Heavy Metals in Infant Clothing: Assessing Dermal Exposure Risks and Pathways for Sustainable Textile Policies
Abstract
1. Introduction
2. Materials and Methods
2.1. Collection and Preparation of Samples
2.2. Determination of Heavy Metals in Clothing
2.3. Exposure Levels Through Direct Skin-Contact Clothes
2.4. Framework for Evaluating Health Risks
- HQ = Expdermal/RfDdermal
- CR = Expdermal× SFdermal
- HI = ∑HQ
2.5. Artificial Sweat Extraction from Clothes and Cell Experiment
2.6. Cell Culture and Viability Detection
2.7. ROS Detection Method
2.8. Quality Control and Statistical Analysis
3. Results and Discussion
3.1. Heavy Metal Level in Clothing Samples
3.2. Hazard Quotient (HQ) and Carcinogenic Risk (CR) Assessment
3.3. Bioaccessibility of Heavy Metal in Artificial Sweat
3.4. Clothing Bioaccessible Extract Changed Cellular Morphology and Viability
3.5. Clothing Extracts Triggered Cellular Oxidative Damage
4. Conclusions and Suggestions
- (1)
- Regulatory Upgrades: Revise OEKO-TEX Class I limits for Cd in infant wear and mandate bioaccessibility testing for Cr, especially in synthetic dyes.
- (2)
- Green Chemistry Incentives: Subsidize non-metal dye alternatives (e.g., plant-based pigments) and adopt extended producer responsibility (EPR) frameworks.
- (3)
- Global Harmonization: Strengthen labeling transparency across supply chains, prioritizing the EU’s REACH and ASEAN’s chemical safety protocols as benchmarks.
- (4)
- Preventive measures: Wash new clothing thoroughly before use to eliminate heavy metal residues from dyes and avoid extended sweat saturation.
- (5)
- Source control: Opt for natural fibers (cotton, hemp, wool) instead of high-risk synthetics like PVC-coated fabrics and avoid using electroplated accessories containing Cr or Cd.
5. Limitations and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- De Oliveira, C.S.F.; Tavaria, F.K. The impact of bioactive textiles on human skin microbiota. Eur. J. Pharm. Biopharm. 2023, 188, 66–77. [Google Scholar] [CrossRef] [PubMed]
- Rujido-Santos, I.; Herbello-Hermelo, P.; Barciela-Alonso, M.C.; Bermejo-Barrera, P.; Moreda-Piñeiro, A. Metal Content in Textile and (Nano)Textile Products. Int. J. Environ. Res. Public Health 2022, 19, 944. [Google Scholar] [CrossRef]
- Rovira, J.; Nadal, M.; Schuhmacher, M.; Domingo, J.L. Human exposure to trace elements through the skin by direct contact with clothing: Risk assessment. Environ. Res. 2015, 140, 308–316. [Google Scholar] [CrossRef]
- Rovira, J.; Nadal, M.; Schuhmacher, M.; Domingo, J.L. Trace elements in skin-contact clothes and migration to artificial sweat: Risk assessment of human dermal exposure. Text. Res. J. 2017, 87, 726–738. [Google Scholar] [CrossRef]
- Herrero, M.; Rovira, J.; González, N.; Marquès, M.; Barbosa, F.; Sierra, J.; Domingo, J.L.; Nadal, M.; Souza, M.C.O. Clothing as a potential exposure source of trace elements during early life. Environ. Res. 2023, 233, 116479. [Google Scholar] [CrossRef]
- Kawakami, T.; Isama, K.; Ikarashi, Y. Chromium and cobalt concentrations in textile products and the amounts eluted into artificial sweat. J. Environ. Chem. 2020, 30, 23–28. [Google Scholar] [CrossRef]
- Rovira, J.; Nadal, M.; Schuhmacher, M.; Domingo, J.L. Home textile as a potential pathway for dermal exposure to trace elements: Assessment of health risks. J. Text. Inst. 2017, 108, 1966–1974. [Google Scholar] [CrossRef]
