Migration Behavior of Technetium-99 in Granite, Clay Rock, and Shale: Insights into Anionic Exclusion Effects
Abstract
1. Introduction
2. Theory of Adsorption, Diffusion, and Advection–Dispersion
2.1. Distribution Coefficient Model
2.2. Diffusion Model
2.3. Advection–Dispersion Model
2.3.1. Equilibrium Transport (E-T)
2.3.2. Two-Region Nonequilibrium Transport (T-N)
3. Experiments
3.1. Rock
3.2. Rock Sample Analysis
3.3. Batch Experiment
3.4. Diffusion Experiment
3.4.1. Diffusion Experimental Device
3.4.2. Diffusion Experimental Procedure
3.5. Column Experiment
3.5.1. Column Experimental Device
3.5.2. Column Experimental Procedure
3.6. Mathematical Model and Parameter Estimations
4. Results and Discussion
4.1. Mineral Composition and Chemical Composition
4.2. Batch Experiment Results
4.3. Diffusion Experiment Results
4.3.1. Diffusion Experiment Results of HTO
4.3.2. Diffusion Experiment of 99Tc
4.4. Advection–Dispersion Experiment of 99Tc
4.4.1. Advection–Dispersion Experiment Results of HTO
4.4.2. Advection–Dispersion Experiment Results of 99Tc
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IAEA. IAEA Safety Standards Series No. GSG-1: Classification of Radioactive Waste; IAEA: Vienna, Austria, 2009. [Google Scholar]
- Sharif, A.D.; Hossam, A.G.; Vahid, D. A Comprehensive Review on Radioactive Waste Cycle from Generation to Disposal. J. Radioanal. Nucl. Chem. 2021, 329, 15–31. [Google Scholar]
- Bruno, J.; Delos, A. Safety Assessment of Nuclear Waste Repositories: A Radionuclide Migration Perspective; A volume in Woodhead Publishing Series in Energy; Woodhead Publishing: Cambridge, UK, 2012; pp. 646–692. [Google Scholar]
- Wang, X.; Liu, C.; Wang, C.; Li, C.; Chen, T. Adsorption and Diffusion of Some Important Radionuclides in Beishan Granites and Gaomiaozi Bentonites. Sci. Sin. Chim. 2020, 50, 1585–1599. [Google Scholar] [CrossRef]
- Daniel, R. Sorption of Neptunium on Clays and Clay Minerals—A Review. Clays Clay Miner. 2015, 64, 262–276. [Google Scholar]
- Marsily, G.D.; Julio, G.; Sophie, V. Migration mechanisms of radionuclides from a clay repository toward adjacent aquifers and the surfaceMécanismes de migration des radionucléides d’un stockage de déchets radioactifs dans l’argile vers la surface. Comptes Rendus Phys. 2002, 3, 945–959. [Google Scholar] [CrossRef]
- IAEA. Handbook of Parameter Values for the Prediction of Radionuclide Transfer in Terrestrial and Freshwater Environments; IAEA: Vienna, Austria, 2010. [Google Scholar]
- Lee, C.P.; Hu, Y.Q.; Tien, N.C.; Tsai, S.-C.; Shi, Y.; Liu, W.; Kong, J.; Sun, Y. Molecule Diffusion Behavior of Tritium and Selenium in Mongolia Clay Rock by Numerical Analysis of the Spatial and Temporal Variation. Minerals 2021, 11, 875. [Google Scholar] [CrossRef]
- Sun, Y.Z. Study on the Adsorption and Diffusion of Nuclide 79Se(IV)/79Se(IV) in Tamusu Clay Rock. East China University of Technology 2023. [Google Scholar]
- Qi, L.L. The Sorption and Transport of Se(IV) and Sr(II) in Granite and the Impact Mechanism of Fracture Filling Materials. 2023. [Google Scholar]
- Wang, K.; Zhang, R.D. Heterogeneous Soil Water Flow and Macropores Described with Combined Tracers of Dye and Iodine. J. Hydrol. 2011, 397, 105–117. [Google Scholar] [CrossRef]
- Zaheer, M.; Zhang, W.; Zhan, H.B. An Experimental Study on Solute Transport in One-Dimensional Clay Soil Columns. Geofluids. 2017, 2017, 6390607. [Google Scholar] [CrossRef]
