DALYs-Based Health Risk Assessment and Key Influencing Factors of PM2.5-Bound Metals in Typical Pollution Areas of Northern China
Highlights
- PM2.5-bound metal concentrations were lower in coastal than inland areas of Shandong.
- The disease burden from PM2.5-bound metals increased from 2022 to 2024.
- Industrial emissions of Cr, Cd, and Pb dominated health risks, with chronic kidney disease most impacted.
- Enhancing vegetation cover may mitigate heavy metal exposure and health hazards.
Abstract
1. Introduction
2. Methods
2.1. Environmental Sampling and Monitoring Analysis
2.2. PMF Analysis
2.3. Burden of Disease Assessment
2.4. XGBoost Regression Model
2.5. SHAP-Based Model Interpretation
2.6. Data Statistical Analysis
3. Results and Discussion
3.1. Spatial Distribution of PM2.5-Bound Metals
3.2. Temporal Distribution of PM2.5-Bound Metals
3.3. Source Apportionment of PM2.5-Bound Metals
3.4. Disease Burden Attributed to PM2.5-Bound Metals
3.5. Relative Importance Analysis for Three Prioritized PM2.5-Bound Metals
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, X.; Liu, X. Effects of PM2.5 on Chronic Airway Diseases: A Review of Research Progress. Atmosphere 2021, 12, 1068. [Google Scholar] [CrossRef]
- Han, X.; Liu, Y.; Gao, H.; Ma, J.; Mao, X.; Wang, Y.; Ma, X. Forecasting PM2.5 induced male lung cancer morbidity in China using satellite retrieved PM2.5 and spatial analysis. Sci. Total Environ. 2017, 607–608, 1009–1017. [Google Scholar] [CrossRef]
- Li, R.; Jiang, N.; Liu, Q.; Huang, J.; Guo, X.; Liu, F.; Gao, Z. Impact of Air Pollutants on Outpatient Visits for Acute Respiratory Outcomes. Int. J. Environ. Res. Public Health 2017, 14, 47. [Google Scholar] [CrossRef]
- MEE Communiqués on the Ecological Environment. Available online: http://www.mee.gov.cn/hjzl/sthjzk/zghjzkgb/ (accessed on 22 April 2025).
- Zhang, Q.; Zheng, Y.; Tong, D.; Shao, M.; Wang, S.; Zhang, Y.; Xu, X.; Wang, J.; He, H.; Liu, W.; et al. Drivers of improved PM(2.5) air quality in China from 2013 to 2017. Proc. Natl. Acad. Sci. USA 2019, 116, 24463–24469. [Google Scholar] [CrossRef] [PubMed]
- Tian, H.Z.; Wang, Y.; Xue, Z.G.; Cheng, K.; Qu, Y.P.; Chai, F.H.; Hao, J.M. Trend and characteristics of atmospheric emissions of Hg, As, and Se from coal combustion in China, 1980–2007. Atmos. Meas. Tech. 2010, 10, 11905–11919. [Google Scholar] [CrossRef]
- Li, Y.; Chang, M.; Ding, S.; Wang, S.; Ni, D.; Hu, H. Monitoring and source apportionment of trace elements in PM2.5: Implications for local air quality management. J. Environ. Manag. 2017, 196, 16–25. [Google Scholar] [CrossRef]
- Mai, D.; Xu, C.; Lin, W.; Yue, D.; Fu, S.; Lin, J.; Yuan, L.; Zhao, Y.; Zhai, Y.; Mai, H.; et al. Association of abnormal-glucose tolerance during pregnancy with exposure to PM2.5 components and sources. Environ. Pollut. 2022, 292, 118468. [Google Scholar] [CrossRef]
