Pesticide and Liver Biomarkers Among Ecuadorian Adolescents and Adults Living in Agricultural Settings
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Study Sample
2.3. Interviews and Examinations
2.4. Measurement of Biomarkers
2.5. Statistical Analysis
3. Results
3.1. Participant Characteristics
3.2. Association Between Pesticide Metabolites and Liver Biomarkers
3.3. Odds Ratios for Elevated AST and ALT Levels
3.4. Pesticide Mixture Modeling
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hayat, K.; Afzal, M.; Aqueel, M.A.; Ali, S.; Saeed, M.F.; Qureshi, A.K.; Ullah, M.I.; Khan, Q.M.; Naseem, M.T.; Ashfaq, U.; et al. Insecticide Toxic Effects and Blood Biochemical Alterations in Occupationally Exposed Individuals in Punjab, Pakistan. Sci. Total Environ. 2019, 655, 102–111. [Google Scholar] [CrossRef]
- Nicolopoulou-Stamati, P.; Maipas, S.; Kotampasi, C.; Stamatis, P.; Hens, L. Chemical Pesticides and Human Health: The Urgent Need for a New Concept in Agriculture. Front. Public. Health 2016, 4, 148. [Google Scholar] [CrossRef]
- VoPham, T.; Bertrand, K.A.; Hart, J.E.; Laden, F.; Brooks, M.M.; Yuan, J.-M.; Talbott, E.O.; Ruddell, D.; Chang, C.-C.H.; Weissfeld, J.L. Pesticide Exposure and Liver Cancer: A Review. Cancer Causes Control 2017, 28, 177–190. [Google Scholar] [CrossRef]
- Zanolli, L. Pesticides Explained: The Toxic Chemicals in up to 70% of Produce. Guard, 29 May 2019. [Google Scholar]
- Melaram, R. Environmental Risk Factors Implicated in Liver Disease: A Mini-Review. Front. Public Health 2021, 9, 683719. [Google Scholar] [CrossRef]
- Ahmed, E.A.; Khaled, H.E.; Elsayed, A.K. Long-Term Exposure to p-Nitrophenol Induces Hepatotoxicity via Accelerating Apoptosis and Glycogen Accumulation in Male Japanese Quails. Environ. Sci. Pollut. Res. 2021, 28, 44420–44431. [Google Scholar] [CrossRef] [PubMed]
- Baconi, D.L.; Bârcă, M.; Manda, G.; Ciobanu, A.-M.; Bălălău, C. Investigation of the Toxicity of Some Organophosphorus Pesticides in a Repeated Dose Study in Rats. Rom. J. Morphol. Embryol. 2013, 54, 349–356. [Google Scholar] [PubMed]
- Al-Othman, A.M.; Al-Othman, Z.A.; El-Desoky, G.E.; Yusuf, K.; Aboul-Soud, M.A.M. Ameliorative Effect of α-Tocopherol and Selenium on Effects of Malathion on Plasmatic Biochemical Indices and Lesions in the Liver of Rats. Curr. Pharm. Anal. 2012, 8, 214–218. [Google Scholar] [CrossRef]
- Karami-Mohajeri, S.; Ahmadipour, A.; Rahimi, H.-R.; Abdollahi, M. Adverse Effects of Organophosphorus Pesticides on the Liver: A Brief Summary of Four Decades of Research. Arch. Ind. Hyg. Toxicol. 2017, 68, 261–275. [Google Scholar] [CrossRef]
- Qi, L.; Dong, Y.-M.; Chao, H.; Zhao, P.; Ma, S.-L.; Li, G. Glyphosate Based-Herbicide Disrupts Energy Metabolism and Activates Inflammatory Response through Oxidative Stress in Mice Liver. Chemosphere 2023, 315, 137751. [Google Scholar] [CrossRef]
- Galli, F.S.; Mollari, M.; Tassinari, V.; Alimonti, C.; Ubaldi, A.; Cuva, C.; Marcoccia, D. Overview of Human Health Effects Related to Glyphosate Exposure. Front. Toxicol. 2024, 6, 1474792. [Google Scholar] [CrossRef] [PubMed]
- Petitjean, K.; Verres, Y.; Bristeau, S.; Ribault, C.; Aninat, C.; Olivier, C.; Leroyer, P.; Ropert, M.; Loréal, O.; Herault, O.; et al. Low Concentrations of Ethylene Bisdithiocarbamate Pesticides Maneb and Mancozeb Impair Manganese and Zinc Homeostasis to Induce Oxidative Stress and Caspase-Dependent Apoptosis in Human Hepatocytes. Chemosphere 2024, 346, 140535. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Zhang, C.; Hu, R.; Li, Y.; Yin, Y.; Chen, Z.; Cai, J.; Cui, F. Association between Occupational Exposures to Pesticides with Heterogeneous Chemical Structures and Farmer Health in China. Sci. Rep. 2016, 6, 25190. [Google Scholar] [CrossRef] [PubMed]
- Bernieri, T.; Rodrigues, D.; Randon Barbosa, I.; Perassolo, M.S.; Grolli Ardenghi, P.; Basso da Silva, L. Effect of Pesticide Exposure on Total Antioxidant Capacity and Biochemical Parameters in Brazilian Soybean Farmers. Drug Chem. Toxicol. 2021, 44, 170–176. [Google Scholar] [CrossRef]
