Insights into How Degradable Microplastics Enhance Cu2+ Mobility in Soil Through Interfacial Interaction
Abstract
1. Introduction
2. Materials and Methods
2.1. DMPs and Reagents
2.2. Soil Collection and Incubation
2.3. Adsorption and Desorption Experiments
2.3.1. Adsorption Kinetics Experiment
2.3.2. Desorption Kinetics Experiment
2.3.3. Isotherm Adsorption Experiment
2.4. Characterization and Determination
2.5. Quality Control and Data Analysis
3. Results and Discussion
3.1. Adsorption Kinetics Experiment Analysis
3.1.1. Effect of Contact Time on the Adsorption Process
3.1.2. Adsorption Kinetic Model Fitting
3.2. Desorption Kinetics Experiment Analysis
3.2.1. Effect of Contact Time on the Desorption Process
3.2.2. Desorption Kinetic Model Fitting
3.3. Isotherm Adsorption Experiment Analysis
3.3.1. Effect of Initial Concentration on the Adsorption Process
3.3.2. Isothermal Adsorption Model Fitting
3.4. Mechanisms of Enhanced Cu2+ Mobility in Soil by DMPs
3.4.1. pHPZC of Soil and DMPs
3.4.2. SEM Images of the Surface Microstructures of Soil and DMPs
3.4.3. BET Characterization of Soil and DMPs
3.4.4. FTIR Characterizations of Soil and DMPs
3.4.5. XPS Characterizations of Soil and DMPs
4. Limitations and Future Directions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BET | Bet surface area and porosity | PE | Polyethylene |
DMPs | Degradable microplastics | PFO | Pseudo-first order |
D-R | Dubinin–Radushkevich | PHA | Polyhydroxyalkanoates |
FT-IR | Fourier transform infrared | pHpzc | Point of zero charge |
ICP-OES | Inductively coupled plasma-optical emission spectrometry | PLA | Polylactic acid |
ID | Intraparticle diffusion | PP | Polypropylene |
LDPE | Low-density polyethylene | PS | Polystyrene |
MPs | Microplastics | PSO | Pseudo-second order |
NDMPs | Non-degradable microplastics | PVC | Polyvinyl chloride |
PBAT | Poly (butylene adipate-co-terephthalate) | SEM | Scanning electron microscopy |
PBS | Poly (butylene succinate) | XPS | X-ray photoelectron spectroscopy |
References
- Qin, M.; Chen, C.Y.; Song, B.; Shen, M.; Cao, W.; Yang, H.; Zeng, G.; Gong, J. A review of biodegradable plastics to biodegradable microplastics: Another ecological threat to soil environments? J. Clean. Prod. 2021, 312, 127816. [Google Scholar] [CrossRef]
- Sun, Y.z.; Duan, C.x.; Cao, N.; Ding, C.; Huang, Y.; Wang, J. Biodegradable and conventional microplastics exhibit distinct microbiome, functionality, and metabolome changes in soil. J. Hazard. Mater. 2022, 424, 127282. [Google Scholar] [CrossRef]
- Viera, J.S.C.; Marques, M.R.C.; Nazareth, M.C.; Jimenez, P.C.; Sanz-Lázaro, C.; Castro, Í.B. Are biodegradable plastics an environmental rip off? J. Hazard. Mater. 2021, 416, 125957. [Google Scholar] [CrossRef]
- Campanale, C.; Galafassi, S.; Di Pippo, F.; Pojar, I.; Massarelli, C.; Uricchio, V.F. A critical review of biodegradable plastic mulch films in agriculture: Definitions, scientific background and potential impacts. TrAC Trends Anal. Chem. 2024, 170, 117391. [Google Scholar] [CrossRef]
- Chah, C.N.; Banerjee, A.; Gadi, V.K.; Sekharan, S.; Katiyar, V. A systematic review on bioplastic-soil interaction: Exploring the effects of residual bioplastics on the soil geoenvironment. Sci. Total Environ. 2022, 851, 158311. [Google Scholar] [CrossRef]