- Nguyen, T.; Saleh, M.A. Exposure of women to trace elements through the skin by direct contact with underwear clothing. J. Environ. Sci. Health Part A 2017, 52, 1–6. [Google Scholar] [CrossRef]
- Sima, M.F. Determination of some heavy metals and their health risk in T-shirts printed for a special program. PLoS ONE 2022, 17, e0274952. [Google Scholar] [CrossRef]
- Zuo, C.; Li, Y.; Chen, Y.; Jiang, J.; Qiu, W.; Chen, Q. Leaching of heavy metals from polyester microplastic fibers and the potential risks in simulated real-world scenarios. J. Hazard. Mater. 2024, 461, 132639. [Google Scholar] [CrossRef]
- Bielak, E.; Marcinkowska, E. Heavy metals in leathers, artificial leathers, and textiles in the context of quality and safety of use. Sci. Rep. 2022, 12, 5061. [Google Scholar] [CrossRef]
- Leme, D.M.; de Oliveira, G.A.R.; Meireles, G.; dos Santos, T.C.; Zanoni, M.V.B.; de Oliveira, D.P. Genotoxicological assessment of two reactive dyes extracted from cotton fibres using artificial sweat. Toxicol. In Vitro 2014, 28, 31–38. [Google Scholar] [CrossRef]
- Fage, S.W.; Faurschou, A.; Thyssen, J.P. Copper hypersensitivity. Contact Dermat. 2014, 71, 191–201. [Google Scholar] [CrossRef]
- Simonsen, A.B.; Deleuran, M.; Mortz, C.G.; Johansen, J.D.; Sommerlund, M. Allergic contact dermatitis in Danish children referred for patch testing—A nationwide multicentre study. Contact Dermat. 2014, 70, 104–111. [Google Scholar] [CrossRef] [PubMed]
- Herrero, M.; Rovira, J.; Nadal, M.; Domingo, J.L. Risk assessment due to dermal exposure of trace elements and indigo dye in jeans: Migration to artificial sweat. Environ. Res. 2019, 172, 310–318. [Google Scholar] [CrossRef]
- Roy, A.; Kordas, K.; Lopez, P.; Rosado, J.L.; Cebrian, M.E.; Vargas, G.G.; Ronquillo, D.; Stoltzfus, R.J. Association between arsenic exposure and behavior among first-graders from Torreon, Mexico. Environ. Res. 2011, 111, 670–676. [Google Scholar] [CrossRef] [PubMed]
- Nyamukamba, P.; Bantom, C.; Mququ, Z.; Ngcobo, T.; Isaacs, S. Determination of the Levels of Heavy Metals and Formaldehyde in Baby Clothes in South Africa: A Case Study of Stores in the Greater Cape Town Region. J. Spectrosc. 2020, 2020, 5084062. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, Z.; Ross, A.; Huang, Z.; Chang, W.; Ou-Yang, K.; Chen, Y.; Wu, C. Determination of heavy metals in leather and fur by microwave plasma-atomic emission spectrometry. Spectrochim. Acta Part B At. Spectrosc. 2015, 112, 6–9. [Google Scholar] [CrossRef]
- Rezić, I.; Steffan, I. ICP-OES determination of metals present in textile materials. Microchem. J. 2007, 85, 46–51. [Google Scholar] [CrossRef]
- Sungur, Ş.; Gülmez, F. Determination of Metal Contents of Various Fibers Used in Textile Industry by MP-AES. J. Spectrosc. 2015, 2015, 640271. [Google Scholar] [CrossRef]
- Chen, H.; Cheng, J.; Li, Y.; Li, Y.; Wang, J.; Tang, Z. Occurrence and potential release of heavy metals in female underwear manufactured in China: Implication for women’s health. Chemosphere 2023, 342, 140165. [Google Scholar] [CrossRef]
- Bruzzoniti, M.C.; Schilirò, T.; Gea, M.; Rivoira, L. Determination of hexavalent chromium in textiles of daily use by ion chromatography and dermal risk assessment. Environ. Res. 2024, 242, 117731. [Google Scholar] [CrossRef] [PubMed]
- ISO 3071:2005; Textiles—Determination of pH of Aqueous Extract. International Organization for Standardization (ISO): Geneva, Switzerland, 2005.