- Ismail, A.; Hendy, O.; Rasoul, G.A.; Olson, J.R.; Bonner, M.R.; Rohlman, D.S. Acute and Cumulative Effects of Repeated Exposure to Chlorpyrifos on the Liver and Kidney Function among Egyptian Adolescents. Toxics 2021, 9, 137. [Google Scholar] [CrossRef]
- Jia, X.; Li, Q.; Deng, F.; He, J.; Zhou, J.; Sun, L.; Yuan, J.; Tan, L. Serial Cross-Sectional Human Biomonitoring Analysis of Pesticide Exposure Patterns and Their Association with Lipid Metabolism Biomarkers: The Mediating Role of Liver Function. Environ. Health 2025, 3, 818–830. [Google Scholar] [CrossRef]
- Li, W.; Xiao, H.; Wu, H.; Xu, X.; Zhang, Y. Organophosphate Pesticide Exposure and Biomarkers of Liver Injury/Liver Function. Liver Int. 2022, 42, 2713–2723. [Google Scholar] [CrossRef]
- Dong, Y.; Xu, W.; Liu, S.; Xu, Z.; Qiao, S.; Cai, Y. Serum Albumin and Liver Dysfunction Mediate the Associations between Organophosphorus Pesticide Exposure and Hypertension among US Adults. Sci. Total Environ. 2024, 948, 174748. [Google Scholar] [CrossRef]
- Nguyen, H.D.; Kim, M.-S. Effects of Chemical Mixtures on Liver Function Biomarkers in the Korean Adult Population: Thresholds and Molecular Mechanisms for Non-Alcoholic Fatty Liver Disease Involved. Environ. Sci. Pollut. Res. 2022, 29, 78555–78587. [Google Scholar] [CrossRef]
- Godbole, A.M.; Chen, A.; Vuong, A.M. Associations between Neonicotinoids and Liver Function Measures in US Adults: National Health and Nutrition Examination Survey 2015–2016. Environ. Epidemiol. 2024, 8, e310. [Google Scholar] [CrossRef]
- Manfo, F.P.T.; Mboe, S.A.; Nantia, E.A.; Ngoula, F.; Telefo, P.B.; Moundipa, P.F.; Cho-Ngwa, F. Evaluation of the Effects of Agro Pesticides Use on Liver and Kidney Function in Farmers from Buea, Cameroon. J. Toxicol. 2020, 2020, 2305764. [Google Scholar] [CrossRef] [PubMed]
- Mossa, A.-T.H.; Mohafrash, S.M.M.; Chandrasekaran, N. Safety of Natural Insecticides: Toxic Effects on Experimental Animals. Biomed Res. Int. 2018, 2018, 4308054. [Google Scholar] [CrossRef] [PubMed]
- Feldstein, A.E.; Wieckowska, A.; Lopez, A.R.; Liu, Y.-C.; Zein, N.N.; McCullough, A.J. Cytokeratin-18 Fragment Levels as Noninvasive Biomarker for Nonalcoholic Steatohepatitis: A Multicenter Validation Study. Hepatology 2009, 50, 1072–1078. [Google Scholar] [CrossRef] [PubMed]
- Vos, M.B.; Barve, S.; Joshi-Barve, S.; Carew, J.D.; Whitington, P.F.; McClain, C.J. Cytokeratin 18, a Marker of Cell Death, Is Increased in Children with Suspected Nonalcoholic Fatty Liver Disease. J. Pediatr. Gastroenterol. Nutr. 2008, 47, 481–485. [Google Scholar] [CrossRef]
- Lee, J.; Vali, Y.; Boursier, J.; Duffin, K.; Verheij, J.; Brosnan, M.J.; Zwinderman, K.; Anstee, Q.M.; Bossuyt, P.M.; Zafarmand, M.H. Accuracy of Cytokeratin 18 (M30 and M65) in Detecting Non-Alcoholic Steatohepatitis and Fibrosis: A Systematic Review and Meta-Analysis. PLoS ONE 2020, 15, e0238717. [Google Scholar] [CrossRef]
- Tabuchi, M.; Tomioka, K.; Kawakami, T.; Murakami, Y.; Hiramatsu, M.; Itoshima, T.; Sugawara, S.; Kawashima, A.; Okita, M.; Tsukamoto, I. Serum Cytokeratin 18 M30 Antigen Level and Its Correlation with Nutritional Parameters in Middle-Aged Japanese Males with Nonalcoholic Fatty Liver Disease (NAFLD). J. Nutr. Sci. Vitaminol. 2010, 56, 271–278. [Google Scholar] [CrossRef] [PubMed]
- Lekkas, P.T. Influence of Exposure to Pesticides on Liver Enzymes and Cholinesterase Levels in Male Agriculture Workers. Glob. Nest J. 2014, 16, 1006–1015. [Google Scholar]
- Limdi, J.K.; Hyde, G.M. Evaluation of Abnormal Liver Function Tests. Postgrad. Med. J. 2003, 79, 932. [Google Scholar] [CrossRef]
- Hernández, A.F.; Gómez, M.A.; Pérez, V.; García-Lario, J.V.; Pena, G.; Gil, F.; López, O.; Rodrigo, L.; Pino, G.; Pla, A. Influence of Exposure to Pesticides on Serum Components and Enzyme Activities of Cytotoxicity among Intensive Agriculture Farmers. Environ. Res. 2006, 102, 70–76. [Google Scholar] [CrossRef]
- Pascale, A.; Laborde, A. Impact of Pesticide Exposure in Childhood. Rev. Environ. Health 2020, 35, 221–227. [Google Scholar] [CrossRef]
- US EPA Pesticides and Their Impact on Children. Available online: https://www.epa.gov/sites/default/files/2015-12/documents/pest-impact-hsstaff.pdf (accessed on 7 May 2022).