- Wang, J.; Jia, M.; Zhang, L.; Li, X.; Zhang, X.; Wang, Z. Biodegradable microplastics pose greater risks than conventional microplastics to soil properties, microbial community and plant growth, especially under flooded conditions. Sci. Total Environ. 2024, 931, 172949. [Google Scholar] [CrossRef]
- Zhang, Y.; Ma, J.; Song, Y.Q.; Li, G.; O’Connor, P. Stronger deterministic processes shape the plastisphere microbiota of biodegradable microplastics compared to non-biodegradable microplastics in farmland soil. Appl. Soil Ecol. 2024, 196, 105312. [Google Scholar] [CrossRef]
- Gong, W.W.; Jiang, M.Y.; Han, P.; Liang, G.; Zhang, T.; Liu, G. Comparative analysis on the sorption kinetics and isotherms of fipronil on nondegradable and biodegradable microplastics. Environ. Pollut. 2019, 254, 112927. [Google Scholar] [CrossRef] [PubMed]
- Song, T.j.; Liu, J.x.; Han, S.q.; Li, Y.; Xu, T.; Xi, J.; Hou, L.; Lin, Y. Effect of conventional and biodegradable microplastics on the soil-soybean system: A perspective on rhizosphere microbial community and soil element cycling. Environ. Int. 2024, 190, 108781. [Google Scholar] [CrossRef]
- Yan, K.; Wang, H.Z.; Lan, Z.; Zhou, J.; Fu, H.; Wu, L.; Xu, J. Heavy metal pollution in the soil of contaminated sites in China: Research status and pollution assessment over the past two decades. J. Clean. Prod. 2022, 373, 133780. [Google Scholar] [CrossRef]
- Rehman, M.; Liu, L.; Wang, Q.; Saleem, M.H.; Bashir, S.; Ullah, S.; Peng, D. Copper environmental toxicology, recent advances, and future outlook: A review. Environ. Sci. Pollut. Res. Int. 2019, 26, 18003–18016. [Google Scholar] [CrossRef]
- Cao, Y.X.; Ma, X.Y.; Chen, N.; Chen, T.; Zhao, M.; Li, H.; Song, Y.; Zhou, J.; Yang, J. Polypropylene microplastics affect the distribution and bioavailability of cadmium by changing soil components during soil aging. J. Hazard. Mater. 2023, 443, 130079. [Google Scholar] [CrossRef]
- Khan, M.A.; Khan, S.; Ding, X.D.; Khan, A.; Alam, M. The effects of biochar and rice husk on adsorption and desorption of cadmium on to soils with different water conditions (upland and saturated). Chemosphere 2018, 193, 1120–1126. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Zhao, M.; Ma, X.; Song, Y.; Zuo, S.; Li, H.; Deng, W. A critical review on the interactions of microplastics with heavy metals: Mechanism and their combined effect on organisms and humans. Sci. Total Environ. 2021, 788, 147620. [Google Scholar] [CrossRef] [PubMed]
- Li, C.H.; Sun, H.R.; Shi, Y.L.; Zhao, Z.; Zhang, Z.; Zhao, P.; Gao, Q.; Zhang, X.; Chen, B.; Li, Y.; et al. Polyethylene and poly (butyleneadipate-co-terephthalate)-based biodegradable microplastics modulate the bioavailability and speciation of Cd and As in soil: Insights into transformation mechanisms. J. Hazard. Mater. 2023, 445, 130638. [Google Scholar] [CrossRef]
- Wang, F.L.; Wang, X.X.; Song, N.N. Polyethylene microplastics increase cadmium uptake in lettuce (Lactuca sativa L.) by altering the soil microenvironment. Sci. Total Environ. 2021, 784, 147133. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.J.; Li, F.; Xiao, H.C.; Liu, B.; Feng, L.; Yu, P.; Meng, C.; Zhao, H.; Feng, N.; Li, Y.; et al. Polyethylene and polypropylene microplastics reduce chemisorption of cadmium in paddy soil and increase its bioaccessibility and bioavailability. J. Hazard. Mater. 2023, 449, 130994. [Google Scholar] [CrossRef]