- McCarter, C.P.R.; Rezanezhad, F.; Gharedaghloo, B. Transport of Chloride and Deuterated Water in Peat: The Role of Anion Exclusion, Diffusion, and Anion Adsorption in A Dual Porosity Organic Media. J. Contam. Hydrol. 2019, 225, 103497. [Google Scholar] [CrossRef]
- Mäder, U. Advective Displacement Method for the Characterisation of Pore Water Chemistry and Transport Properties in Claystone. Geofluids 2018, 2018, 8198762. [Google Scholar] [CrossRef]
- Van Loon, L.R.; Soler, J.M.; Jakob, A. Effect of Confining Pressure on the Diffusion of HTO, 36Cl− and 125I− in A Layered Argillaceous Rock (Opalinus Clay): Diffusion Perpendicular to the Fabric. Geochem 2003, 18, 1653–1662. [Google Scholar] [CrossRef]
- Shi, Y.F.; Yang, S.; Chen, W.J. Study on Tritium and Iodine Species Transport Through Porous Granite: A Non-Sorption Effect by Anion Exclusion. Toxics 2022, 10, 540. [Google Scholar] [CrossRef]
- Steigman, J.; Meinken, G.; Richards, P. The Reduction of Pertechnetate-99 by stannous Chloride-II. The Stoichiometry of the Reaction in Aqueous Solutions of Several Phosphorus(V) Compounds. Int. J. Appl. Radiat. Isot. 1978, 29, 653–660. [Google Scholar] [CrossRef]
- He, A.D.; Fu, Z.H.; Yin, Z. The Coordination of Low-valent Re/Tc with Glutarimide Dioxime and the Fate of Tc in Aqueous Solution: Spectroscopy, ESI-MS and EXAFS. J. Radioanal. Nucl. Chem. 2021, 328, 1279–1289. [Google Scholar] [CrossRef]
- Sheng, G.D.; Guo, Z.Q.; Yang, S.T. Application of XAFS Technique in Interface Interaction Study of Radionuclides in Environment. Prog. Chem. 2011, 23, 1455–1468. [Google Scholar]
- Liu, C.L.; Wang, X.Y.; Gao, H.C. Diffusion Behavior of Some Weakly Absorbed Nuclide Species in Granite. J. Nucl. Radiochem. 2003, 25, 204–209. [Google Scholar]
- Lee, C.P.; Hu, Y.Q.; Chen, D.Y. A Statistical Evaluation to Compare and Analyze Estimations of the Diffusion Coefficient of Pertechnetate (99TcO4−) in Compacted Bentonite. Minerals 2021, 11, 1075. [Google Scholar] [CrossRef]
- Tsai, T.L.; Tsai, S.C.; Shih, Y.H. Diffusion Characteristics of HTO and 99TcO4− in Compacted Gaomiaozi (GMZ) Bentonite. Nucl. Sci. Tech. 2017, 28, 67. [Google Scholar] [CrossRef]
- Poinssot, C.; Geckeis, H. Radionuclide Behaviour in the Natural Environment. Implications and Lessons for the Nuclear Industry; Woodhead Publishing: Cambridge, UK, 2012. [Google Scholar]
- Šimůnek, J.; Šejna, M.; Sait, H. The HYDRUS-1D Software Package for Simulating the One-Dimensional Movement of Water, Heat, and Multiple Solutes in Variably-Saturated Media; Department of Environmental Sciences University of California Riverside Riverside: Riverside, CA, USA, 2018. [Google Scholar]
- Kong, J.; Sun, Y.Z.; Hua, R. Anion Exclusion and Sorption Effect for Compacted Bentonite: The Dependency of Diffusion Coefficients and Capacity of HTO and Se(IV). J. Radioanal. Nucl. Chem. 2021, 4, 1588–2780. [Google Scholar] [CrossRef]
- Shi, Y.F.; Lee, C.P.; Yu, H.Q. Study on Advection-dispersion Behavior for Simulation of HTO and Se Transport in Crushed Granite. J. Radioanal. Nucl. Chem. 2021, 328, 1329–1338. [Google Scholar] [CrossRef]
- ASTM C1733-17a; Standard Test Method for Distribution Coefficients of Inorganic Species by the Batch Method. ASTM: West Conshohocken, PA, USA, 2017.
