Molecular Dynamics Simulation of the Aggregation Behavior of Typical Aromatic Pollutants and Its Influence on the n-Octanol–Air Partition Coefficient
Abstract
1. Introduction
2. Materials and Methods
2.1. Datasets
2.2. Molecular Dynamics Simulation
2.3. Calculation of log KOA and Solvation Free Energy of Aromatic Pollutants
2.4. Study on Effects of the Concentration on the Aggregation Behavior
3. Results and Discussion
3.1. The Aggregation Processes of Typical Aromatic Pollutants in the n-Octanol Phase
3.2. Aggregation Characteristics of Typical Aromatic Pollutants in the n-Octanol Phase at Equilibrium
3.3. Effects of the Concentration on the Aggregation Behavior and KOA of Typical Aromatic Pollutants
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lu, D.; Lin, Y.; Le, S.; Chen, Y.; Feng, C.; Qian, Z.; Wang, G.; Li, J.; Xiao, P. Assessment of POPs in foods from western China: Machine learning insights into risk and contamination drivers. Environ. Int. 2025, 199, 109458. [Google Scholar] [CrossRef]
- Pochec, M.; Krupka, K.M.; Panek, J.J.; Orzechowski, K.; Jezierska, A. Intermolecular Interactions and Spectroscopic Signatures of the Hydrogen-Bonded System—n-Octanol in Experimental and Theoretical Studies. Molecules 2022, 27, 1225. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Zhao, H.; Wang, J.; Li, X.; Li, Z.; Zhang, X.; Ou, Y. Prediction and mechanism analysis of octanol-air partition coefficient for persistent organic pollutants based on machine learning models. J. Environ. Chem. Eng. 2025, 13, 115741. [Google Scholar] [CrossRef]
- Baskaran, S.; Lei, Y.D.; Wania, F. A Database of Experimentally Derived and Estimated Octanol–Air Partition Ratios (KOA). J. Phys. Chem. Ref. Data 2021, 50, 043101. [Google Scholar] [CrossRef]
- Doxtader, M.M.; Mangle, E.A.; Bhattacharya, A.K.; Cohen, S.M.; Topp, M.R. Spectroscopy of benzene complexes with perylene and other aromatic species. Chem. Phys. 1986, 101, 413–427. [Google Scholar] [CrossRef]
- Hunter, C.A.; Sanders, J.K. The nature of π-π interactions. J. Am. Chem. Soc. 1990, 112, 5525–5534. [Google Scholar] [CrossRef]
- Arunan, E.; Gutowsky, H.S. The rotational spectrum, structure and dynamics of a benzene dimer. J. Chem. Phys. 1993, 98, 4294–4296. [Google Scholar] [CrossRef]
- Risa, A.; Barrios, L.A.; Diego, R.; Roubeau, O.; Aleshin, D.Y.; Nelyubina, Y.; Novikov, V.; Teat, S.J.; Arino, J.R.; Aromi, G. Engineered π…π interactions favour supramolecular dimers X@[FeL3]2 (X = Cl, Br, I): Solid state and solution structure. Chem. Sci. 2024, 15, 9047–9053. [Google Scholar] [CrossRef] [PubMed]
- Fatima, A.; Singh, M.; Abualnaja, K.M.; Althubeiti, K.; Muthu, S.; Siddiqui, N.; Javed, S. Experimental Spectroscopic, Structural (Monomer and Dimer), Molecular Docking, Molecular Dynamics Simulation and Hirshfeld Surface Analysis of 2-Amino-6-Methylpyridine. Polycyclic Aromat. Compd. 2023, 43, 3910–3940. [Google Scholar] [CrossRef]
- Lee, H.; Dehez, F.; Chipot, C.; Lim, H.-K.; Kim, H. Enthalpy-Entropy Interplay in π-Stacking Interaction of Benzene Dimer in Water. J. Chem. Theory Comput. 2019, 15, 1538–1545. [Google Scholar] [CrossRef] [PubMed]
- Miliordos, E.; Apra, E.; Xantheas, S.S. Benchmark theoretical study of the π-π binding energy in the benzene dimer. J. Phys. Chem. A 2014, 118, 7568–7578. [Google Scholar] [CrossRef]