- European Chemicals Agency. Chapter R.15: Consumer Exposure Estimation. Guidance for the Implementation of REACH. In Guidance on Information Requirements and Chemical Safety Assessment; ECHA: Helsinki, Finland, 2012; Version: 2.1. [Google Scholar]
- Herrero, M.; Rovira, J.; Esplugas, R.; Nadal, M.; Domingo, J.L. Human exposure to trace elements, aromatic amines and formaldehyde in swimsuits: Assessment of the health risks. Environ. Res. 2020, 181, 108951. [Google Scholar] [CrossRef] [PubMed]
- BfR, Bundesinstitut für Risikobewertung. Introduction to the Problems Surrounding Garment Textiles. Updated BfR Opinion No. 041/2012, 6 July 2012. Available online: http://www.bfr.bund.de/en/health_assessment_of_textiles-531.html (accessed on 15 February 2012).
- United States Environmental Protection Agency. Exposure Factors Handbook: 2011 Edition; National Center for Environmental Assessment: Washington, DC, USA, 2011; EPA/600/R-09/052F. [Google Scholar]
- United States Environmental Protection Agency. Risk Assessment Guidance for Superfund, Vol. I: Human Health Evaluation Manual; United States Environmental Protection Agency: Washington, DC, USA, 1989; EPA/540/1-89/002. [Google Scholar]
- ISO 3160/2; Watch-Cases and Accessories—Gold Alloy Coverings. International Organization for Standardization (ISO): Geneva, Switzerland, 2015.
- GB/T 17593-2013; Test Methods for Intergranular Corrosion of Stainless Steels. Standardization Administration of China: Beijing, China, 2013.
- Sun, M.; Wang, Z.; Cao, Z.; Dong, Z. Infants exposure to chemicals in diapers: A review and perspective. Sci. Total Environ. 2024, 953, 176072. [Google Scholar] [CrossRef]
- OEKO-TEX. OEKO-TEX Standard 100. Limit Values and Fastness. Available online: https://www.oeko-tex.com/importedmedia/downloadfiles/OEKO-TEX_STANDARD_100_Limit_Values_and_Individual_Substances_According_to_Appendices_4_5_EN_DE.pdf (accessed on 15 January 2012).
- Oginawati, K.; Susetyo, S.H.; Sulung, G.; Chazanah, N.; Kusumah, S.W.D.; Fahimah, N. Investigation of dermal exposure to heavy metals (Cu, Zn, Ni, Al, Fe and Pb) in traditional batik industry workers. Heliyon 2022, 8, e08914. [Google Scholar] [CrossRef] [PubMed]
- Howard, J.A.; David, L.; Lux, F.; Tillement, O. Low-level, chronic ingestion of lead and cadmium: The unspoken danger for at-risk populations. J. Hazard. Mater. 2024, 478, 135361. [Google Scholar] [CrossRef]
- Ding, M.; Shi, S.; Qie, S.; Li, J.; Xi, X. Association between heavy metals exposure (cadmium, lead, arsenic, mercury) and child autistic disorder: A systematic review and meta-analysis. Front. Pediatr. 2023, 11, 1169733. [Google Scholar] [CrossRef]
- Hussein Ali, B.; Abojassim, A.A. Health risks assessment from heavy metals in care products materials for newborns in Iraq. Int. J. Environ. Anal. Chem. 2025, 1–16. [Google Scholar] [CrossRef]