- Fan, M.-Y.; Zhang, Y.-L.; Lin, Y.-C.; Cao, F.; Sun, Y.; Qiu, Y.; Xing, G.; Dao, X.; Fu, P. Specific sources of health risks induced by metallic elements in PM2.5 during the wintertime in Beijing, China. Atmos. Environ. 2021, 246, 118112. [Google Scholar] [CrossRef]
- Cui, Y.; Ji, D.; He, J.; Kong, S.; Wang, Y. In situ continuous observation of hourly elements in PM2.5 in urban beijing, China: Occurrence levels, temporal variation, potential source regions and health risks. Atmos. Environ. 2020, 222, 117164. [Google Scholar] [CrossRef]
- Huang, R.-J.; Cheng, R.; Jing, M.; Yang, L.; Li, Y.; Chen, Q.; Chen, Y.; Yan, J.; Lin, C.; Wu, Y.; et al. Source-Specific Health Risk Analysis on Particulate Trace Elements: Coal Combustion and Traffic Emission As Major Contributors in Wintertime Beijing. Environ. Sci. Technol. 2018, 52, 10967–10974. [Google Scholar] [CrossRef]
- Guo, Q.; Li, L.; Zhao, X.; Yin, B.; Liu, Y.; Wang, X.; Yang, W.; Geng, C.; Wang, X.; Bai, Z. Source Apportionment and Health Risk Assessment of Metal Elements in PM2.5 in Central Liaoning’s Urban Agglomeration. Atmosphere 2021, 12, 667. [Google Scholar] [CrossRef]
- Liu, N.; Liu, W.; Deng, F.; Liu, Y.; Gao, X.; Fang, L.; Chen, Z.; Tang, H.; Hong, S.; Pan, M.; et al. The burden of disease attributable to indoor air pollutants in China from 2000 to 2017. Lancet Planet. Health 2023, 7, e900–e911. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, J.; Cao, H.; Zhang, A.; Zhou, A.; Zhou, X. Determining priority sources of PM2.5-bound polycyclic aromatic hydrocarbons by their contribution to disability adjusted life years. Atmos. Environ. 2021, 248, 118202. [Google Scholar] [CrossRef]
- Gao, T.; Wang, X.C.; Chen, R.; Ngo, H.H.; Guo, W. Disability adjusted life year (DALY): A useful tool for quantitative assessment of environmental pollution. Sci. Total Environ. 2015, 511, 268–287. [Google Scholar] [CrossRef]
- Guan, Y.; Xiao, Y.; Zhang, N.; Chu, C. Tracking short-term health impacts attributed to ambient PM2.5 and ozone pollution in Chinese cities: An assessment integrates daily population. Environ. Sci. Pollut. Res. 2022, 29, 91176–91189. [Google Scholar] [CrossRef]
- Norris, G.; Duvall, R.; Brown, S.; Bai, S. EPA Positive Matrix Factorization (PMF) 5.0 Fundamentals and User Guide; Environmental Protection Agency: Washington, DC, USA, 2014. [Google Scholar]
- Yuan, J.; Zuo, H.; Jiang, Y.; Zhang, P.; Wang, Z.; Guo, C.; Wang, Z.; Wen, Q.; Chen, Y.; Wei, Y.; et al. Exploring Sources and Health Risks in Beijing PM2.5 in 2019 and 2020. Atmosphere 2023, 14, 1060. [Google Scholar] [CrossRef]
- Li, K.; Talifu, D.; Gao, B.; Zhang, X.; Wang, W.; Abulizi, A.; Wang, X.; Ding, X.; Liu, H.; Zhang, Y. Temporal Distribution and Source Apportionment of Composition of Ambient PM2.5 in Urumqi, North-West China. Atmosphere 2022, 13, 781. [Google Scholar] [CrossRef]
- Wang, S.; Kaur, M.; Li, T.; Pan, F. Effect of Different Pollution Parameters and Chemical Components of PM2.5 on Health of Residents of Xinxiang City, China. Int. J. Environ. Res. Public Health 2021, 18, 6821. [Google Scholar] [CrossRef] [PubMed]