- Chen, X.C.; Wang, A.; Wang, J.J.; Zhang, Z.; Yu, J.; Yan, Y.; Zhang, J.; Niu, J.; Cui, X.; Liu, X. Influences of coexisting aged polystyrene microplastics on the ecological and health risks of cadmium in soils: A leachability and oral bioaccessibility based study. J. Hazard. Mater. 2024, 469, 133884. [Google Scholar] [CrossRef]
- Tang, S.; Sun, P.p.; Qu, G.j.; Tian, Y.; Liu, J.; Pervez, M.N.; Li, X.; Cao, C.; Zhao, Y. Photo-aged non-biodegradable and biodegradable mulching film microplastics alter the interfacial behaviors between agricultural soil and inorganic arsenic. J. Hazard. Mater. 2023, 455, 131552. [Google Scholar] [CrossRef]
- Feng, X.Y.; Wang, Q.L.; Sun, Y.H.; Zhang, S.; Wang, F. Microplastics change soil properties, heavy metal availability and bacterial community in a Pb-Zn-contaminated soil. J. Hazard. Mater. 2022, 424, 127364. [Google Scholar] [CrossRef]
- de Souza Machado, A.A.; Kloas, W.; Zarfl, C.; Hempel, S.; Rillig, M.C. Microplastics as an emerging threat to terrestrial ecosystems. Glob. Chang. Biol. 2018, 24, 1405–1416. [Google Scholar] [CrossRef] [PubMed]
- Ng, E.L.; Huerta Lwanga, E.; Eldridge, S.M.; Johnston, P.; Hu, H.W.; Geissen, V.; Chen, D. An overview of microplastic and nanoplastic pollution in agroecosystems. Sci. Total Environ. 2018, 627, 1377–1388. [Google Scholar] [CrossRef] [PubMed]
- Yao, J.J.; Deng, Y.; Li, D.S.; Li, H.; Yang, H.Y. Role of magnetic substances in adsorption removal of ciprofloxacin by gamma ferric oxide and ferrites co-modified carbon nanotubes. J. Colloid Interface Sci. 2023, 638, 872–881. [Google Scholar] [CrossRef]
- Yao, J.J.; Wen, J.Y.; Li, H.P.; Yang, Y. Surface functional groups determine adsorption of pharmaceuticals and personal care products on polypropylene microplastics. J. Hazard. Mater. 2022, 423, 127131. [Google Scholar] [CrossRef] [PubMed]
- Peng, H.J.; Lin, Z.H.; Lu, D.L.; Yu, B.; Li, H.; Yao, J. How do polystyrene microplastics affect the adsorption of copper in soil? Sci. Total Environ. 2024, 924, 171545. [Google Scholar] [CrossRef]
- Al-Ghouti, M.A.; Da’ana, D.A. Guidelines for the use and interpretation of adsorption isotherm models: A review. J. Hazard. Mater. 2020, 393, 122383. [Google Scholar] [CrossRef]
- Weber, T.W.; Chakravorti, R.K. Pore and solid diffusion models for fixed-bed adsorbers. AIChE J. 1974, 20, 228–238. [Google Scholar] [CrossRef]
- Adedeji, O.M.; Jahan, K. Removal of pollutants from aqueous product of Co-hydrothermal liquefaction: Adsorption and isotherm studies. Chemosphere 2023, 321, 138165. [Google Scholar] [CrossRef]
- Yao, J.J.; Deng, Y.; Pan, S.Y.; Korna, R.; Wen, J.; Yuan, N.; Wang, K.; Li, H.; Yang, Y. The difference in the adsorption mechanisms of magnetic ferrites modified carbon nanotubes. J. Hazard. Mater. 2021, 415, 125551. [Google Scholar] [CrossRef]
- Thamer, B.M.; Shaker, A.A.; Abdul Hameed, M.M.; Al-Enizi, A.M. Highly selective and reusable nanoadsorbent based on expansive clay-incorporated polymeric nanofibers for cationic dye adsorption in single and binary systems. J. Water Process Eng. 2023, 54, 103918. [Google Scholar] [CrossRef]
- Wang, F.; Yang, W.; Cheng, P.; Zhang, S.; Zhang, S.; Jiao, W.; Sun, Y. Adsorption characteristics of cadmium onto microplastics from aqueous solutions. Chemosphere 2019, 235, 1073–1080. [Google Scholar] [CrossRef]