- Roberts, J.R.; Karr, C.J. Pesticide Exposure in Children. Pediatrics 2012, 130, e1765–e1788. [Google Scholar] [CrossRef]
- Garry, V.F. Pesticides and Children. Toxicol. Appl. Pharmacol. 2004, 198, 152–163. [Google Scholar] [CrossRef] [PubMed]
- NPIC Pesticides and Children. Available online: http://npic.orst.edu/health/child.html (accessed on 7 May 2022).
- Suarez-Lopez, J.R.; Jacobs, D.R.; Himes, J.H.; Alexander, B.H.; Lazovich, D.; Gunnar, M. Lower Acetylcholinesterase Activity among Children Living with Flower Plantation Workers. Environ. Res. 2012, 114, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Suarez-Lopez, J.R.; Jacobs, D.R.; Himes, J.H.; Alexander, B.H. Acetylcholinesterase Activity, Cohabitation with Floricultural Workers, and Blood Pressure in Ecuadorian Children. Environ. Health Perspect. 2013, 121, 619–624. [Google Scholar] [CrossRef]
- Suarez-Lopez, J.R.; Butcher, C.R.; Gahagan, S.; Checkoway, H.; Alexander, B.H.; Al-Delaimy, W.K. Acetylcholinesterase Activity and Time after a Peak Pesticide Use Period among Ecuadorian Children. Int. Arch. Occup. Environ. Health 2018, 91, 157–184. [Google Scholar] [CrossRef]
- González-Andrade, F.; López-Pulles, R.; Estévez, E. Acute Pesticide Poisoning in Ecuador: A Short Epidemiological Report. J. Public Health 2010, 18, 437–442. [Google Scholar] [CrossRef]
- Hussari, M.N.; Chronister, B.N.C.; Yang, K.; Tu, X.; Martinez, D.; Parjuli, R.P.; Suarez-Torres, J.; Barr, D.B.; Hong, S.; Suarez-Lopez, J.R. Associations between Urinary Pesticide Metabolites and Serum Inflammatory Biomarkers in Adolescents Living in an Agricultural Region. Expo. Health 2025, 17, 887–904. [Google Scholar] [CrossRef]
- Suárez-López, J.R.; Nazeeh, N.; Kayser, G.; Suarez-Torres, J.; Checkoway, H.; López-Paredes, D.; Jacobs, D.R.; de la Cruz, F. Residential Proximity to Greenhouse Crops and Pesticide Exposure (via Acetylcholinesterase Activity) Assessed from Childhood through Adolescence. Environ. Res. 2020, 188, 109728. [Google Scholar] [CrossRef]
- Kornher, K.; Gould, C.F.; Manzano, J.M.; Baines, K.; Kayser, G.; Tu, X.; Suarez-Torres, J.; Martinez, D.; Peterson, L.A.; Huset, C.A.; et al. Associations of PFAS and Pesticides with Lung Function Changes from Adolescence to Young Adulthood in the ESPINA Study. Int. J. Hyg. Environ. Health 2025, 265, 114526. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. WHO Child Growth Standards: Length/Height-for-Age, Weight-for-Age, Weight-for-Length, Weight-for-Height and Body Mass Index-for-Age: Methods and Development. Available online: https://www.who.int/publications/i/item/924154693X (accessed on 1 February 2024).