- Wignall, J.A.; Shapiro, A.J.; Wright, F.A.; Woodruff, T.J.; Chiu, W.A.; Guyton, K.Z.; Rusyn, I. Standardizing benchmark dose calculations to improve science-based decisions in human health assessments. Environ. Health Perspect. 2014, 122, 499–505. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Zhang, Y.; Ding, Z.; Wang, T.; Lian, H.; Sun, Y.; Wu, J. Bioaccessibility and health risk of arsenic and heavy metals (Cd, Co, Cr, Cu, Ni, Pb, Zn and Mn) in TSP and PM2.5 in Nanjing, China. Atmos. Environ. 2012, 57, 146–152. [Google Scholar] [CrossRef]
- Etchie, T.O.; Sivanesan, S.; Etchie, A.T.; Adewuyi, G.O.; Krishnamurthi, K.; George, K.; Rao, P.S. The burden of disease attributable to ambient PM2.5-bound PAHs exposure in Nagpur, India. Chemosphere 2018, 204, 277–289. [Google Scholar] [CrossRef]
- U.S.EPA. Supplemental Guidance for Assessing Susceptibility from Early-Life Exposure to Carcinogens; EPA/630/R-03/003F; U.S. Environmental Protection Agency: Washington, DC, USA, 2005.
- Chen, T.; Guestrin, C. XGBoost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; Association for Computing Machinery: New York, NY, USA, 2016; pp. 785–794. [Google Scholar]
- Zhou, L.; Hu, F.; Wang, B.; Wei, C.; Sun, D.; Wang, S. Relationship between urban landscape structure and land surface temperature: Spatial hierarchy and interaction effects. Sustain. Cities Soc. 2022, 80, 103795. [Google Scholar] [CrossRef]
- Xie, X.; Wang, Y. Evaluating the Efficacy of Government Spending on Air Pollution Control: A Case Study from Beijing. Int. J. Environ. Res. Public Health 2018, 16, 45. [Google Scholar] [CrossRef]
- Cai, A.; Zhang, H.; Wang, L.; Wang, Q.; Wu, X. Source Apportionment and Health Risk Assessment of Heavy Metals in PM2.5 in Handan: A Typical Heavily Polluted City in North China. Atmosphere 2021, 12, 1232. [Google Scholar] [CrossRef]
- Li, L.; Meng, R.; Lei, Y.; Wu, S.; Jiang, Y. Human health risk assessment of heavy metals from PM(2.5) in China’s 29 provincial capital cities. Environ. Sci. Pollut. Res. Int. 2022, 29, 63028–63040. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhang, X.; Yang, H.; Cheng, X.; Zhu, Y.G.; Ma, J.; Cui, D.; Zhang, Z. Spatial and temporal changes of air quality in Shandong Province from 2016 to 2022 and model prediction. J. Hazard. Mater. 2024, 477, 135408. [Google Scholar] [CrossRef] [PubMed]
- Hulskotte, J.; Roskam, G.; van der Gon, H.D. Elemental composition of current automotive braking materials and derived air emission factors. Atmos. Environ. 2014, 99, 436–445. [Google Scholar] [CrossRef]
- Gietl, J.K.; Lawrence, R.; Thorpe, A.J.; Harrison, R.M. Identification of brake wear particles and derivation of a quantitative tracer for brake dust at a major road. Atmos. Environ. 2010, 44, 141–146. [Google Scholar] [CrossRef]
- Councell, T.B.; Duckenfield, K.U.; Landa, E.R.; Callender, E. Tire-Wear Particles as a Source of Zinc to the Environment. Environ. Sci. Technol. 2004, 38, 4206–4214. [Google Scholar] [CrossRef] [PubMed]