- Jiao, Q.; Zhi, L.; You, B.; Wang, G.; Wu, N.; Jia, Y. Skin homeostasis: Mechanism and influencing factors. J. Cosmet. Dermatol. 2024, 23, 1518–1526. [Google Scholar] [CrossRef]
- Matoso, E.; Cadore, S. Determination of inorganic contaminants in polyamide textiles used for manufacturing sport T-shirts. Talanta 2012, 88, 496–501. [Google Scholar] [CrossRef]
- Li, J.; Cui, D.; Yang, Z.; Ma, J.; Liu, J.; Yu, Y.; Huang, X.; Xiang, P. Health risk assessment of heavy metal (loid) s in road dust via dermal exposure pathway from a low latitude plateau provincial capital city: The importance of toxicological verification. Environ. Res. 2024, 252, 118890. [Google Scholar] [CrossRef]
- Al-Dhubaibi, M.S.; Mohammed, G.F.; Bahaj, S.S.; AbdElneam, A.I.; Al-Dhubaibi, A.M.; Atef, L.M. The Role of Keratinocytes in Skin Health and Disease. Dermatol. Rev. 2025, 6, e70028. [Google Scholar] [CrossRef]
- Wang, C.; Shang, H.; Zhang, S.; Wang, X.; Liu, D.; Shen, M.; Li, N.; Jiang, Y.; Wei, K.; Zhu, R. Hexavalent chromium disrupts the skin barrier by targeting ROS-mediated mitochondrial pathway apoptosis in keratinocytes. Chem.-Biol. Interact. 2023, 379, 110523. [Google Scholar] [CrossRef] [PubMed]
- Khalef, L.; Lydia, R.; Filicia, K.; Moussa, B. Cell viability and cytotoxicity assays: Biochemical elements and cellular compartments. Cell Biochem. Funct. 2024, 42, e4007. [Google Scholar] [CrossRef] [PubMed]
- Nicolas-Mendez, T.; Ortiz-Muñiz, A.R.; Mendoza-Núñez, V.M.; García-Rodríguez, M.D.C. The role of resveratrol on heavy metal-induced oxidative stress. Nutr. Hosp. 2020, 37, 374–383. [Google Scholar] [PubMed]
- Aguilar-Bañuelos, J.A.; Bernal-Hernández, Y.Y.; Medina-Díaz, I.M.; Ruiz-Arias, M.A.; Herrera-Moreno, J.F.; Barrón-Vivanco, B.S.; González-Arias, C.A.; Agraz-Cibrián, J.M.; Zambrano-Zaragoza, J.F.; Verdín-Betancourt, F.A. Environmental exposure to pesticides is associated with oxidative stress, oxidative DNA damage, and elevated interleukin-8 in a child population. Environ. Toxicol. Pharmacol. 2025, 114, 104656. [Google Scholar] [CrossRef]
- An, X.; Yu, W.; Liu, J.; Tang, D.; Yang, L.; Chen, X. Oxidative cell death in cancer: Mechanisms and therapeutic opportunities. Cell Death Dis. 2024, 15, 556. [Google Scholar] [CrossRef]
- Chen, R.-J.; Lee, Y.-H.; Yeh, Y.-L.; Wang, Y.-J.; Wang, B., Jr. The Roles of Autophagy and the Inflammasome during Environmental Stress-Triggered Skin Inflammation. Int. J. Mol. Sci. 2016, 17, 2063. [Google Scholar] [CrossRef]
n = 33 | Materials | Color | Density | pH |
---|---|---|---|---|
1 | 60% Cot; 33% PET; 7% PA | Pale yellow | 16 | 7.90 |
2 | 100% PA | White | 18 | 7.80 |
3 | 100% Ct | Orange | 22 | 7.60 |
4 | 70% E; 30% PET | Black | 12 | 8.00 |
5 | 90% Cot; 10% E | Grass green | 28 | 6.48 |
6 | 100% Ct | Mint green | 8 | 6.01 |
7 | 60% Vs; 21% PET; 19% PA | Blue | 7 | 9.77 |
8 | 100% PET | Red | 15 | 5.67 |
9 | 80% Vs; 20% PA | Dark gray | 32 | 3.48 |
10 | 100% PA | Brown | 15 | 7.71 |