- Rudzinski, W.; Plazinski, W. Theoretical description of the kinetics of solute adsorption at heterogeneous solid/solution interfaces: On the possibility of distinguishing between the diffusional and the surface reaction kinetics models. Appl. Surf. Sci. 2007, 253, 5827–5840. [Google Scholar] [CrossRef]
- Bradl, H.B. Adsorption of heavy metal ions on soils and soils constituents. J. Colloid Interface Sci. 2004, 277, 1–18. [Google Scholar] [CrossRef]
- Zhang, S.W.; Han, B.; Sun, Y.H.; Wang, F. Microplastics influence the adsorption and desorption characteristics of Cd in an agricultural soil. J. Hazard. Mater. 2020, 388, 121775. [Google Scholar] [CrossRef]
- Chen, C.C.; Zhu, X.S.; Xu, H.; Chen, F.; Ma, J.; Pan, K. Copper Adsorption to Microplastics and Natural Particles in Seawater: A Comparison of Kinetics, Isotherms, and Bioavailability. Environ. Sci. Technol. 2021, 55, 13923–13931. [Google Scholar] [CrossRef]
- Zhang, S.; Yu, J.; Wang, J.; Yang, H.; Fu, Y.; Fu, M.; Li, S.; Zhao, H.; Wu, Y. A new perspective on understanding soil microplastics: Composition, influencing factors of the soil plastisphere, and its impacts on the environmental behavior of co-existing contaminants. Chem. Eng. J. 2025, 518, 164640. [Google Scholar] [CrossRef]
- Torres, F.G.; Dioses-Salinas, D.C.; Pizarro-Ortega, C.I.; De-la-Torre, G.E. Sorption of chemical contaminants on degradable and non-degradable microplastics: Recent progress and research trends. Sci. Total Environ. 2021, 757, 143875. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.L.; Guo, X. Adsorption kinetic models: Physical meanings, applications, and solving methods. J. Hazard. Mater. 2020, 390, 122156. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.F.; Yang, Y.Y.; Liu, G.H.; He, G.; Liu, W. Adsorption mechanism of cadmium on microplastics and their desorption behavior in sediment and gut environments: The roles of water pH, lead ions, natural organic matter and phenanthrene. Water Res. 2020, 184, 116209. [Google Scholar] [CrossRef]
- Abat, M.; McLaughlin, M.J.; Kirby, J.K.; Stacey, S.P. Adsorption and desorption of copper and zinc in tropical peat soils of Sarawak, Malaysia. Geoderma 2012, 175–176, 58–63. [Google Scholar] [CrossRef]
- Gao, L.; Fu, D.D.; Zhao, J.J.; Wu, W.; Wang, Z.; Su, Y.; Peng, L. Microplastics aged in various environmental media exhibited strong sorption to heavy metals in seawater. Mar. Pollut. Bull. 2021, 169, 112480. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, C.R.; Huang, X.Y.; Zhang, Q.; Wang, T.; Guo, X. Guideline for modeling solid-liquid adsorption: Kinetics, isotherm, fixed bed, and thermodynamics. Chemosphere 2024, 349, 140736. [Google Scholar] [CrossRef]
- Huang, W.; Zhang, J.; Zhang, Z.R.; Gao, H.; Xu, W.; Xia, X. Insights into adsorption behavior and mechanism of Cu(II) onto biodegradable and conventional microplastics: Effect of aging process and environmental factors. Environ. Pollut. 2024, 342, 123061. [Google Scholar] [CrossRef]
- Gao, X.; Hassan, I.; Peng, Y.T.; Huo, S.; Ling, L. Behaviors and influencing factors of the heavy metals adsorption onto microplastics: A review. J. Clean. Prod. 2021, 319, 128777. [Google Scholar] [CrossRef]
- Yu, L.; Luo, Y.M. The adsorption mechanism of anionic and cationic dyes by Jerusalem artichoke stalk-based mesoporous activated carbon. J. Environ. Chem. Eng. 2014, 2, 220–229. [Google Scholar] [CrossRef]