- Yan, R.H.; Peng, X.; Lin, W.; He, L.Y.; Wei, F.H.; Tang, M.X.; Huang, X.F. Trends and Challenges Regarding the Source-Specific Health Risk of PM(2.5)-Bound Metals in a Chinese Megacity from 2014 to 2020. Environ. Sci. Technol. 2022, 56, 6996–7005. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, X.; Brown, R.; Yang, L.; Morawska, L.; Ristovski, Z.; Fu, Q.; Huang, C. Shipping emissions and their impacts on air quality in China. Sci. Total Environ. 2017, 581–582, 186–198. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Li, C.; Ye, X.; Fu, H.; Wang, L.; Yang, X.; Wang, X.; Zhao, Z.; Kan, H.; Mellouki, A.; et al. Air quality in the middle and lower reaches of the Yangtze River channel: A cruise campaign. Atmos. Meas. Tech. 2018, 18, 14445–14464. [Google Scholar] [CrossRef]
- Nriagu, J.O. Global inventory of natural and anthropogenic emissions of trace metals to the atmosphere. Nature 1979, 279, 409–411. [Google Scholar] [CrossRef]
- Nriagu, J.O.; Pacyna, J.M. Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature 1988, 333, 134–139. [Google Scholar] [CrossRef]
- Li, X.; Yan, C.; Wang, C.; Ma, J.; Li, W.; Liu, J.; Liu, Y. PM(2.5)-bound elements in Hebei Province, China: Pollution levels, source apportionment and health risks. Sci. Total Environ. 2022, 806 Pt 1, 150440. [Google Scholar] [CrossRef]
- Liu, Y.; Xing, J.; Wang, S.; Fu, X.; Zheng, H. Source-specific speciation profiles of PM2.5 for heavy metals and their anthropogenic emissions in China. Environ. Pollut. 2018, 239, 544–553. [Google Scholar] [CrossRef] [PubMed]
- Rai, P.; Furger, M.; Slowik, J.G.; Zhong, H.; Tong, Y.; Wang, L.; Duan, J.; Gu, Y.; Qi, L.; Huang, R.-J.; et al. Characteristics and sources of hourly elements in PM10 and PM2.5 during wintertime in Beijing. Environ. Pollut. 2021, 278, 116865. [Google Scholar] [CrossRef] [PubMed]
- Streets, D.; Hao, J.; Wu, Y.; Jiang, J.; Chan, M.; Tian, H.; Feng, X. Anthropogenic mercury emissions in China. Atmos. Environ. 2005, 39, 7789–7806. [Google Scholar] [CrossRef]
- Andreae, M.O. Soot Carbon and Excess Fine Potassium: Long-Range Transport of Combustion-Derived Aerosols. Science 1983, 220, 1148–1151. [Google Scholar] [CrossRef]
- Li, W.; Achal, V. Environmental and health impacts due to e-waste disposal in China—A review. Sci. Total Environ. 2020, 737, 139745. [Google Scholar] [CrossRef]
- Zhang, J.; Zhou, X.; Wang, Z.; Yang, L.; Wang, J.; Wang, W. Trace elements in PM2.5 in Shandong Province: Source identification and health risk assessment. Sci. Total Environ. 2018, 621, 558–577. [Google Scholar] [CrossRef]
- Majewski, A.J.; Dhir, A. Application of silver in microtubular solid oxide fuel cells. Mater. Renew. Sustain. Energy 2018, 7, 16. [Google Scholar] [CrossRef]
- Luyckx, V.A.; Tonelli, M.; Stanifer, J.W. The global burden of kidney disease and the sustainable development goals. Bull. World Health Organ. 2018, 96, 414D–422D. [Google Scholar] [CrossRef]