- Zhang, X.Y.; Ma, F.; Dai, Z.X. Radionuclide Transport in Multi-scale Fractured Rocks: A Review. J. Hazard. Mater. 2021, 424, 1016. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.F.; Yang, S.; Wu, E.H. Advection-Dispersion Behavior for Simulation of H-3 and Pu-238 Transport in Undisturbed Argillaceous Shale of a Near-Surface Repository. Toxics 2023, 11, 124. [Google Scholar] [CrossRef] [PubMed]
- IAEA. Generic Models for Use in Assessing the Impact of Discharges of Radioactive Substances to the Environment; IAEA: Vienna, Austria, 2001. [Google Scholar]
- Grathwohl, P. Diffusion in Natural Porous Media: Contaminant Transport, Sorption/Desorption and Dissolution Kinetics; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1998. [Google Scholar]
- Hemond, H.F.; Fechner, E.J. Chemical Fate and Transport in the Environment; Academic Press: New York, NY, USA, 1994. [Google Scholar]
- Krupp, H.K.; Biggar, J.W.; Nielsen, D.R. Relative Fow Rates of Salt and Water in Soil. Soil Sci. Soc. Am. Proc. 1972, 36, 412–417. [Google Scholar] [CrossRef]
Device | Length (cm) | Diameter (cm) |
---|---|---|
Diffusion device | 20.2 cm | 7.4 cm |
Source liquid tank (liquid collection tank) | 4.2 cm | 3.2 cm |
rock slice | 0.3 cm | 5 cm |
Device | Length | Diameter |
---|---|---|
Granite column (Particle size < 0.075 mm) | 10 cm | 1.6 cm |
Clay rock column (0.425–0.25 mm) | 10 cm | 1.6 cm |
Mudstone shale column (0.425–0.25 mm) | 10 cm | 1.6 cm |
Rock | Mica | Quartz | Potassium Feldspar | Plagioclase | Illite | Montmorillonite | Zeolite |
---|---|---|---|---|---|---|---|
Granite | 10.8 | 20.5 | 30.2 | 38.5 | / | / | / |
Clay rock | 11.1 | 4.0 | / | 16.9 | / | / | 23.6 |
Mudstone shale | / | 46.7 | / | 9.7 | 24.6 | 19.0 | / |
Rock | Calcite | Dolomite | SiO2 | Al2O3 | Na2O | K2O | CaO |
Granite | / | / | 66.81 | 15.88 | 3.83 | 4.82 | 3.43 |
Clay rock | 9.6 | 34.8 | 30.61 | 9.72 | 3.08 | 2.14 | 27.95 |
Mudstone shale | / | / | 61.15 | 20.81 | 0.33 | 5.15 | 0.67 |
Rock | Fe2O3 | MgO | TiO2 | P2O5 | SO3 | MnO | SrO |
Granite | 3.04 | 1.24 | 0.469 | 0.146 | 0.10 | 0.05 | 0.05 |
Clay rock | 6.74 | 14.72 | 0.621 | 0.080 | 3.74 | 0.20 | 0.27 |
Mudstone shale | 8.47 | 2.14 | 0.88 | 0.16 | 0.03 | 0.08 | 0.01 |
Rock | BaO | Rb2O | ZrO2 | ZnO | La2O3 | V2O5 | Cr2O3 |
Granite | 0.05 | 0.02 | 0.01 | 0.01 | 0.01 | 0.01 | 0.004 |
Clay rock | / | 0.02 | 0.02 | 0.01 | / | 0.02 | 0.021 |
Mudstone shale | 0.02 | 0.03 | 0.03 | / | 0.01 | 0.02 | 0.020 |
Rock | Ga2O3 | PbO | Co3O4 | Cl | CeO2 | CuO | Er2O3 |
Granite | 0.003 | 0.003 | 0.002 | 0.032 | / | / | / |
Clay rock | 0.002 | / | 0.003 | 0.083 | 0.006 | 0.005 | 0.004 |
Mudstone shale | 0.003 | / | 0.003 | 0.023 | / | / | / |
Rock | Ø | α | Da | De | R2 | RMSE |
---|---|---|---|---|---|---|
Granite-1 | 0.26 | 0.26 | 1.56 × 10−10 m2/s | 4.05 × 10−11 m2/s | 0.999 | 0.060 |
Granite-2 | 0.26 | 0.26 | 9.54 × 10−11 m2/s | 2.48 × 10−12 m2/s | 0.998 | 0.094 |
Granite-3 | 0.26 | 0.26 | 1.45 × 10−10 m2/s | 3.76 × 10−11 m2/s | 0.999 | 0.067 |
Clay rock-1 | 0.18 | 0.18 | 1.42 × 10−10 m2/s | 2.60 × 10−11 m2/s | 0.998 | 0.096 |
Clay rock-2 | 0.18 | 0.18 | 1.09 × 10−10 m2/s | 1.99 × 10−11 m2/s | 0.999 | 0.042 |