11 | 74% E; 26% PA | Pink | 14 | 6.57 |
12 | 100% Cot | Pink and white intersect | 11 | 6.88 |
13 | 62% PET; 38% PA | Light orange | 7 | 7.73 |
14 | 55% Vs; 45% E | Purple | 6 | 6.99 |
15 | 90% PET; 5% PA; 5% E | Pale yellow | 17 | 6.89 |
16 | 100% Ct | White | 13 | 7.00 |
17 | 57% Vs; 23% E; 20% PA | Pale yellow | 14 | 3.95 |
18 | 100% Cot | Indigo | 26 | 7.67 |
19 | 40% E; 30% PET; 30% PA | Black | 18 | 7.09 |
20 | 65% Cot; 25% PET; 10%Vs | Baby blue | 36 | 6.15 |
21 | 100% Vs | White | 5 | 6.55 |
22 | 66% PA; 44% PET | Sky blue | 12 | 6.82 |
23 | 100% PET | Dark red | 16 | 7.13 |
24 | 70% Cot; 15% PA; 15% PET | Khaki | 21 | 6.99 |
25 | 100% Ct | Dark orange | 23 | 6.48 |
26 | 73% E; 27% PA | Lilac | 25 | 6.54 |
27 | 100% PA | Modena | 26 | 7.44 |
28 | 91% E; 9% PET | Navy blue | 16 | 8.13 |
29 | 100% Cot | Charcoal | 19 | 8.28 |
30 | 100% PET | Maroon | 13 | 7.30 |
31 | 60% PET; 20% E; 20% PA | Rose | 14 | 7.28 |
32 | 100% Ct | Denim blue | 22 | 7.56 |
33 | 70% Cot; 25% PA; 5% E | White | 33 | 7.34 |
Variable | Implication | Value | Unit | Data Source |
---|---|---|---|---|
dcloth | Cloth surface density | Table 1 | mg/cm2 | Present study |
Ccloth | Concentration of element in cloth | Table 5 | mg/kg | Present study |
Fmig | Fraction of metal migrating to the skin per day | 0.005 | 1/d | [4] |
Fpen | Fraction of penetration inside the body | 0.01 (As 0.03) | Unitless | [25] |
Fcontact | Fraction of contact area for skin | 1 | Unitless | [3,7] |
Tcontact | Contact duration between skin textile | 1 | d | Assumed |
BW | Body weight of an adult male Body weight of an adult woman Infants under 1 year old | 70 60 6.98 | 70 60 6.98 | [26,27] |
Askin | Skin area of an adult male (T-shirt/underwear) Skin area of an adult woman (blouse/underwear) Skin area of infants under 1 year old (One-piece pajamas) | 7120/1980 6941/1723 2754 | cm2 | [27] |
n | Mean number of events per day | 1 | d | Assumed |
Element | RfDdermal (mg·kg−1·d−1) | SFdermal (kg·d·mg−1) |
---|---|---|
As | 3.00 × 10−4 | 1.50 × 100 |
Cd | 5.00 × 10−8 | - |
Cr | 7.50 × 10−5 | 2.00 × 10−1 |
Cu | 4.00 × 10−2 | - |
Mn | 1.40 × 10−1 | - |
Ni | 8.00 × 10−4 | - |
Fe | 7.00 × 10−1 | - |
Zn | 3.00 × 10−1 | - |
Reagent | Lactic Acid | Urea | Sodium Chloride | Deionized Water. |
---|---|---|---|---|
Content | 0.1 wt% | 0.1 wt% | 0.5 wt% | 1 L |
As | Cd | Cr | Cu | Mn | Ni | Pb | Zn | Fe | |
---|---|---|---|---|---|---|---|---|---|
Mean | 1.01 | 0.16 | 1.98 | 11.30 | 2.16 | 1.51 | 0.19 | 13.83 | 31.68 |
S.D | 0.30 | 0.04 | 1.12 | 5.14 | 0.60 | 0.71 | 0.09 | 6.96 | 17.79 |
Maximum | 1.87 | 0.25 | 4.32 | 23.92 | 3.61 | 3.45 | 0.47 | 27.38 | 83.85 |
Minimum | 0.53 | 0.09 | 0.23 | 2.80 | 1.24 | 0.62 | 0.07 | 3.18 | 4.84 |
Heavy Matals | As | Cd | Cr | Cu | Mn | Ni | Pb | Zn | Fe |
---|---|---|---|---|---|---|---|---|---|
Baby wear (I) | 0.2 | 0.1 | 1.0 | 25.0 | - | 1.0 | 0.2 | - | - |