- Wu, M.-Y.; Lo, W.-C.; Chao, C.-T.; Wu, M.-S.; Chiang, C.-K. Association between air pollutants and development of chronic kidney disease: A systematic review and meta-analysis. Sci. Total Environ. 2020, 706, 135522. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Lyu, T.; Zhang, W.; Zhou, X.; Zhang, R.; Tang, Y.; Jiang, Y.; Cao, H. Control priority based on source-specific DALYs of PM2.5-bound heavy metals by PMF-PSCF-IsoSource model in urban and suburban Beijing. J. Environ. Manag. 2024, 352, 120016. [Google Scholar] [CrossRef]
- Brown, C.C.; Chu, K.C. A new method for the analysis of cohort studies-implications of the multistage theory of carcinogenesis applied to occupational arsenic exposure. Environ. Health Perspect. 1983, 50, 293–308. [Google Scholar] [CrossRef]
- Feldstein, A.L. Arsenic and respiratory cancer in humans: Follow-up of copper smelter employees in Montana. JNCI J. Natl. Cancer Inst. 1983, 70, 601–609. [Google Scholar] [CrossRef]
- Enterline, P.E.; Marsh, G.M. Cancer among workers exposed to arsenic and other substances in a copper smelter. Am. J. Epidemiol. 1982, 116, 895–911. [Google Scholar] [CrossRef] [PubMed]
- Dunlap, L.G. Perforations of the nasal septum due to inhalation of arsenous oxide. J. Am. Med. Assoc. 1921, 76, 568–569. [Google Scholar]
- Morton, W.E.; Caron, G.A. Encephalopathy: An uncommon manifestation of workplace arsenic poisoning? Am. J. Ind. Med. 1989, 15, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Pinto, S.S.; McGill, C.M. Arsenic trioxide exposure in industry. Ind. Med. Surg. 1953, 22, 281–287. [Google Scholar] [PubMed]
- Enterline, P.E.; Day, R.; Marsh, G.M. Cancers related to exposure to arsenic at a copper smelter. Occup. Environ. Med. 1995, 52, 28–32. [Google Scholar] [CrossRef]
- Welch, K.; Higgins, I.; Oh, M.; Burchfiel, C. Arsenic exposure, smoking, and respiratory cancer in copper smelter workers. Arch. Environ. Health Int. J. 1982, 37, 325–335. [Google Scholar] [CrossRef]
- Perry, K.; Bowler, R.G. Studies in the incidence of cancer in a factory handling inorganic compounds of arsenic; clinical and environmental investigations. Br. J. Ind. Med. 1948, 5, 6–15. [Google Scholar] [PubMed]
- Cohen, S.R.; David, D.M.; Kramkowski, R.S. Clinical manifestations of chromic acid toxicity: Nasal lesions in electroplate workers. Cutis 1974, 13, 558–568. [Google Scholar]
- Hanslian, L.; Navratil, J.; Jurak, J. Damage to the upper respiratory tract by a chromic acid aerosol. Pr. Lek. 1967, 19, 294–298. (In Czechoslovakian) [Google Scholar]
- Lindberg, E.; Hedenstierna, G. Chrome plating: Symptoms, findings in the upper airways, and effects on lung function. Arch. Environ. Health 1983, 38, 367–374. [Google Scholar] [CrossRef]
- Nemery, B.; Casier, P.; Roosels, D.; Lahaye, D.; Demedts, M. Survey of cobalt exposure and Respiratory health in diamond polishers. Am. Rev. Respir. Dis. 1992, 145, 610–616. [Google Scholar] [CrossRef]
- Sprince, N.L.; Oliver, L.C.; Eisen, E.A.; Greene, R.E.; Chamberlin, R.I. Cobalt exposure and lung disease in tungsten carbide production: A cross-sectional study of current workers. Am. Rev. Respir. Dis. 1988, 138, 1220–1226. [Google Scholar] [CrossRef] [PubMed]