- Shen, Q.; Yang, Q.Y.; Ren, B.L.; Zhang, M. Adsorption and desorption characteristics of Cd, Cu and Pb in different soil aggregates through soil profile under single and ternary systems. Pedosphere 2025, 35, 516–525. [Google Scholar] [CrossRef]
- Hashem, M.A.; Nayeen, J.; Tanvir Hossain, M.; Mukimujjaman Miem, M. Chromium adsorption on thermally activated adsorbent equipped from waste biomass. Waste Manag. Bull. 2024, 2, 239–249. [Google Scholar] [CrossRef]
- Chen, C.; Wei, F.; Ye, L.; Wang, Y.; Long, L.; Xu, C.; Xiao, Y.; Wu, J.; Xu, M.; He, J.; et al. Adsorption of Cu2+ by UV aged polystyrene in aqueous solution. Ecotoxicol. Environ. Saf. 2022, 232, 113292. [Google Scholar] [CrossRef]
- Cai, Y.M.; Lv, J.G.; Feng, J.M. Spectral Characterization of Four Kinds of Biodegradable Plastics: Poly (Lactic Acid), Poly (Butylenes Adipate-Co-Terephthalate), Poly (Hydroxybutyrate-Co-Hydroxyvalerate) and Poly (Butylenes Succinate) with FTIR and Raman Spectroscopy. J. Polym. Environ. 2013, 21, 108–114. [Google Scholar] [CrossRef]
- de Matos Costa, A.R.; Crocitti, A.; Hecker de Carvalho, L.; Carroccio, S.C.; Cerruti, P.; Santagata, G. Properties of Biodegradable Films Based on Poly(butylene Succinate) (PBS) and Poly(butylene Adipate-co-Terephthalate) (PBAT) Blends. Polymers 2020, 12, 2317. [Google Scholar] [CrossRef]
- Muthuraj, R.; Misra, M.; Mohanty, A.K. Biodegradable biocomposites from poly(butylene adipate-co-terephthalate) and miscanthus: Preparation, compatibilization, and performance evaluation. J. Appl. Polym. Sci. 2017, 134, 45448. [Google Scholar] [CrossRef]
- Weng, Y.X.; Jin, Y.J.; Meng, Q.Y.; Wang, L.; Zhang, M.; Wang, Y. Biodegradation behavior of poly(butylene adipate-co-terephthalate) (PBAT), poly(lactic acid) (PLA), and their blend under soil conditions. Polym. Test. 2013, 32, 918–926. [Google Scholar] [CrossRef]
- Rebelo, R.C.; Gonçalves, L.P.C.; Fonseca, A.C.; Fonseca, J.; Rola, M.; Coelho, J.F.J.; Rola, F.; Serra, A.C. Increased degradation of PLA/PBAT blends with organic acids and derivatives in outdoor weathering and marine environment. Polymer 2022, 256, 125223. [Google Scholar] [CrossRef]
- Fan, X.L.; Zou, Y.F.; Geng, N.; Liu, J.; Hou, J.; Li, D.; Yang, C.; Li, Y. Investigation on the adsorption and desorption behaviors of antibiotics by degradable MPs with or without UV ageing process. J. Hazard. Mater. 2021, 401, 123363. [Google Scholar] [CrossRef]
- Zhang, S.W.; Li, Y.X.; Jiang, L.S.; Chen, X.; Zhao, Y.; Shi, W.; Xing, Z. From organic fertilizer to the soils: What happens to the microplastics? A critical review. Sci. Total Environ. 2024, 919, 170217. [Google Scholar] [CrossRef]
- Mo, A.Y.; Zhang, Y.L.; Gao, W.; Jiang, J.; He, D. Environmental fate and impacts of biodegradable plastics in agricultural soil ecosystems. Appl. Soil Ecol. 2023, 181, 104667. [Google Scholar] [CrossRef]
- Krishna, D.N.G.; Philip, J. Review on surface-characterization applications of X-ray photoelectron spectroscopy (XPS): Recent developments and challenges. Appl. Surf. Sci. Adv. 2022, 12, 100332. [Google Scholar] [CrossRef]
- Liu, B.Y.; Zhao, S.L.; Qiu, T.Y.; Cui, Q.; Yang, Y.; Li, L.; Chen, J.; Huang, M.; Zhan, A.; Fang, L. Interaction of microplastics with heavy metals in soil: Mechanisms, influencing factors and biological effects. Sci. Total Environ. 2024, 918, 170281. [Google Scholar] [CrossRef]