- Skomal, A.E.; Zhang, J.; Yang, K.; Yen, J.; Tu, X.; Suarez-Torres, J.; Lopez-Paredes, D.; Calafat, A.M.; Ospina, M.; Martinez, D.; et al. Concurrent Urinary Organophosphate Metabolites and Acetylcholinesterase Activity in Ecuadorian Adolescents. Environ. Res. 2022, 207, 112163. [Google Scholar] [CrossRef] [PubMed]
- Pardío, V.T.; Ibarra, N.; Rodríguez, M.A.; Waliszewski, K.N. Use of Cholinesterase Activity in Monitoring Organophosphate Pesticide Exposure of Cattle Produced in Tropical Areas. J. Agric. Food Chem. 2001, 49, 6057–6062. [Google Scholar] [CrossRef]
- Baker, S.E.; Serafim, A.B.; Morales-Agudelo, P.; Vidal, M.; Calafat, A.M.; Ospina, M. Quantification of DEET and Neonicotinoid Pesticide Biomarkers in Human Urine by Online Solid-Phase Extraction High-Performance Liquid Chromatography-Tandem Mass Spectrometry. Anal. Bioanal. Chem. 2019, 411, 669–678. [Google Scholar] [CrossRef] [PubMed]
- Caudill, S.P.; Schleicher, R.L.; Pirkle, J.L. Multi-Rule Quality Control for the Age-Related Eye Disease Study. Stat. Med. 2008, 27, 4094–4106. [Google Scholar] [CrossRef]
- Davis, M.D.; Wade, E.L.; Restrepo, P.R.; Roman-Esteva, W.; Bravo, R.; Kuklenyik, P.; Calafat, A.M. Semi-Automated Solid Phase Extraction Method for the Mass Spectrometric Quantification of 12 Specific Metabolites of Organophosphorus Pesticides, Synthetic Pyrethroids, and Select Herbicides in Human Urine. J. Chromatogr. B 2013, 929, 18–26. [Google Scholar] [CrossRef] [PubMed]
- Knuth, D.E. The Art of Computer Programming, 3rd ed.; Addison-Wesley: Reading, MA, USA, 1997; ISBN 978-0-201-89683-1. [Google Scholar]
- Fisher, R.A.; Yates, F. Statistical Tables for Biological, Agricultural Aad Medical Research; Oliver and Boyd: Edinburgh, UK, 1948. [Google Scholar]
- Montesano, M.A.; Olsson, A.O.; Kuklenyik, P.; Needham, L.L.; Bradman, A.S.A.; Barr, D.B. Method for Determination of Acephate, Methamidophos, Omethoate, Dimethoate, Ethylenethiourea and Propylenethiourea in Human Urine Using High-Performance Liquid Chromatography-Atmospheric Pressure Chemical Ionization Tandem Mass Spectrometry. J. Expo. Sci. Environ. Epidemiol. 2007, 17, 321–330. [Google Scholar] [CrossRef]
- Kwon, W.; Kim, J.Y.; Suh, S.; In, M.K. Simultaneous Determination of Creatinine and Uric Acid in Urine by Liquid Chromatography-Tandem Mass Spectrometry with Polarity Switching Electrospray Ionization. Forensic Sci. Int. 2012, 221, 57–64. [Google Scholar] [CrossRef]
- Tobin, J. Estimation of Relationships for Limited Dependent Variables. Econom. J. Econom. Soc. 1958, 26, 24–36. [Google Scholar] [CrossRef]
- Little, R.J.A.; Rubin, D.B. Statistical Analysis with Missing Data, 2nd ed.; A Wiley-Interscience Publication: Hoboken, NJ, USA, 2002; ISBN 0-471-18386-5. [Google Scholar]
- Colantonio, D.A.; Kyriakopoulou, L.; Chan, M.K.; Daly, C.H.; Brinc, D.; Venner, A.A.; Pasic, M.D.; Armbruster, D.; Adeli, K. Closing the Gaps in Pediatric Laboratory Reference Intervals: A CALIPER Database of 40 Biochemical Markers in a Healthy and Multiethnic Population of Children. Clin. Chem. 2012, 58, 854–868. [Google Scholar] [CrossRef]
- Adeli, K.; Higgins, V.; Nieuwesteeg, M.; Raizman, J.E.; Chen, Y.; Wong, S.L.; Blais, D. Biochemical Marker Reference Values across Pediatric, Adult, and Geriatric Ages: Establishment of Robust Pediatric and Adult Reference Intervals on the Basis of the Canadian Health Measures Survey. Clin. Chem. 2015, 61, 1049–1062. [Google Scholar] [CrossRef]
- Keil, A.P.; Buckley, J.P.; O’Brien, K.M.; Ferguson, K.K.; Zhao, S.; White, A.J. A Quantile-Based g-Computation Approach to Addressing the Effects of Exposure Mixtures. Environ. Health Perspect. 2020, 128, 47004. [Google Scholar] [CrossRef] [PubMed]