- Wehner, A.P.; Busch, R.H.; Olson, R.J. Chronic inhalation of cobalt oxide and cigarette smoke by hamsters. Am. Ind. Hyg. Assoc. J. 1977, 38, 338–346. [Google Scholar] [CrossRef]
- Shirakawa, T.; Kusaka, Y.; Fujimura, N.; Goto, S.; Morimoto, K. The existence of specific antibodies to cobalt in hard metal asthma. Clin. Exp. Allergy 1988, 18, 451–460. [Google Scholar] [CrossRef] [PubMed]
- Swennen, B.; Buchet, J.P.; Stanescu, D.; Lison, D.; Lauwerys, R. Epidemiological survey of workers exposed to cobalt oxides, cobalt salts, and cobalt metal. Occup. Environ. Med. 1993, 50, 835–842. [Google Scholar] [CrossRef]
- Enterline, P.E.; Marsh, G.M. Mortality among workers in a nickel refinery and alloy manufacturing plant in West virginia. JNCI J. Natl. Cancer Inst. 1982, 68, 925–933. [Google Scholar] [CrossRef]
- Chovil, A.; Sutherland, R.B.; Halliday, M. Respiratory cancer in a cohort of sinter plant workers. Occup. Environ. Med. 1981, 38, 327–333. [Google Scholar] [CrossRef]
- Peto, J.; Cuckle, H.; Doll, R.; Hermon, C.; Morgan, L.G. Respiratory cancer mortality of Welsh nickel refinery workers. In Nickel in the Human Environment: Proceedings of a Joint Symposium, March, 1983. IARC Scientific Publications No. 53; International Agency for Research on Cancer: Lyon, France, 1984; pp. 36–46. [Google Scholar]
- Magnus, K.; Andersen, A.; Høgetveit, A.C. Cancer of respiratory organs among workers at a nickel refinery in Norway second report. Int. J. Cancer 1982, 30, 681–685. [Google Scholar] [CrossRef]
- NTP. Toxicology and Carcinogenesis Studies of Nickel Oxide (CAS No. 1313-99-1) in F344/N Rats and B6C3F1 Mice (Inhalation Studies). Natl. Toxicol. Program Tech. Rep. Ser. 1996, 451, 1–381. [Google Scholar]
- NTP. Toxicology and Carcinogenesis Studies of Nickel Subsulfide (CAS No. 12035-72-2) in F344/N Rats and B6C3F1 Mice (Inhalation Studies). Natl. Toxicol. Program Tech. Rep. Ser. 1996, 453, 1–365. [Google Scholar]
- NTP. Toxicology and Carcinogenesis Studies of Nickel Sulfate Hexahydrate (CAS No. 10101-97-0) in F344/N Rats and B6C3F1 Mice (Inhalation Studies). Natl. Toxicol. Program Tech. Rep. Ser. 1996, 454, 1–380. [Google Scholar]
- Ottolenghi, A.D.; Haseman, J.K.; Payne, W.W.; Falk, H.L.; MacFarland, H.N. Inhalation studies of nickel sulfide in pulmonary carcinogenesis of rats. JNCI J. Natl. Cancer Inst. 1975, 54, 1165–1172. [Google Scholar] [CrossRef]
- Thun, M.J.; Schnorr, T.M.; Smith, A.B.; Halperin, W.E. Mortality among a cohort of U.S. cadmium production workers: An update. J. Natl. Cancer Inst. 1985, 74, 325–333. [Google Scholar]
- Takenaka, S.; Oldiges, H.; König, H.; Hochrainer, D.; Oberdoerster, G. Carcinogenicity of cadmium aerosols in Wistar rats. J. Natl. Cancer Inst. 1983, 70, 367–373. [Google Scholar] [PubMed]
- Gidlow, D.A. Lead toxicity. Occup. Med. 2015, 65, 348–356. [Google Scholar] [CrossRef] [PubMed]