- Li, W.; Ding, G.; Gao, H.; Zhuang, Y.; Gu, X.; Peijnenburg, W. Prediction of octanol-air partition coefficients for PCBs at different ambient temperatures based on the solvation free energy and the dimer ratio. Chemosphere 2020, 242, 125246. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Chen, D.; Chen, S.; Zhang, J.; Song, G.; Shi, Y.; Sun, Y.; Ding, G.; Peijnenburg, W. Modelling the octanol-air partition coefficient of aromatic pollutants based on the solvation free energy and the dimer effect. Chemosphere 2022, 309, 136608. [Google Scholar] [CrossRef] [PubMed]
- Elaissi, S.; Alsaif, N.A.M.; Moneer, E.M.; Gouadria, S. Ozone Generation Study for Indoor Air Purification from Volatile Organic Compounds Using a Cold Corona Discharge Plasma Model. Symmetry 2025, 17, 567. [Google Scholar] [CrossRef]
- Tang, H.; Zhao, Y.; Yang, X.; Liu, D.; Shao, P.; Zhu, Z.; Shan, S.; Cui, F.; Xing, B. New Insight into the Aggregation of Graphene Oxide Using Molecular Dynamics Simulations and Extended Derjaguin-Landau-Verwey-Overbeek Theory. Environ. Sci. Technol. 2017, 51, 9674–9682. [Google Scholar] [CrossRef] [PubMed]
- Jia, J.; Huang, Y.D.; Long, J.; He, J.M.; Zhang, H.X. Molecular dynamics simulation of the interface between self-assembled monolayers on Au(111) surface and epoxy resin. Appl. Surf. Sci. 2009, 255, 6451–6459. [Google Scholar] [CrossRef]
- Mackay, D.; Shiu, W.Y.; Ma, K.-C. Illustrated Handbook of Physical-Chemical Properties of Environmental Fate for Organic Chemicals; CRC Press: Boca Raton, FL, USA, 1997. [Google Scholar]
- Braekevelt, E.; Tittlemier, S.A.; Tomy, G.T. Direct measurement of octanol-water partition coefficients of some environmentally relevant brominated diphenyl ether congeners. Chemosphere 2003, 51, 563–567. [Google Scholar] [CrossRef]
- Kim, M.; Coskun, O.M.; Ordu, S.; Mutlu, R. Modeling Pollutant Diffusion in the Ground Using Conformable Fractional Derivative in Spherical Coordinates with Complete Symmetry. Symmetry 2024, 16, 1358. [Google Scholar] [CrossRef]
- Ruelle, P. The n-octanol and n-hexane/water partition coefficient of environmentally relevant chemicals predicted from the mobile order and disorder (MOD) thermodynamics. Chemosphere 2000, 40, 457–512. [Google Scholar] [CrossRef]
- Yalkowsky, S.H.; He, Y.; Jain, P. Handbook of Aqueous Solubility Data, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2010. [Google Scholar]
- Tittlemier, S.A.; Halldorson, T.; Stern, G.A.; Tomy, G.T. Vapor pressures, aqueous solubilities, and Henry’s law constants of some brominated flame retardants. Environ. Toxicol. Chem. 2002, 21, 1804–1810. [Google Scholar] [CrossRef]
- Opperhulzen, A.; Volde, E.W.V.D.; Gobas, F.A.P.C.; Liem, D.A.K.; Steen, J.M.D.V.D.; Hutzinger, O. Relationship between bioconcentration in fish and steric factors of hydrophobic chemicals. Chemosphere 1985, 14, 1871–1896. [Google Scholar] [CrossRef]
- Kömp, P.; McLachlan, M.S. Octanol/air partitioning of polychlorinated biphenyls. Environ. Toxicol. Chem. 1997, 16, 2433–2437. [Google Scholar] [CrossRef]
- Mackay, D.; Callcott, D. Partitioning and physical chemical properties of PAHs. In PAHs and Related Compounds Chemistry; Neilson, A.H., Ed.; Springer: Berlin, Germany, 1998; pp. 329–332. [Google Scholar]
- Harner, T.; Bidleman, T.F. Measurement of octanol-air partition coefficients for polycyclic aromatic hydrocarbons and polychlorinated naphthalenes. J. Chem. Eng. Data 1998, 43, 40–46. [Google Scholar] [CrossRef]
- Treves, K.; Shragina, L.; Rudich, Y. Measurement of octanol-air partition coefficients using solid-phase microextraction (SPME)-application to hydroxy alkyl nitrates. Atmos. Environ. 2001, 35, 843–5854. [Google Scholar] [CrossRef]