- Patil, J.A.; Patil, A.J.; Govindwar, S.P. Biochemical Effects of Various Pesticides on Sprayers of Grape Gardens. Indian J. Clin. Biochem. 2003, 18, 16–22. [Google Scholar] [CrossRef]
- García-García, C.R.; Parrón, T.; Requena, M.; Alarcón, R.; Tsatsakis, A.M.; Hernández, A.F. Occupational Pesticide Exposure and Adverse Health Effects at the Clinical, Hematological and Biochemical Level. Life Sci. 2016, 145, 274–283. [Google Scholar] [CrossRef]
- Lozano-Paniagua, D.; Parrón, T.; Alarcón, R.; Requena, M.; López-Guarnido, O.; Lacasaña, M.; Hernández, A.F. Evaluation of Conventional and Non-Conventional Biomarkers of Liver Toxicity in Greenhouse Workers Occupationally Exposed to Pesticides. Food Chem. Toxicol. 2021, 151, 112127. [Google Scholar] [CrossRef]
- Gaikwad, A.S.; Karunamoorthy, P.; Kondhalkar, S.J.; Ambikapathy, M.; Beerappa, R. Assessment of Hematological, Biochemical Effects and Genotoxicity among Pesticide Sprayers in Grape Garden. J. Occup. Med. Toxicol. 2015, 10, 11. [Google Scholar] [CrossRef]
- Malekirad, A.A.; Faghih, M.; Mirabdollahi, M.; Kiani, M.; Fathi, A.; Abdollahi, M. Neurocognitive, Mental Health, and Glucose Disorders in Farmers Exposed to Organophosphorus Pesticides. Arch. Ind. Hyg. Toxicol. 2013, 64, 1–8. [Google Scholar] [CrossRef]
- Hsiao, P.-K.; Lin, Y.-C.; Shih, T.-S.; Chiung, Y.-M. Effects of Occupational Exposure to 1, 4-Dichlorobenzene on Hematologic, Kidney, and Liver Functions. Int. Arch. Occup. Environ. Health 2009, 82, 1077–1085. [Google Scholar] [CrossRef]
- Al-Sarar, A.S.; Abo Bakr, Y.; Al-Erimah, G.S.; Hussein, H.I.; Bayoumi, A.E. Hematological and Biochemical Alterations in Occupationally Pesticides-Exposed Workers of Riyadh Municipality, Kingdom of Saudi Arabia. Res. J. Env. Toxicol. 2009, 3, 179–185. [Google Scholar] [CrossRef]
- Aroonvilairat, S.; Kespichayawattana, W.; Sornprachum, T.; Chaisuriya, P.; Siwadune, T.; Ratanabanangkoon, K. Effect of Pesticide Exposure on Immunological, Hematological and Biochemical Parameters in Thai Orchid Farmers—A Cross-Sectional Study. Int. J. Environ. Res. Public Health 2015, 12, 5846–5861. [Google Scholar] [CrossRef]
- Benedetti, D.; Lopes Alderete, B.; de Souza, C.T.; Ferraz Dias, J.; Niekraszewicz, L.; Cappetta, M.; Martínez-López, W.; Da Silva, J. DNA Damage and Epigenetic Alteration in Soybean Farmers Exposed to Complex Mixture of Pesticides. Mutagenesis 2018, 33, 87–95. [Google Scholar] [CrossRef] [PubMed]
- Verplanke, A.J.W.; Bloemen, L.J.; Brouwer, E.J.; Van Sittert, N.J.; Boogaard, P.J.; Herber, R.F.M.; De Wolff, F.A. Occupational Exposure Tocis-1, 3-Dichloropropene: Biological Effect Monitoring of Kidney and Liver Function. Occup. Environ. Med. 2000, 57, 745–751. [Google Scholar] [CrossRef] [PubMed]
- Fraser, A.; Longnecker, M.P.; Lawlor, D.A. Prevalence of Elevated Alanine Aminotransferase among US Adolescents and Associated Factors: NHANES 1999-2004. Gastroenterology 2007, 133, 1814–1820. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Li, X.; Su, J.; Chen, H.; Zhao, P.; Qian, H.; Gao, X.; Ye, Q.; Zhang, G.; Li, X. Associations of Blood Metals with Liver Function: Analysis of NHANES from 2011 to 2018. Chemosphere 2023, 317, 137854. [Google Scholar] [CrossRef]
- Waxman, D.J.; Holloway, M.G. Sex Differences in the Expression of Hepatic Drug Metabolizing Enzymes. Mol. Pharmacol. 2009, 76, 215–228. [Google Scholar] [CrossRef]
- Soldin, O.P.; Mattison, D.R. Sex Differences in Pharmacokinetics and Pharmacodynamics. Clin. Pharmacokinet. 2009, 48, 143–157. [Google Scholar] [CrossRef]
- Behl, C.; Skutella, T.; Frank, L.; Post, A.; Widmann, M.; Newton, C.J.; Holsboer, F. Neuroprotection against Oxidative Stress by Estrogens: Structure-Activity Relationship. Mol. Pharmacol. 1997, 51, 535–541. [Google Scholar] [CrossRef] [PubMed]
