Properties and Mechanisms of TBBPA and TBBPS Adsorption onto Various Soils in China
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemical Reagents
2.2. Soil Types
2.3. Determination and Characterization of Selected Physicochemical Properties of Soil
2.4. Preparation of Soil Components
2.4.1. Oxidized Soil (H2O2 Treatment)
2.4.2. Removal of Organic Matter from Soil (Calcination)
2.4.3. Soil Extraction of Humic Acid
2.4.4. Soil Extraction of Humin (Humin)
2.5. Experimental Procedure
2.5.1. Adsorption Kinetic Experiments
2.5.2. Adsorption Isotherm Experiments
2.6. Analytical Methods
2.7. Mathematical Model
2.7.1. Adsorption Kinetic Modeling
The Pseudo-First-Order Kinetic Model
The Pseudo-Second-Order Kinetic Model
The Elovich Model
Intraparticle Diffusion Model
2.7.2. Adsorption Isotherm Models
Linear Model
Freundlich Modeling
Langmuir Modeling
2.7.3. Soil Distribution Coefficient
3. Results and Discussion
3.1. Physicochemical Properties of Soil
3.2. Adsorption Kinetics of TBBPA/S on Soil
3.3. Adsorption Isotherms of Soil for TBBPA/S
3.4. Effect of pH on TBBPA/S Adsorption Isotherms
3.5. Effect of Soil Fractions on TBBPA/S Adsorption
3.6. Adsorption Mechanism of TBBPA/S by Soil
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
TBBPA | Tetrabromobisphenol A |
TBBPS | Tetrabromobisphenol S |
PCA | Principal component analysis |
BFRs | Brominated flame retardants |
IARC | International Agency for Research on Cancer |
SOM | Soil organic matter |
CEC | Cation exchange capacity |
IHSS | International Humic Substances Society |
GPLC | High-performance liquid chromatography |
References
- Liu, A.; Shi, J.; Shen, Z.; Lin, Y.; Qu, G.; Zhao, Z.; Jiang, G. Identification of Unknown Brominated Bisphenol S Congeners in Contaminated Soils as the Transformation Products of Tetrabromobisphenol S Derivatives. Environ. Sci. Technol. 2018, 52, 10480–10489. [Google Scholar] [CrossRef]
- Zhou, H.; Yin, N.; Faiola, F. Tetrabromobisphenol A (TBBPA): A controversial environmental pollutant. J. Environ. Sci. 2020, 97, 54–66. [Google Scholar] [CrossRef]
- Qu, G.; Liu, A.; Hu, L.; Liu, S.; Shi, J.; Jiang, G. Recent advances in the analysis of TBBPA/TBBPS, TBBPA/TBBPS derivatives and their transformation products. TrAC Trends Anal. Chem. 2016, 83, 14–24. [Google Scholar] [CrossRef]
- Liu, A.-F.; Tian, Y.; Yin, N.-Y.; Yu, M.; Qu, G.-B.; Shi, J.-B.; Du, Y.-G.; Jiang, G.-B. Characterization of three tetrabromobisphenol-S derivatives in mollusks from Chinese Bohai sea: A strategy for novel brominated contaminants identification. Sci. Rep. 2015, 5, 11741. [Google Scholar] [CrossRef]
- Letcher, R.J.; Chu, S. High-Sensitivity Method for Determination of Tetrabromobisphenol-S and Tetrabromobisphenol-A Derivative Flame Retardants in Great Lakes Herring Gull Eggs by Liquid Chromatography—Atmospheric Pressure Photoionization—Tandem Mass Spectrometry. Environ. Sci. Technol. 2010, 44, 8615–8621. [Google Scholar] [CrossRef]
- Choi, J.S.; Lee, Y.J.; Kim, T.H.; Lim, H.J.; Ahn, M.Y.; Kwack, S.J.; Kang, T.S.; Park, K.L.; Lee, J.; Kim, N.D.; et al. Molecular Mechanism of Tetrabromobisphenol A (TBBPA)-induced Target Organ Toxicity in Sprague-Dawley Male Rats. Toxicol. Res. 2011, 27, 61–70. [Google Scholar] [CrossRef]
- Nakajima, A.; Saigusa, D.; Tetsu, N.; Yamakuni, T.; Tomioka, Y.; Hishinuma, T. Neurobehavioral effects of tetrabromobisphenol A, a brominated flame retardant, in mice. Toxicol. Lett. 2009, 189, 78–83. [Google Scholar] [CrossRef]