Clay rock-3 | 0.18 | 0.18 | 1.38 × 10−10 m2/s | 2.53 × 10−11 m2/s | 0.998 | 0.161 |
Mudstone shale-1 | 0.20 | 0.20 | 1.02 × 10−10 m2/s | 2.03 × 10−11 m2/s | 0.994 | 0.172 |
Mudstone shale-2 | 0.20 | 0.20 | 1.25 × 10−10 m2/s | 2.50 × 10−11 m2/s | 0.999 | 0.063 |
Mudstone shale-3 | 0.20 | 0.20 | 1.05 × 10−10 m2/s | 2.10 × 10−11 m2/s | 0.989 | 0.260 |
Rock | Ø | α | Da (m2/s) | De (m2/s) | Kd (mL/g) | R2 | RMSE |
---|---|---|---|---|---|---|---|
Granite | 0.26 | 0.26 | 3.59 × 10−11 | 9.34 × 10−12 | 0 | 0.999 | 0.006 |
Clay rock | 0.18 | 0.18 | 8.97 × 10−11 | 1.71 × 10−11 | 0 | 0.998 | 0.014 |
Mudstone shale | 0.20 | 0.20 | 9.28 × 10−11 | 1.86 × 10−11 | 0 | 0.997 | 0.014 |
Rock | V | D | DL | R | RMSE |
---|---|---|---|---|---|
Granite-1 | 0.241 cm/min | 0.152 cm2/min | 0.631 cm | 1.00 | 5.25 × 10−6 |
Granite-2 | 0.242 cm/min | 0.155 cm2/min | 0.640 cm | 1.00 | 3.89 × 10−6 |
Granite-3 | 0.242 cm/min | 0.154 cm2/min | 0.636 cm | 1.00 | 9.45 × 10−5 |
Clay rock-1 | 0.383 cm/min | 0.095 cm2/min | 0.248 cm | 1.00 | 1.57 × 10−5 |
Clay rock-2 | 0.358 cm/min | 0.095 cm2/min | 0.269 cm | 1.00 | 3.46 × 10−10 |
Clay rock-3 | 0.322 cm/min | 0.092 cm2/min | 0.285 cm | 1.00 | 9.26 × 10−6 |
Mudstone shale-1 | 0.342 cm/min | 0.098 cm2/min | 0.287 cm | 1.00 | 1.04 × 10−5 |
Mudstone shale-2 | 0.312 cm/min | 0.101 cm2/min | 0.323 cm | 1.00 | 1.24 × 10−5 |
Mudstone shale-3 | 0.346 cm/min | 0.091 cm2/min | 0.263 cm | 1.00 | 9.14 × 10−6 |
Model | Granite Column | |||||
---|---|---|---|---|---|---|
E-T | V | D | DL | R | Kd | RMSE |
0.254 cm/min | 0.16 cm2/min | 0.630 cm | 0.981 | <0 | 1.97 × 10−5 | |
T-N | V | D | DL | RMSE | ||
0.254 cm/min | 0.16 cm2/min | 0.630 cm | 0.26 | 0.11 | 1.10 × 10−5 | |
Model | Clay rock column | |||||
E-T | V | D | DL | R | Kd | RMSE |
0.256 cm/min | 0.055 cm2/min | 0.215 cm | 0.707 | <0 | 1.60 × 10−5 | |
T-N | V | D | DL | RMSE | ||
0.256 cm/min | 0.055 cm2/min | 0.215 cm | 0.16 | 0.15 | 1.45 × 10−5 | |
Model | Mudstone shale column | |||||
E-T | V | D | DL | R | Kd | RMSE |
0.286 cm/min | 0.092 cm2/min | 0.320 cm | 0.954 | <0 | 1.14 × 10−5 | |
T-N | V | D | DL | RMSE | ||
0.286 cm/min | 0.092 cm2/min | 0.320 cm | 0.17 | 0.18 | 1.07 × 10−5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, Y.; Yang, S.; Chen, W.; Zhang, A.; Li, Z.; Wang, L.; Lian, B. Migration Behavior of Technetium-99 in Granite, Clay Rock, and Shale: Insights into Anionic Exclusion Effects. Toxics 2025, 13, 760. https://doi.org/10.3390/toxics13090760
Shi Y, Yang S, Chen W, Zhang A, Li Z, Wang L, Lian B. Migration Behavior of Technetium-99 in Granite, Clay Rock, and Shale: Insights into Anionic Exclusion Effects. Toxics. 2025; 13(9):760. https://doi.org/10.3390/toxics13090760
Chicago/Turabian StyleShi, Yunfeng, Song Yang, Wenjie Chen, Aiming Zhang, Zhou Li, Longjiang Wang, and Bing Lian. 2025. "Migration Behavior of Technetium-99 in Granite, Clay Rock, and Shale: Insights into Anionic Exclusion Effects" Toxics 13, no. 9: 760. https://doi.org/10.3390/toxics13090760
APA StyleShi, Y., Yang, S., Chen, W., Zhang, A., Li, Z., Wang, L., & Lian, B. (2025). Migration Behavior of Technetium-99 in Granite, Clay Rock, and Shale: Insights into Anionic Exclusion Effects. Toxics, 13(9), 760. https://doi.org/10.3390/toxics13090760