- Odabasi, M.; Cetin, E.; Sofuoglu, A. Determination of octanol-air partition coefficients and supercooled liquid vapor pressures of PAHs as a function of temperature: Application to gas-particle partitioning in an urban atmosphere. Atmos. Environ. 2006, 40, 6615–6625. [Google Scholar] [CrossRef]
- Harner, T.; Shoeib, M. Measurements of octanol-air partition coefficients (KOA) for polybrominated diphenyl ethers (PBDEs): Predicting partitioning in the environment. J. Chem. Eng. Data 2002, 47, 228–232. [Google Scholar] [CrossRef]
- Harner, T.; Green, N.J.L.; Jones, K.C. Measurements of octanol-air partition coefficients for PCDD/Fs: A tool in assessing air-soil equilibrium status. Environ. Sci. Technol. 2000, 34, 3109–3114. [Google Scholar] [CrossRef]
- Van Der Spoel, D.; Lindahl, E.; Hess, B.; Groenhof, G.; Mark, A.E.; Berendsen, H.J. GROMACS: Fast, flexible, and free. J. Comput. Chem. 2005, 26, 1701–1718. [Google Scholar] [CrossRef]
- Wang, J.; Wolf, R.M.; Caldwell, J.W.; Kollman, P.A.; Case, D.A. Development and testing of a general amber force field. J. Comput. Chem. 2004, 25, 1157–1174. [Google Scholar] [CrossRef] [PubMed]
- da Silva, A.W.S.; Vranken, W.F. ACPYPE—AnteChamber PYthon Parser interface. BMC Res. Notes 2012, 5, 367. [Google Scholar] [CrossRef]
- Svanberg, M. An improved leap-frog rotational algorithm. Mol. Phys. 1997, 92, 1085–1088. [Google Scholar] [CrossRef]
- Frenkel, D.; Smit, B. Understanding Molecular Simulation, 2nd ed.; Academic Press: Amsterdam, The Netherlands, 2001. [Google Scholar]
- Martonak, R.; Laio, A.; Parrinello, M. Predicting crystal structures: The Parrinello-Rahman method revisited. Phys. Rev. Lett. 2003, 90, 075503. [Google Scholar] [CrossRef]
- Berendsen, H.J.C.; Postma, J.P.M.; van Gunsteren, W.F.; DiNola, A.; Haak, J.R. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 1984, 81, 3684–3690. [Google Scholar] [CrossRef]
- Hess, B.; Bekker, H.; Berendsen, H.J.C.; Fraaije, J.G.E.M. LINCS: A linear constraint solver for molecular simulations. J. Comput. Chem. 1997, 18, 1463–1472. [Google Scholar] [CrossRef]
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996, 14, 33–38. [Google Scholar] [CrossRef]
- Sherrill, C.D.; Takatani, T.; Hohenstein, E.G. An assessment of theoretical methods for nonbonded interactions: Comparison to complete basis set limit coupled-cluster potential energy curves for the benzene dimer, the methane dimer, benzene-methane, and benzene-H2S. J. Phys. Chem. A 2009, 113, 10146–10159. [Google Scholar] [CrossRef] [PubMed]
- Tsuzuki, S.; Honda, K.; Uchimaru, T.; Mikami, M. Ab initio calculations of structures and interaction energies of toluene dimers including CCSD(T) level electron correlation correction. J. Chem. Phys. 2005, 122, 144323. [Google Scholar] [CrossRef]
- Marenich, A.V.; Cramer, C.J.; Truhlar, D.G. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. J. Phys. Chem. B 2009, 113, 6378–6396. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09, Revision E.01; Gaussian, Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
- Qiu, H.; Deng, J.; Wu, B.; Sun, X.; Cai, J.; Chen, Z.; Xu, H. Study on the microscopic aggregation behavior of lignite molecules in water. Colloids Surf. A 2022, 637, 128194. [Google Scholar] [CrossRef]
Chemicals | SW (mol/L) | log KOW | SO (mol/L) | n (Chemical):n (n-Octanol) |
---|---|---|---|---|
PCB-4 | 1.91 × 10−6 | 4.90 | 1.51 × 10−1 | 24:1000 |
Phenanthrene | 6.03 × 10−6 | 4.57 | 2.24 × 10−1 | 35:1000 |
PBDE-28 | 1.72 × 10−7 | 5.94 | 1.50 × 10−1 | 24:1000 |