- Hurd, T.; Whalen, M.M. Tetrabromobisphenol A decreases cell-surface proteins involved in human natural killer (NK) cell-dependent target cell lysis. J. Immunotoxicol. 2011, 8, 219–227. [Google Scholar] [CrossRef]
- Liang, S.; Liang, S.; Yin, N.; Hu, B.; Faiola, F. Toxicogenomic analyses of the effects of BDE-47/209, TBBPA/S and TCBPA on early neural development with a human embryonic stem cell in vitro differentiation system. Toxicol. Appl. Pharmacol. 2019, 379, 114685. [Google Scholar] [CrossRef]
- Yin, N.; Liang, S.; Liang, S.; Yang, R.; Hu, B.; Qin, Z.; Liu, A.; Faiola, F. TBBPA and Its Alternatives Disturb the Early Stages of Neural Development by Interfering with the NOTCH and WNT Pathways. Environ. Sci. Technol. 2018, 52, 5459–5468. [Google Scholar] [CrossRef]
- Yang, R.; Liu, S.; Liang, X.; Yin, N.; Jiang, L.; Zhang, Y.; Faiola, F. TBBPA, TBBPS, and TCBPA disrupt hESC hepatic differentiation and promote the proliferation of differentiated cells partly via up-regulation of the FGF10 signaling pathway. J. Hazard. Mater. 2021, 401, 123341. [Google Scholar] [CrossRef]
- Ding, Y.; Dong, X.; Feng, W.; Mao, G.; Chen, Y.; Qiu, X.; Chen, K.; Xu, H. Tetrabromobisphenol S alters the circadian rhythm network in the early life stages of zebrafish. Sci. Total Environ. 2022, 806, 150543. [Google Scholar] [CrossRef]
- Feng, A.-H.; Chen, S.-J.; Chen, M.-Y.; He, M.-J.; Luo, X.-J.; Mai, B.-X. Hexabromocyclododecane (HBCD) and tetrabromobisphenol A (TBBPA) in riverine and estuarine sediments of the Pearl River Delta in southern China, with emphasis on spatial variability in diastereoisomer- and enantiomer-specific distribution of HBCD. Mar. Pollut. Bull. 2012, 64, 919–925. [Google Scholar] [CrossRef]
- Zhu, Z.-C.; Chen, S.-J.; Zheng, J.; Tian, M.; Feng, A.-H.; Luo, X.-J.; Mai, B.-X. Occurrence of brominated flame retardants (BFRs), organochlorine pesticides (OCPs), and polychlorinated biphenyls (PCBs) in agricultural soils in a BFR-manufacturing region of North China. Sci. Total Environ. 2014, 481, 47–54. [Google Scholar] [CrossRef]
- Huang, D.-Y.; Zhao, H.-Q.; Liu, C.-P.; Sun, C.-X. Characteristics, sources, and transport of tetrabromobisphenol A and bisphenol A in soils from a typical e-waste recycling area in South China. Environ. Sci. Pollut. Res. 2014, 21, 5818–5826. [Google Scholar] [CrossRef]
- Qiao, W.; Yuan, X.; Dong, L.; Xia, Y.; Wang, X. Adsorption behaviour of tetrabromobisphenol A on sediments in Weihe River Basin in Northwest China. Environ. Sci. Pollut. Res. 2023, 30, 6604–6611. [Google Scholar] [CrossRef]
- Li, T.; He, Y.; Peng, X. Efficient removal of tetrabromobisphenol A (TBBPA) using sewage sludge-derived biochar: Adsorptive effect and mechanism. Chemosphere 2020, 251, 126370. [Google Scholar] [CrossRef]
- Sun, Z.; Yu, Y.; Mao, L.; Feng, Z.; Yu, H. Sorption behavior of tetrabromobisphenol A in two soils with different characteristics. J. Hazard. Mater. 2008, 160, 456–461. [Google Scholar] [CrossRef]
- Kuramochi, H.; Kawamoto, K.; Miyazaki, K.; Nagahama, K.; Maeda, K.; Li, X.-W.; Shibata, E.; Nakamura, T.; Sakai, S.-I. Determination of physicochemical properties of tetrabromobisphenol A. Environ. Toxicol. Chem. 2008, 27, 2413–2418. [Google Scholar] [CrossRef]
