, W.Y. Characteristics of nonmethane hydrocarbons (NMHCs) in industrial, industrial-urban, and industrial-suburban atmospheres of the Pearl River Delta (PRD) region of south China. J. Geophys. Res. Atmos. 2006, 111, 2005JD006481. [Google Scholar] [CrossRef]
- Duan, J.C.; Tan, J.H.; Yang, L.; Wu, S.; Hao, J.M. Concentration, sources and ozone formation potential of volatile organic compounds (VOCs) during ozone episode in Beijing. Atmos. Res. 2008, 88, 25–35. [Google Scholar] [CrossRef]
- Barletta, B.; Meinardi, S.; Rowland, F.S.; Chan, C.Y.; Wang, X.M.; Zou, S.C.; Chan, L.Y.; Blake, D.R. Volatile organic compounds in 43 Chinese cities. Atmos. Environ. 2005, 39, 5979–5990. [Google Scholar] [CrossRef]
- Kesselmeier, J.; Staudt, M. Biogenic Volatile Organic Compounds (VOC): An Overview on Emission, Physiology and Ecology. J. Atmos. Chem. 1999, 33, 23–88. [Google Scholar] [CrossRef]
- Guo, H. Source apportionment of volatile organic compounds in Hong Kong homes. Build. Environ. 2011, 46, 2280–2286. [Google Scholar] [CrossRef]
- Zheng, J.Y.; Yu, Y.F.; Mo, Z.W.; Zhang, Z.; Wang, X.M.; Yin, S.S.; Peng, K.; Yang, Y.; Feng, X.Q.; Cai, H.H. Industrial sector-based volatile organic compound (VOC) source profiles measured in manufacturing facilities in the Pearl River Delta, China. Sci. Total Environ. 2013, 456–457, 127–136. [Google Scholar] [CrossRef]
- McCarthy, M.C.; Aklilu, Y.A.; Brown, S.G.; Lyder, D.A. Source apportionment of volatile organic compounds measured in Edmonton, Alberta. Atmos. Environ. 2013, 81, 504–516. [Google Scholar] [CrossRef]
- Liu, Y.; Shao, M.; Fu, L.L.; Lu, S.H.; Zeng, L.M.; Tang, D.G. Source profiles of volatile organic compounds (VOCs) measured in China: Part I. Atmos. Environ. 2008, 42, 6247–6260. [Google Scholar] [CrossRef]
- Guo, H.; Wang, T.; Louie, P.K.K. Source apportionment of ambient non-methane hydrocarbons in Hong Kong: Application of a principal component analysis/absolute principal component scores (PCA/APCS) receptor model. Environ. Pollut. 2004, 129, 489–498. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.W.G.; Yao, Y.C.; Tsai, J.H.; Hsu, Y.C.; Chang, L.P.; Chang, K.H. Source impacts by volatile organic compounds in an industrial city of southern Taiwan. Sci. Total Environ. 2008, 398, 154–163. [Google Scholar] [CrossRef]
- Juráň, S.; Karl, T.; Ofori-Amanfo, K.K.; Šigut, L.; Zavadilová, I.; Grace, J.; Urban, O. Drought shifts ozone deposition pathways in spruce forest from stomatal to non-stomatal flux. Environ. Pollut. 2025, 372, 126081. [Google Scholar] [CrossRef]
- Zheng, J.Y.; Shao, M.; Che, W.W.; Zhang, L.J.; Zhong, L.J.; Zhang, Y.H.; Streets, D.G. Speciated VOC emission inventory and spatial patterns of ozone formation potential in the Pearl River Delta, China. Environ. Sci. Technol. 2009, 43, 8580–8586. [Google Scholar] [CrossRef]
- Liu, Y.; Shao, M.; Lu, S.; Chang, C.C.; Wang, J.L.; Chen, G. Volatile Organic Compound (VOC) measurements in the Pearl River Delta (PRD) region, China. Atmos. Chem. Phys. 2008, 8, 1531–1545. [Google Scholar] [CrossRef]
- Yu, D.; Tan, Z.F.; Lu, K.D.; Ma, X.F.; Li, X.; Chen, S.Y.; Zhu, B.; Lin, L.L.; Li, Y.T.; Qiu, P.P.; et al. An explicit study of local ozone budget and NOx-VOCs sensitivity in Shenzhen China. Atmos. Environ. 2020, 224, 117304. [Google Scholar] [CrossRef]
- Tan, Z.F.; Lu, K.D.; Jiang, M.Q.; Su, R.; Wang, H.L.; Lou, S.R.; Fu, Q.Y.; Zhai, C.Z.; Tan, Q.W.; Yue, D.L.; et al. Daytime atmospheric oxidation capacity in four Chinese megacities during the photochemically polluted season: A case study based on box model simulation. Atmos. Chem. Phys. 2019, 19, 3493–3513. [Google Scholar] [CrossRef]
- Ainsworth, E.A.; Yendrek, C.R.; Sitch, S.; Collins, W.J.; Emberson, L.D. The Effects of Tropospheric Ozone on Net Primary Productivity and Implications for Climate Change. Annu. Rev. Plant Biol. 2012, 63, 637–661. [Google Scholar] [CrossRef]
- Crutzen, P.J. Photochemical reactions initiated by and influencing ozone in unpolluted tropospheric air. Tellus A Dyn. Meteorol. Oceanogr. 1974, 26, 47. [Google Scholar] [CrossRef]