With skin contact (II) | 1.0 | 0.1 | 2.0 | 50.0 | - | 4.0 | 1.0 | - | - |
Without skin contact (III) | 1.0 | 0.1 | 2.0 | 50.0 | - | 4.0 | 1.0 | - | - |
Accessories | 1.0 | 0.1 | 2.0 | 50.0 | - | 4.0 | 1.0 | - | - |
Element | HQ | ||||
---|---|---|---|---|---|
Male T-Shirt | Male Underwear | Woman Blouse | Woman Underwear | Infants | |
As | 9.22 × 10−4 | 2.56 × 10−4 | 1.05 × 10−3 | 2.60 × 10−4 | 3.58 × 10−3 |
Cd | 2.88 × 10−1 | 8.00 × 10−2 | 3.27 × 10−1 | 8.12 × 10−2 | 1.12 × 100 |
Cr | 2.49 × 10−3 | 6.94 × 10−4 | 2.84 × 10−3 | 7.04 × 10−4 | 9.68 × 10−3 |
Cu | 2.67 × 10−5 | 7.42 × 10−6 | 3.04 × 10−5 | 7.53 × 10−6 | 1.04 × 10−4 |
Mn | 1.42 × 10−6 | 3.96 × 10−7 | 1.62 × 10−6 | 4.02 × 10−7 | 5.53 × 10−6 |
Ni | 1.75 × 10−4 | 4.86 × 10−5 | 1.99 × 10−4 | 4.94 × 10−5 | 6.78 × 10−4 |
Pb | 2.41 × 10−6 | 6.69 × 10−7 | 2.74 × 10−6 | 6.79 × 10−7 | 9.33 × 10−6 |
Zn | 4.05 × 10−6 | 1.13 × 10−6 | 4.61 × 10−6 | 1.14 × 10−6 | 1.57 × 10−5 |
Fe | 4.05 × 10−6 | 1.12 × 10−6 | 4.60 × 10−6 | 1.14 × 10−6 | 8.27 × 10−7 |
HI | 2.91 × 10−1 | 8.10 × 10−2 | 3.31 × 10−1 | 8.22 × 10−2 | 1.13 × 100 |
Element | CR | ||||
---|---|---|---|---|---|
Male T-Shirt | Male Underwear | Woman Blouse | Woman Underwear | Infants | |
As | 4.15 × 10−7 | 1.15 × 10−7 | 4.72 × 10−7 | 1.17 × 10−7 | 1.61 × 10−6 |
Cr | 1.12 × 10−5 | 3.12 × 10−6 | 1.28 × 10−5 | 3.17 × 10−6 | 4.35 × 10−5 |
As | Cd | Cr | Cu | Mn | Ni | Pb | Zn | Fe | |
---|---|---|---|---|---|---|---|---|---|
Mean | 0.13 | 0.01 | 0.75 | 1.67 | 0.60 | 0.43 | - | 2.77 | - |
S.D | 0.17 | 0.01 | 0.55 | 0.73 | 0.54 | 0.18 | - | 1.79 | - |
Maximum | 0.16 | 0.02 | 1.33 | 3.18 | 1.68 | 0.64 | - | 5.03 | - |
Minimum | 0.07 | 0.01 | 0.06 | 0.63 | 0.06 | 0.19 | - | 0.33 | - |
Bioaccessibility | 12.91% | 6.33% | 37.78% | 14.78% | 27.63% | 28.51% | - | 20.02% | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiong, M.; Cui, D.; Cheng, Y.; Ma, Z.; Liu, C.; Yan, C.; Li, L.; Xiang, P. Heavy Metals in Infant Clothing: Assessing Dermal Exposure Risks and Pathways for Sustainable Textile Policies. Toxics 2025, 13, 622. https://doi.org/10.3390/toxics13080622
Xiong M, Cui D, Cheng Y, Ma Z, Liu C, Yan C, Li L, Xiang P. Heavy Metals in Infant Clothing: Assessing Dermal Exposure Risks and Pathways for Sustainable Textile Policies. Toxics. 2025; 13(8):622. https://doi.org/10.3390/toxics13080622
Chicago/Turabian StyleXiong, Mei, Daolei Cui, Yiping Cheng, Ziya Ma, Chengxin Liu, Chang’an Yan, Lizhen Li, and Ping Xiang. 2025. "Heavy Metals in Infant Clothing: Assessing Dermal Exposure Risks and Pathways for Sustainable Textile Policies" Toxics 13, no. 8: 622. https://doi.org/10.3390/toxics13080622
APA StyleXiong, M., Cui, D., Cheng, Y., Ma, Z., Liu, C., Yan, C., Li, L., & Xiang, P. (2025). Heavy Metals in Infant Clothing: Assessing Dermal Exposure Risks and Pathways for Sustainable Textile Policies. Toxics, 13(8), 622. https://doi.org/10.3390/toxics13080622