- Ho, Y.S.; McKay, G. The sorption of lead(II) ions on peat. Water Res. 1999, 33, 578–584. [Google Scholar] [CrossRef]
- Low, M.J.D. Kinetics of chemisorption of gases on solids. Chem. Rev. 1960, 60, 267–312. [Google Scholar] [CrossRef]
- Aharoni, C.; Tompkins, F.C. Kinetics of Adsorption and Desorption and the Elovich Equation. In Advances in Catalysis; Eley, D.D., Pines, H., Weisz, P.B., Eds.; Academic Press: New York, NY, USA, 1970; Volume 21, pp. 1–49. [Google Scholar]
- Hameed, B.H.; Tan, I.A.W.; Ahmad, A.L. Adsorption isotherm, kinetic modeling and mechanism of 2,4,6-trichlorophenol on coconut husk-based activated carbon. Chem. Eng. J. 2008, 144, 235–244. [Google Scholar] [CrossRef]
- Oke, S.A.; Johnson, A.O.; Salau, T.A.O.; Adeyefa, A.O. Application of Neurofuzzy in the development of road bump designs. Pac. J. Sci. Technol. 2007, 8, 73–79. [Google Scholar]
- Weber, W.J.; Morris, J.C. Kinetics of Adsorption on Carbon from Solution. J. Sanit. Eng. Div. 1963, 89, 31–59. [Google Scholar] [CrossRef]
- Freundlich, H. Über die adsorption in lösungen. Z. Phys. Chem. 1907, 57, 385–470. [Google Scholar] [CrossRef]
- Hameed, B.H.; Mahmoud, D.K.; Ahmad, A.L. Equilibrium modeling and kinetic studies on the adsorption of basic dye by a low-cost adsorbent: Coconut (Cocos nucifera) bunch waste. J. Hazard. Mater. 2008, 158, 65–72. [Google Scholar] [CrossRef]
- Ho, Y.S.; McKay, G. Sorption of dye from aqueous solution by peat. Chem. Eng. J. 1998, 70, 115–124. [Google Scholar] [CrossRef]
- Langmuir, I. The constitution and fundamental properties of solids and liquids. J. Frankl. Inst. 1917, 183, 102–105. [Google Scholar] [CrossRef]
- Li, F.; Fang, X.; Zhou, Z.; Liao, X.; Zou, J.; Yuan, B.; Sun, W. Adsorption of perfluorinated acids onto soils: Kinetics, isotherms, and influences of soil properties. Sci. Total Environ. 2019, 649, 504–514. [Google Scholar] [CrossRef]
- Rodríguez-Cruz, M.S.; Sánchez-Martín, M.J.; Andrades, M.S.; Sánchez-Camazano, M. Comparison of Pesticide Sorption by Physicochemically Modified Soils with Natural Soils as a Function of Soil Properties and Pesticide Hydrophobicity. Soil Sediment Contam. Int. J. 2006, 15, 401–415. [Google Scholar] [CrossRef]
- Huang, W.; Weber, W.J. A Distributed Reactivity Model for Sorption by Soils and Sediments. 10. Relationships between Desorption, Hysteresis, and the Chemical Characteristics of Organic Domains. Environ. Sci. Technol. 1997, 31, 2562–2569. [Google Scholar] [CrossRef]
- Huang, W.; Schlautman, M.A.; Weber, W.J. A Distributed Reactivity Model for Sorption by Soils and Sediments. 5. The Influence of Near-Surface Characteristics in Mineral Domains. Environ. Sci. Technol. 1996, 30, 2993–3000. [Google Scholar] [CrossRef]
- Mohammadi, F.; Moeeni, M.; Li, C.; Boukherroub, R.; Szunerits, S. Interaction of cellulose and nitrodopamine coated superparamagnetic iron oxide nanoparticles with alpha-lactalbumin. RSC Adv. 2020, 10, 9704–9716. [Google Scholar] [CrossRef]
- Higgins, C.P.; Luthy, R.G. Sorption of perfluorinated surfactants on sediments. Environ. Sci. Technol. 2006, 40, 7251–7256. [Google Scholar] [CrossRef]
- Shiquan, L.; Shirong, Z.; Jun, W.; Xueyong, P.; Daigang, Y. Relationship between soil pH and calcium carbonate content. Soils 2002, 34, 279–282, 288. Available online: http://soils.issas.ac.cn/tr/article/abstract/20020506 (accessed on 13 August 2025).