- Mnif, W.; Hassine, A.I.H.; Bouaziz, A.; Bartegi, A.; Thomas, O.; Roig, B. Effect of Endocrine Disruptor Pesticides: A Review. Int. J. Environ. Res. Public Health 2011, 8, 2265–2303. [Google Scholar] [CrossRef]
- Kim, K.-H.; Kabir, E.; Jahan, S.A. Exposure to Pesticides and the Associated Human Health Effects. Sci. Total Environ. 2016, 575, 525–535. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention (CDC). National Health and Nutrition Examination Survey: Laboratory Data; Centers for Disease Control and Prevention (CDC): Hyattsville, MD, USA, 2025. [Google Scholar]
- U.S. Department of Health and Human Services. Fourth National Report on Human Exposure to Environmental Chemicals; U.S. Department of Health & Human Services: Washington, DC, USA, 2021. [Google Scholar]
- Ospina, M.; Schütze, A.; Morales-Agudelo, P.; Vidal, M.; Wong, L.-Y.; Calafat, A.M. Exposure to Glyphosate in the United States: Data from the 2013–2014 National Health and Nutrition Examination Survey. Environ. Int. 2022, 170, 107620. [Google Scholar] [CrossRef] [PubMed]
- Parajuli, R.P.; Chronister, B.N.C.; Barr, D.B.; Suárez-López, J.R. Urinary Pesticide Biomarkers from Adolescence to Young Adulthood in an Agricultural Setting in Ecuador: Study of Secondary Exposure to Pesticides Among Children, Adolescents, and Adults (ESPINA) 2016 and 2022 Examination Data. Data Br. 2025, 61, 111882. [Google Scholar] [CrossRef]
- Bradman, A.; Kogut, K.; Eisen, E.A.; Jewell, N.P.; Quirós-Alcalá, L.; Castorina, R.; Chevrier, J.; Holland, N.T.; Barr, D.B.; Kavanagh-Baird, G.; et al. Variability of Organophosphorous Pesticide Metabolite Levels in Spot and 24-Hr Urine Samples Collected from Young Children during 1 Week. Environ. Health Perspect. 2013, 121, 118–124. [Google Scholar] [CrossRef]
- Griffith, W.; Curl, C.L.; Fenske, R.A.; Lu, C.A.; Vigoren, E.M.; Faustman, E.M. Organophosphate Pesticide Metabolite Levels in Pre-School Children in an Agricultural Community: Within- and between-Child Variability in a Longitudinal Study. Environ. Res. 2011, 111, 751–756. [Google Scholar] [CrossRef] [PubMed]
- Wessels, D.; Barr, D.B.; Mendola, P. Use of Biomarkers to Indicate Exposure of Children to Organophosphate Pesticides: Implications for a Longitudinal Study of Children’s Environmental Health. Environ. Health Perspect. 2003, 111, 1939–1946. [Google Scholar] [CrossRef] [PubMed]
- Wolfe, H.R.; Wash, W.; Durham, W.F.; Fla, P.; Armstrong, J.F.; Wolfe, H.R.; Wash, W.; Durham, W.F.; Fla, P.; Armstrong, J.F. Urinary Excretion of Insecticide Metabolites: Excretion of Para-Nirophenol and Dda as Indicators of Exposure to Parathion. Arch. Environ. Health Int. J. 1970, 21, 711–716. [Google Scholar] [CrossRef] [PubMed]
- Attfield, K.R.; Hughes, M.D.; Spengler, J.D.; Lu, C. Within- and Between-Child Variation in Repeated Urinary Pesticide Metabolite Measurements over a 1-Year Period. Environ. Health Perspect. 2014, 122, 201–206. [Google Scholar] [CrossRef]
- Bradberry, S.M.; Proudfoot, A.T.; Vale, J.A. Glyphosate Poisoning. Toxicol. Rev. 2004, 23, 159–167. [Google Scholar] [CrossRef]
- Jose, J. Statins and Its Hepatic Effects: Newer Data, Implications, and Changing Recommendations. J. Pharm. Bioallied Sci. 2016, 8, 23–28. [Google Scholar] [CrossRef]
- WHO. Application for the Inclusion of Isoniazid for Intravenous Use. Available online: https://cdn.who.int/media/docs/default-source/essential-medicines/2021-eml-expert-committee/applications-for-new-formulations-strengths-of-existing-listed-medicines/f.9_isoniazid-iv.pdf?sfvrsn=60d1bba_4#:~:text=individuals,patients%20treated%20with%20the%20drug (accessed on 12 August 2025).