- Li, K.W.; Wang, X.H.; Li, L.M.; Wang, J.; Liu, Y.Y.; Cheng, X.; Xu, B.; Wang, X.Y.; Yan, P.; Li, S.J.; et al. Large variability of O3-precursor relationship during severe ozone polluted period in an industry-driven cluster city (Zibo) of North China Plain. J. Clean. Prod. 2021, 316, 128252. [Google Scholar] [CrossRef]
- Li, L.M.; Zheng, Z.S.; Xu, B.; Wang, X.H.; Bai, Z.P.; Yang, W.; Geng, C.M.; Li, K.W. Investigation of O3-precursor relationship nearby oil fields of Shandong, China. Atmos. Environ. 2023, 294, 119471. [Google Scholar] [CrossRef]
- Steinfeld, J.I. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. Environ. Sci. Policy Sustain. Dev. 1998, 40, 26. [Google Scholar] [CrossRef]
- Tang, X.Y.; Zhang, Y.H.; Shao, M. Atmospheric Environmental Chemistry; Higher Education Press: Beijing, China, 2006. [Google Scholar]
- Zheng, Z.S.; Dou, J.P.; Zhang, G.T.; Li, L.M.; Xu, B.; Yang, W.; Bai, Z.P. Photochemical Mechanism and Control Strategy Optimization for Summertime Ozone Pollution in an Industrial City in the North China Plain. Environ. Sci. 2023, 44, 1821–1829. [Google Scholar] [CrossRef]









| Region | Site | Type | O3 Formation Regime | Dominant VOCs | References |
|---|---|---|---|---|---|
| Beijing-Tianjin-Hebei Province and surrounding areas | Beijin | Urban | VOC-limited | Alkenes | [53] |
| Jinan | Urban | VOC-limited | Alkenes | ||
| Baoding | Urban | VOC-limited | Aromatics | [54] | |
| Qingdao | Rural | Transition | Alkenes | [55] | |
| Yucheng | Rural | NOx-limited | BVOCs | ||
| Wangdu | Suburban | Transition | Alkenes | [56] | |
| Yangtze River Delta region | Nanjing | Industrial | VOC-limited | Alkenes, Aromatics | [57] |
| Shanghai | Urban | VOC-limited | Aromatics | [53] | |
| Rural | VOC-limited | Aromatics | |||
| Pudong | Urban | VOC-limited | Alkenes | [55] | |
| Xuzhou | Urban | VOC-limited | —— | ||
| Yancheng | Urban | VOC-limited | —— | ||
| Nantong | Urban | Transition | —— | ||
| Dianshan Lake | Suburban | Transition | —— | ||
| Pearl River Delta region | Tung chung | Suburban | VOC-limited | —— | [58] |
| Shenzhen | Urban | VOC-limited | Aromatics | [59] | |
| Heshan | Rural | VOC-limited | Aromatics | ||
| Guangzhou | Urban | VOC-limited | —— | [60] | |
| Huadu | Suburban | NOx-limited | —— | ||
| Xinken | Suburban | NOx-limited | —— | ||
| Sichuan and Chongqing area | Chengdu | Urban | VOC-limited | Aromatics, Alkenes | [53] |
| Shuangliu | Urban | VOC-limited | Aromatics | ||
| Pengzhou | Industrial | VOC-limited | Alkenes | ||
| Jinyun Mountain | Suburban | NOx-limited | Alkenes | [61] | |
| Fenhe–Weihe River Plain | Xi’an | Urban | VOC-limited | —— | [62] |
| Qinling Mountains | Suburban | NOx-limited | —— | ||
| Weinan | Urban | Transition | Alkenes | [55] | |
| The junction of Jiangsu-Anhui-Shandong-Henan | Huaibei | Suburban | NOx-limited | OVOCs, Alkanes | [25] |
| Dongying | Industrial | NOx-limited | Alkenes, OVOCs | [63] | |
| Rural | NOx-limited | Alkenes | [64] | ||
| Bozhou | Urban | NOx-limited | OVOCs, Alkenes | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Wu, K.; Wang, X.; Zhang, D.; Li, H.; Bi, F.; Wu, Z.; Li, F.; Chu, W.; An, C. Unraveling the Drivers of Continuous Summer Ozone Pollution Episodes in Bozhou, China: Toward Targeted Control Strategies. Toxics 2026, 14, 37. https://doi.org/10.3390/toxics14010037
Wu K, Wang X, Zhang D, Li H, Bi F, Wu Z, Li F, Chu W, An C. Unraveling the Drivers of Continuous Summer Ozone Pollution Episodes in Bozhou, China: Toward Targeted Control Strategies. Toxics. 2026; 14(1):37. https://doi.org/10.3390/toxics14010037
Chicago/Turabian StyleWu, Ke, Xuezhong Wang, Dandan Zhang, Hong Li, Fang Bi, Zhenhai Wu, Fanxiu Li, Wanghui Chu, and Cong An. 2026. "Unraveling the Drivers of Continuous Summer Ozone Pollution Episodes in Bozhou, China: Toward Targeted Control Strategies" Toxics 14, no. 1: 37. https://doi.org/10.3390/toxics14010037
APA StyleWu, K., Wang, X., Zhang, D., Li, H., Bi, F., Wu, Z., Li, F., Chu, W., & An, C. (2026). Unraveling the Drivers of Continuous Summer Ozone Pollution Episodes in Bozhou, China: Toward Targeted Control Strategies. Toxics, 14(1), 37. https://doi.org/10.3390/toxics14010037