- Mayes, M.A.; Heal, K.R.; Brandt, C.C.; Phillips, J.R.; Jardine, P.M. Relation between Soil Order and Sorption of Dissolved Organic Carbon in Temperate Subsoils. Soil Sci. Soc. Am. J. 2012, 76, 1027–1037. [Google Scholar] [CrossRef]
- Oren, A.; Chefetz, B. Sorptive and Desorptive Fractionation of Dissolved Organic Matter by Mineral Soil Matrices. J. Environ. Qual. 2012, 41, 526–533. [Google Scholar] [CrossRef]
- Saidy, A.R.; Smernik, R.J.; Baldock, J.A.; Kaiser, K.; Sanderman, J. The sorption of organic carbon onto differing clay minerals in the presence and absence of hydrous iron oxide. Geoderma 2013, 209–210, 15–21. [Google Scholar] [CrossRef]
- Miller, M.J.; Critchley, M.M.; Hutson, J.; Fallowfield, H.J. The adsorption of cyanobacterial hepatotoxins from water onto soil during batch experiments. Water Res. 2001, 35, 1461–1468. [Google Scholar] [CrossRef] [PubMed]
- Umeh, A.C.; Naidu, R.; Shilpi, S.; Boateng, E.B.; Rahman, A.; Cousins, I.T.; Chadalavada, S.; Lamb, D.; Bowman, M. Sorption of PFOS in 114 Well-Characterized Tropical and Temperate Soils: Application of Multivariate and Artificial Neural Network Analyses. Environ. Sci. Technol. 2021, 55, 1779–1789. [Google Scholar] [CrossRef] [PubMed]
- Wei, C.; Song, X.; Wang, Q.; Hu, Z. Sorption kinetics, isotherms and mechanisms of PFOS on soils with different physicochemical properties. Ecotoxicol. Environ. Saf. 2017, 142, 40–50. [Google Scholar] [CrossRef] [PubMed]
- Han, W.; Luo, L.; Zhang, S. Adsorption of tetrabromobisphenol A on soils: Contribution of soil components and influence of soil properties. Colloids Surf. A Physicochem. Eng. Asp. 2013, 428, 60–64. [Google Scholar] [CrossRef]
- Shi, X.; Ji, L.; Zhu, D. Investigating roles of organic and inorganic soil components in sorption of polar and nonpolar aromatic compounds. Environ. Pollut. 2010, 158, 319–324. [Google Scholar] [CrossRef]
- Bao, Y.; Zhou, Q.; Wang, Y. Adsorption characteristics of tetracycline by two soils: Assessing role of soil organic matter. Soil Res. 2009, 47, 286–295. [Google Scholar] [CrossRef]
- Tong, F.; Gu, X.; Gu, C.; Ji, R.; Tan, Y.; Xie, J. Insights into tetrabromobisphenol A adsorption onto soils: Effects of soil components and environmental factors. Sci. Total Environ. 2015, 536, 582–588. [Google Scholar] [CrossRef]
- Xiang, L.; Zhang, Z.; Xiaoshan, J. Sorption and desorption of tetrabromobisphenol-A on acidic montmorillonite (K10). Desalination Water Treat. 2016, 57, 12396–12407. [Google Scholar] [CrossRef]
- Wang, H.; Zhu, J.; Fu, Q.; Hong, C.; Hu, H.; Violante, A. Phosphate adsorption on uncoated and humic acid-coated iron oxides. J. Soils Sediments 2016, 16, 1911–1920. [Google Scholar] [CrossRef]
- Bekçi, Z.; Seki, Y.; Yurdakoç, M.K. A study of equilibrium and FTIR, SEM/EDS analysis of trimethoprim adsorption onto K10. J. Mol. Struct. 2007, 827, 67–74. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Q.; Gu, A.; Lian, H.; Zou, J. Properties and Mechanisms of TBBPA and TBBPS Adsorption onto Various Soils in China. Toxics 2025, 13, 686. https://doi.org/10.3390/toxics13080686
Wang Q, Gu A, Lian H, Zou J. Properties and Mechanisms of TBBPA and TBBPS Adsorption onto Various Soils in China. Toxics. 2025; 13(8):686. https://doi.org/10.3390/toxics13080686
Chicago/Turabian StyleWang, Qi, Aiguo Gu, Hongzhen Lian, and Jie Zou. 2025. "Properties and Mechanisms of TBBPA and TBBPS Adsorption onto Various Soils in China" Toxics 13, no. 8: 686. https://doi.org/10.3390/toxics13080686
APA StyleWang, Q., Gu, A., Lian, H., & Zou, J. (2025). Properties and Mechanisms of TBBPA and TBBPS Adsorption onto Various Soils in China. Toxics, 13(8), 686. https://doi.org/10.3390/toxics13080686