- Chronister, B.N.C.; Kayser, G.L.; de la Cruz, F.; Suarez-Torres, J.; Lopez-Paredes, D.; Gahagan, S.; Checkoway, H.; Jankowska, M.M.; Suarez-Lopez, J.R. Relationships of Residential Distance to Greenhouse Floriculture and Organophosphate, Pyrethroid, and Neonicotinoid Urinary Metabolite Concentration in Ecuadorian Adolescents. Int. J. Health Geogr. 2025, 24, 9. [Google Scholar] [CrossRef] [PubMed]
Overall | 3-PBA Tertiles ^ | ||||
---|---|---|---|---|---|
Lower | Middle | Higher | p-Trend | ||
ESPINA Jul-Oct 2016 | |||||
Range (µg/L) | 0.102–14.20 | 0.102–0.297 | 0.298–0.598 | 0.60–14.20 | |
N Participants | 528 | 151 | 146 | 148 | |
Age (years) | 14.46 (1.76) | 14.63 (1.74) | 14.15 (1.72) | 14.56 (1.79) | 0.453 |
Sex, Male | 49.2% | 53.0% | 42.5% | 51.4% | 0.349 |
Ethnicity (Indigenous) | 21.8% | 26.5% | 24.0% | 14.2% | 0.026 |
Ethnicity (Mestizo) | 78.2% | 73.5% | 76.0% | 85.8% | |
Lived with an agricultural worker | 334 (67.89%) | 118 (71.95) | 113 (68.90) | 103 (62.80) | 0.196 |
Body Mass Index (BMI), (kg/m2) | 20.94 (2.95) | 20.92 (2.93) | 21.05 (3.18) | 20.84 (2.74) | 0.808 |
BMI-for-age Z Score | 0.38 (0.86) | 0.37 (0.82) | 0.44 (0.89) | 0.36 (0.90) | 0.043 |
Creatinine (g/dL) | 103.43 (64.20) | 84.15 (49.47) | 100.57 (56.72) | 138.96 (70.26) | <0.001 |
Estimated Specific Gravity (mg/dL) | 1.021 (0.006) | 1.019 (0.005) | 1.021 (0.005) | 1.024 (0.005) | <0.001 |
Hemoglobin (g/dL) | 12.95 (1.18) | 13.00 (1.13) | 12.88 (1.13) | 13.04 (1.22) | 0.220 |
ALT (U/L) | 10.50 (6.64) | 10.46 (6.25) | 10.39 (6.20) | 10.54 (8.23) | 0.191 |
AST (U/L) | 15.69 (6.25) | 15.89 (6.08) | 15.53 (5.18) | 15.43 (7.74) | 0.111 |
Cytokeratin 18 (M30) (U/L) | 115.42 (409.95) | 103.14 (113.14) | 168.82 (770.55) | 88.73 (61.26) | 0.543 |
Cytokeratin 18 (M65) (U/L) | 134.11 (158.09) | 133.90 (121.82) | 150.15 (258.29) | 124.10 (81.95) | 0.874 |
Acetylcholinesterase (U/mL) | 3.70 (0.55) | 3.74 (0.56) | 3.69 (0.56) | 3.70 (0.54) | 0.137 |
ESPINA Jul-Sep 2022 | |||||
Range (µg/L) | 0.071–14.00 | 0.071–0.34 | 0.35–0.67 | 0.68–14.00 | |
No. of Participants (N) | 487 | 166 | 160 | 161 | |
Age (years) | 20.31 (1.81) | 20.31 (1.79) | 20.26 (1.75) | 20.36 (1.89) | 0.695 |
Sex, % Male | 50.5% | 51.8% | 46.2% | 53.4% | 0.816 |
Race (Indigenous) | 22.4% | 27.7% | 21.2% | 18.0% | 0.960 |
Race (Mixed) | 77.6% | 72.3% | 78.8% | 82.0% | 0.960 |
Lived with an agricultural worker | 301 (63.91) | 98 (61.64%) | 105 (67.74%) | 98 (62.42%) | 0.273 |
BMI (kg/m2) | 23.96 (3.47) | 23.93 (3.61) | 23.47 (3.29) | 24.49 (3.45) | 0.404 |
Specific Gravity (mg/dL) | 1.019 (0.01) | 1.016 (0.01) | 1.019 (0.00) | 1.022 (0.01) | <0.001 |
ALT (U/L) | 24.42 (17.27) | 25.95 (21.48) | 22.64 (12.29) | 24.62 (16.58) | 0.453 |
AST (U/L) | 30.26 (12.38) | 30.93 (15.02) | 29.34 (8.06) | 30.50 (12.91) | 0.837 |
Acetylcholinesterase (U/mL) | 4.42 (0.65) | 4.41 (0.62) | 4.47 (0.65) | 4.37 (0.67) | 0.646 |
Metabolites | Difference in Liver Biomarker Concentration per 50% Increase in Pesticide Biomarker Concentration ([95%CI], FDR-Corrected p-Value) | |||
---|---|---|---|---|
ng/mL | ALT (U/L) | AST (U/L) | CK18 M30 | CK18 M65 |
2,4-D | 0.01 ([−0.31, 0.33], 0.95) | 0.15 ([−0.18, 0.49], 0.78) | −10.96 ([−37.00, 15.09], 0.78) | 1.55 ([−7.65, 10.75], 0.95) |