PCN-5 | 1.60 × 10−6 | 4.78 | 9.67 × 10−2 | 15:1000 |
PCDD-1 | 1.91 × 10−6 | 5.05 | 2.14 × 10−1 | 34:1000 |
Chemicals | log KOA | Reference | |
---|---|---|---|
Experimental Values | Average Values | ||
PCB-4 | 7.18 | 7.18 | [24] |
Phenanthrene | 7.45 | 7.65 | [25] |
7.57 | [26] | ||
7.88 | [27] | ||
7.68 | [28] | ||
PBDE-28 | 9.50 | 9.50 | [29] |
PCN-5 | 6.93 | 6.93 | [26] |
PCDD-1 | 7.86 | 7.86 | [30] |
Aggregate Form | Time (ps) | Aggregate Percentages (%) | ||||
---|---|---|---|---|---|---|
PCB-4 | Phe | PBDE-28 | PCN-5 | PCDD-1 | ||
Monomer | 0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 |
5 | 91.7 | 88.6 | 91.7 | 100.0 | 82.4 | |
10 | 83.3 | 88.6 | 83.3 | 86.7 | 82.4 | |
20 | 83.3 | 82.9 | 83.3 | 86.7 | 76.5 | |
30 | 75.0 | 77.1 | 75.0 | 60.0 | 70.6 | |
50 | 75.0 | 71.4 | 66.7 | 60.0 | 50.0 | |
Dimer | 0 | 0 | 0 | 0 | 0 | 0 |
5 | 8.3 | 11.4 | 8.3 | 0 | 17.7 | |
10 | 16.7 | 11.4 | 16.7 | 13.3 | 17.7 | |
20 | 16.7 | 17.1 | 16.7 | 13.3 | 23.5 | |
30 | 25.0 | 22.9 | 25.0 | 40.0 | 29.4 | |
50 | 25.0 | 28.6 | 33.3 | 40.0 | 41.2 | |
Trimer | 0 | 0 | 0 | 0 | 0 | 0 |
5 | 0 | 0 | 0 | 0 | 0 | |
10 | 0 | 0 | 0 | 0 | 0 | |
20 | 0 | 0 | 0 | 0 | 0 | |
30 | 0 | 0 | 0 | 0 | 0 | |
50 | 0 | 0 | 0 | 0 | 8.8 |
Aggregate Form | Time (ns) | Aggregate Percentages (%) | ||||
---|---|---|---|---|---|---|
PCB-4 | Phe | PBDE-28 | PCN-5 | PCDD-1 | ||
Monomer | 0 | 75.0 | 71.4 | 66.7 | 60.0 | 50.0 |
10 | 75.0 | 71.4 | 66.7 | 60.0 | 55.9 | |
20 | 75.0 | 71.4 | 66.7 | 73.3 | 50.0 | |
30 | 75.0 | 71.4 | 66.7 | 60.0 | 50.0 | |
40 | 75.0 | 71.4 | 66.7 | 60.0 | 50.0 | |
50 | 75.0 | 71.4 | 66.7 | 60.0 | 50.0 | |
Dimer | 0 | 25.0 | 28.6 | 33.3 | 40.0 | 41.2 |
10 | 25.0 | 28.6 | 33.3 | 40.0 | 35.3 | |
20 | 25.0 | 28.6 | 33.3 | 26.7 | 41.2 | |
30 | 25.0 | 28.6 | 33.3 | 40.0 | 41.2 | |
40 | 25.0 | 28.6 | 33.3 | 40.0 | 41.2 | |
50 | 25.0 | 28.6 | 33.3 | 40.0 | 41.2 | |
Trimer | 0 | 0 | 0 | 0 | 0 | 8.8 |
10 | 0 | 0 | 0 | 0 | 8.8 | |
20 | 0 | 0 | 0 | 0 | 8.8 | |
30 | 0 | 0 | 0 | 0 | 8.8 | |
40 | 0 | 0 | 0 | 0 | 8.8 | |
50 | 0 | 0 | 0 | 0 | 8.8 |
Chemicals | Monomer Percentages (%) | Dimer Percentages (%) | Trimer Percentages (%) | Estimated log KOA Values |
---|---|---|---|---|
PCB-4 | 86.9 | 13.1 | 0 | 7.24 |
Phe | 86.9 | 13.1 | 0 | 7.17 |
PBDE-28 | 73.8 | 26.2 | 0 | 9.19 |
PCN-5 | 60.0 | 40.0 | 0 | 6.85 |
PCDD-1 | 80.3 | 19.7 | 0 | 5.72 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, W.; Fan, W.; Zhang, J.; Chen, S.; Shi, Y.; Ding, G. Molecular Dynamics Simulation of the Aggregation Behavior of Typical Aromatic Pollutants and Its Influence on the n-Octanol–Air Partition Coefficient. Toxics 2025, 13, 721. https://doi.org/10.3390/toxics13090721
Li W, Fan W, Zhang J, Chen S, Shi Y, Ding G. Molecular Dynamics Simulation of the Aggregation Behavior of Typical Aromatic Pollutants and Its Influence on the n-Octanol–Air Partition Coefficient. Toxics. 2025; 13(9):721. https://doi.org/10.3390/toxics13090721
Chicago/Turabian StyleLi, Wanran, Wencong Fan, Jing Zhang, Shuhua Chen, Yawei Shi, and Guanghui Ding. 2025. "Molecular Dynamics Simulation of the Aggregation Behavior of Typical Aromatic Pollutants and Its Influence on the n-Octanol–Air Partition Coefficient" Toxics 13, no. 9: 721. https://doi.org/10.3390/toxics13090721
APA StyleLi, W., Fan, W., Zhang, J., Chen, S., Shi, Y., & Ding, G. (2025). Molecular Dynamics Simulation of the Aggregation Behavior of Typical Aromatic Pollutants and Its Influence on the n-Octanol–Air Partition Coefficient. Toxics, 13(9), 721. https://doi.org/10.3390/toxics13090721