- Dai, L.C.; Lu, Q.; Zhou, H.Q.; Shen, F.; Liu, Z.; Zhu, W.; Huang, H. Tuning oxygenated functional groups on biochar for water pollution control: A critical review. J. Hazard. Mater. 2021, 420, 126547. [Google Scholar] [CrossRef]
- Hotová, G.; Slovák, V.; Zelenka, T.; Maršálek, R.; Parchaňská, A. The role of the oxygen functional groups in adsorption of copper (II) on carbon surface. Sci. Total Environ. 2020, 711, 135436. [Google Scholar] [CrossRef]
- Rao, G.P.; Lu, C.s.; Su, F.S. Sorption of divalent metal ions from aqueous solution by carbon nanotubes: A review. Sep. Purif. Technol. 2007, 58, 224–231. [Google Scholar] [CrossRef]
Adsorption | ||||||||||
Soil Type | Qe,exp (mg/g) | PFO Model | PSO Model | ID Model | ||||||
Qe,cal (mg/g) | K1 (h−1) | R2 | Qe,cal (mg/g) | K2 [g·(mg·h)−1] | R2 | C | Ki (g·mg−1·h−0.5) | R2 | ||
Soil | 0.913 | 0.883 | 5.510 | 0.984 | 0.933 | 11.308 | 0.997 | 0.332 | 0.379 | 0.601 |
Soil (1% PBAT) | 0.879 | 0.839 | 4.794 | 0.971 | 0.898 | 9.171 | 0.993 | 0.291 | 0.375 | 0.660 |
Soil (1% PLA) | 0.870 | 0.830 | 4.727 | 0.965 | 0.891 | 8.908 | 0.990 | 0.283 | 0.375 | 0.674 |
Desorption | ||||||||||
Soil Type | QDe,exp (mg/g) | PFO Model | PSO Model | ID Model | ||||||
QDe,cal (mg/g) | K1 (h−1) | R2 | QDe,cal (mg/g) | K2 [g·(mg·h)−1] | R2 | C | Ki (g·mg−1·h−0.5) | R2 | ||
Soil | 0.421 | 0.410 | 8.487 | 0.993 | 0.423 | 56.091 | 0.999 | 0.179 | 0.162 | 0.480 |
Soil (1% PBAT) | 0.428 | 0.419 | 8.161 | 0.994 | 0.432 | 51.166 | 0.999 | 0.181 | 0.166 | 0.485 |
Soil (1% PLA) | 0.432 | 0.422 | 7.999 | 0.993 | 0.436 | 48.510 | 0.999 | 0.181 | 0.168 | 0.491 |
Soil Type | Freundlich | Langmuir | D-R | ||||||
---|---|---|---|---|---|---|---|---|---|
Kf (mg1−n·Ln·g−1) | 1/n | R2 | b (L/mg) | Qm (mg/g) | R2 | E (J/mol) | Qm (mg/g) | R2 | |
Soil | 0.125 | 0.387 | 0.957 | 1.04 × 10−2 | 1.454 | 0.931 | 29.596 | 1.082 | 0.824 |
Soil (1% PBAT) | 0.113 | 0.389 | 0.937 | 1.00 × 10−2 | 1.372 | 0.941 | 28.198 | 1.024 | 0.897 |
Soil (1% PLA) | 0.115 | 0.390 | 0.936 | 0.99 × 10−2 | 1.353 | 0.947 | 27.896 | 1.009 | 0.916 |
Sample Particle | C1s | O1s | Si2p | Al2p | K2p | Cu2p | Mg1s | N1s | S2p | Cl2p | O/C |
---|---|---|---|---|---|---|---|---|---|---|---|
Soil | 17.62 | 65.67 | 9.28 | 6.26 | 0.40 | 3.73 | |||||
PBAT MPs | 72.21 | 27.79 | 0.38 | ||||||||
PLA MPs | 71.39 | 25.25 | 1.77 | 0.98 | 0.35 | ||||||
Soil (Cu) | 9.70 | 72.36 | 9.74 | 6.64 | 0.44 | 0.11 | 7.46 | ||||
Soil (1% PBAT + Cu) | 10.99 | 71.51 | 9.47 | 6.57 | 0.52 | 0.11 | 6.51 | ||||
Soil (1% PLA + Cu) | 12.40 | 70.04 | 9.58 | 6.53 | 0.55 | 0.11 | 5.65 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, H.; Yu, B.; Lin, Z.; Li, H. Insights into How Degradable Microplastics Enhance Cu2+ Mobility in Soil Through Interfacial Interaction. Toxics 2025, 13, 795. https://doi.org/10.3390/toxics13090795
Peng H, Yu B, Lin Z, Li H. Insights into How Degradable Microplastics Enhance Cu2+ Mobility in Soil Through Interfacial Interaction. Toxics. 2025; 13(9):795. https://doi.org/10.3390/toxics13090795
Chicago/Turabian StylePeng, Hongjia, Bolun Yu, Zuhong Lin, and Haipu Li. 2025. "Insights into How Degradable Microplastics Enhance Cu2+ Mobility in Soil Through Interfacial Interaction" Toxics 13, no. 9: 795. https://doi.org/10.3390/toxics13090795
APA StylePeng, H., Yu, B., Lin, Z., & Li, H. (2025). Insights into How Degradable Microplastics Enhance Cu2+ Mobility in Soil Through Interfacial Interaction. Toxics, 13(9), 795. https://doi.org/10.3390/toxics13090795