- Glenn, B.S.; Stewart, W.F.; Links, J.M.; Todd, A.C.; Schwartz, B.S. The longitudinal association of lead with blood pressure. Epidemiology 2003, 14, 30–36. [Google Scholar] [CrossRef]
- Liu, J.; Chen, Y.; Cao, H.; Zhang, A. Burden of typical diseases attributed to the sources of PM2.5-bound toxic metals in Beijing: An integrated approach to source apportionment and QALYs. Environ. Int. 2019, 131, 105041. [Google Scholar] [CrossRef]
- A Roels, H.; Ghyselen, P.; Buchet, J.P.; Ceulemans, E.; Lauwerys, R.R. Assessment of the permissible exposure level to manganese in workers exposed to manganese dioxide dust. Occup. Environ. Med. 1992, 49, 25–34. [Google Scholar] [CrossRef] [PubMed]
- Watt, W.D. Chronic Inhalation Toxicity of Antimony Trioxide: Validation of the Threshold Limit Value; Wayne State University: Detroit, MI, USA, 1983; pp. 1–135. [Google Scholar]
Models | N | RMSE | MAE | R2 |
---|---|---|---|---|
Cr-coastal region | 96,870 | 0.52 | 0.31 | 0.66 |
Cr-inland region | 147,852 | 0.66 | 0.48 | 0.86 |
Cd-coastal region | 96,859 | 0.62 | 0.36 | 0.75 |
Cd-inland region | 146,519 | 0.71 | 0.48 | 0.79 |
Pb-coastal region | 96,883 | 0.47 | 0.89 | 0.87 |
Pb-inland region | 150,609 | 0.48 | 0.32 | 0.83 |
Site | Year | ||
---|---|---|---|
2022 | 2023 | 2024 | |
Zibo | 3.60 | 3.55 | 4.19 |
Zaozhuang | 2.31 | 1.78 | 1.52 |
Jinan | 1.01 | 3.57 | 9.44 |
Linyi | 1.05 | 1.31 | 0.92 |
Heze | 0.62 | 0.95 | 0.78 |
Dongying | 0.80 | 1.00 | 0.81 |
Binzhou | 2.15 | 1.46 | 2.64 |
Liaocheng | 0.93 | 0.95 | 1.00 |
Weifang | 2.44 | 3.52 | NA |
Taian | NA | 1.80 | 1.44 |
Rizhao | NA | 3.01 | 2.58 |
Qingdao | NA | 1.55 | 2.58 |
Dezhou | 1.75 | 1.96 | NA |
Weihai | NA | NA | 1.05 |
Yantai | NA | NA | 0.82 |
average | 1.67 | 2.03 | 2.29 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, T.; Qu, K.; Ma, F.; Liang, Y.; Wang, Z.; Liu, J.; Liang, H.; Wei, M.; Liu, H.; Wang, P. DALYs-Based Health Risk Assessment and Key Influencing Factors of PM2.5-Bound Metals in Typical Pollution Areas of Northern China. Toxics 2025, 13, 722. https://doi.org/10.3390/toxics13090722
Zhao T, Qu K, Ma F, Liang Y, Wang Z, Liu J, Liang H, Wei M, Liu H, Wang P. DALYs-Based Health Risk Assessment and Key Influencing Factors of PM2.5-Bound Metals in Typical Pollution Areas of Northern China. Toxics. 2025; 13(9):722. https://doi.org/10.3390/toxics13090722
Chicago/Turabian StyleZhao, Ting, Kai Qu, Fenghua Ma, Yuhan Liang, Ziquan Wang, Jieyu Liu, Hao Liang, Min Wei, Houfeng Liu, and Pingping Wang. 2025. "DALYs-Based Health Risk Assessment and Key Influencing Factors of PM2.5-Bound Metals in Typical Pollution Areas of Northern China" Toxics 13, no. 9: 722. https://doi.org/10.3390/toxics13090722
APA StyleZhao, T., Qu, K., Ma, F., Liang, Y., Wang, Z., Liu, J., Liang, H., Wei, M., Liu, H., & Wang, P. (2025). DALYs-Based Health Risk Assessment and Key Influencing Factors of PM2.5-Bound Metals in Typical Pollution Areas of Northern China. Toxics, 13(9), 722. https://doi.org/10.3390/toxics13090722