AChE * | 0.25 ([−0.82, 1.32], 0.92) | 1.10 ([0.01, 2.19], 0.40) | 31.19 ([−8.71, 71.10], 0.65) | 15.38 ([−4.78, 35.53], 0.65) |
TCPy | −0.01 ([−0.25, 0.22], 0.95) | 0.01 ([−0.23, 0.25], 0.95) | −12.65 ([−33.52, 8.21], 0.71) | −5.37 ([−13.47, 2.74], 0.67) |
PNP | −0.06 ([−0.43, 0.31], 0.95) a | −0.12 ([−0.54, 0.29], 0.91) | −7.34 ([−23.87, 9.20], 0.78) | 1.86 ([−7.36, 11.08], 0.95) |
3-PBA | 0.08 ([−0.16, 0.32], 0.90) 1,± | −0.07 ([−0.28, 0.15], 0.90) 2 | −2.98 ([−8.50, 2.55], 0.75) | 0.71 ([−2.84, 4.27], 0.95) 3 |
Glyphosate | 0.10 ([−0.08, 0.28], 0.75) b | 0.06 ([−0.06, 0.18], 0.75) | 4.21 ([−2.04, 10.47], 0.67) | 2.05 ([−1.32, 5.43], 0.71) |
ETU | −0.16 ([−0.43, 0.10], 0.71) | −0.12 ([−0.49, 0.25], 0.90) | −3.61 ([−7.94, 0.71], 0.60) | −3.40 ([−7.37, 0.57], 0.60) |
PTU | 0.11 ([−0.20, 0.41], 0.90) | 0.24 ([−0.17, 0.65], 0.73) | −0.92 ([−3.87, 2.02], 0.90) | 0.61 ([−3.05, 4.26], 0.95) |
Metabolites | Difference in Liver Biomarker Concentration per 50% Increase in Pesticide Biomarker Concentration ([95%CI], FDR-Corrected p-Value) | |
---|---|---|
ng/mL | ALT (U/L) | AST (U/L) |
2,4-D | −0.13 ([−0.88, 0.62], 0.95) | 0.25 ([−0.36, 0.85], 0.84) a |
AChE * | 1.83 ([−0.66, 4.32], 0.63) | 0.82 ([−0.99, 2.63], 0.84) |
AND | −0.08 ([−0.54, 0.38], 0.95) | −0.10 ([−0.43, 0.23], 0.88) |
TCPy | −0.03 ([−0.79, 0.72], 0.95) | 0.25 ([−0.32, 0.83], 0.84) |
PNP | −0.16 ([−1.23, 0.92], 0.95) | 0.37 ([−0.37, 1.10], 0.84) b |
3-PBA | −0.31 ([−1.21, 0.58], 0.86) | 0.02 ([−0.76, 0.80], 0.95) |
Metabolites | Difference in Liver Biomarker Concentration per 50% Increase in Pesticide Biomarkers ([95%CI], FDR-Corrected p-Value) | |
---|---|---|
ng/mL | ALT (U/L) | AST (U/L) |
2,4-D | −0.06 ([−0.47, 0.35], 0.92) | 0.23 ([−0.12, 0.58], 0.57) |
AChE * | 0.66 ([−0.74, 2.06], 0.72) | 0.67 ([−0.35, 1.69], 0.57) |
AND | 0.01 ([−0.28, 0.30], 0.94) | 0.02 ([−0.22, 0.26], 0.86) |
TCPy | −0.05 ([−0.48, 0.38], 0.92) | 0.18 ([−0.17, 0.52], 0.66) |
3-PBA | −0.02 ([−0.39, 0.35], 0.94) | 0.03 ([−0.32, 0.38], 0.86) |
PNP | −0.10 ([−0.77, 0.57], 0.92) | 0.19 ([−0.29, 0.67], 0.73) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mehta, P.; Parajuli, R.P.; Chronister, B.N.C.; Yang, K.; Barr, D.B.; Tu, X.M.; Lopez-Paredes, D.; Suarez-Lopez, J.R. Pesticide and Liver Biomarkers Among Ecuadorian Adolescents and Adults Living in Agricultural Settings. Toxics 2025, 13, 685. https://doi.org/10.3390/toxics13080685
Mehta P, Parajuli RP, Chronister BNC, Yang K, Barr DB, Tu XM, Lopez-Paredes D, Suarez-Lopez JR. Pesticide and Liver Biomarkers Among Ecuadorian Adolescents and Adults Living in Agricultural Settings. Toxics. 2025; 13(8):685. https://doi.org/10.3390/toxics13080685
Chicago/Turabian StyleMehta, Priyanka, Rajendra P. Parajuli, Briana N. C. Chronister, Kun Yang, Dana B. Barr, Xin M. Tu, Dolores Lopez-Paredes, and Jose R. Suarez-Lopez. 2025. "Pesticide and Liver Biomarkers Among Ecuadorian Adolescents and Adults Living in Agricultural Settings" Toxics 13, no. 8: 685. https://doi.org/10.3390/toxics13080685
APA StyleMehta, P., Parajuli, R. P., Chronister, B. N. C., Yang, K., Barr, D. B., Tu, X. M., Lopez-Paredes, D., & Suarez-Lopez, J. R. (2025). Pesticide and Liver Biomarkers Among Ecuadorian Adolescents and Adults Living in Agricultural Settings. Toxics, 13(8), 685. https://doi.org/10.3390/toxics13080685