A Novel Approach to Estimate Mercury Exposure Risks Through Fish Consumption Based on the Selenium–Mercury Molar Ratio
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling
2.3. Mercury Determination
2.4. Selenium Determination
2.5. Analytical Quality Control
2.6. Se:Hg Molar Ratio and Selenium Health Benefit Value
2.7. Estimates of Hg Intake Through Fish Consumption
2.8. Hg and Se Modeling via Fuzzy Logic
2.9. Statistical Analysis
3. Results
3.1. Influence of Trophic Guild on Mercury and Selenium Concentrations
3.2. Se:Hg Molar Ratios and Selenium Health Benefit Value (HBVSe)
3.3. Estimated Daily Intake of Hg Through Fish Consumption
3.4. Integrated Risk–Benefit Index
4. Discussion
4.1. Biomagnification of Total Mercury (THg) in the Food Chain
4.2. Patterns of Selenium (Se) Bioaccumulation Among Trophic Guilds
4.3. Health Benefit Value of Se and Estimates of THg Intake by the Riverside Population
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Young, T.; Finley, K.M.; Adams, W.M.; Besser, J.M.; Hopkins, W.D.; Jolley, D.F.; McNaughton, E.; Presser, T.S.; Shaw, D.T.; Unrine, J.M. What You Need to Know about Selenium. In Ecological Assessment of Selenium in the Aquatic Environment; CRC Press: Boca Raton, FL, USA, 2010; pp. 7–45. [Google Scholar] [CrossRef]
- Qi, Z.; Duan, A.; Ng, K. Selenoproteins in Health. Molecules 2023, 29, 136. [Google Scholar] [CrossRef] [PubMed]
- Hatfield, D.L.; Gladyshev, V.N. How Selenium Has Altered Our Understanding of the Genetic Code. Mol. Cell. Biol. 2002, 22, 3565–3576. [Google Scholar] [CrossRef] [PubMed]
- Kryukov, G.V. Characterization of Mammalian Selenoproteomes. Science 2003, 300, 1439–1443. [Google Scholar] [CrossRef] [PubMed]
- Avery, J.; Hoffmann, P. Selenium, Selenoproteins, and Immunity. Nutrients 2018, 10, 1203. [Google Scholar] [CrossRef] [PubMed]
- Stewart, R.; Grosell, M.; Buchwalter, D.; Fisher, N.; Luoma, S.; Mathews, T.; Orr, P.; Wang, W.-X. Bioaccumulation and Trophic Transfer of Selenium. In Ecological Assessment of Selenium in the Aquatic Environment; CRC Press: Boca Raton, FL, USA, 2010; pp. 93–139. [Google Scholar] [CrossRef]
- Maher, W.; Roach, A.; Doblin, M.; Fan, T.; Foster, S.; Garrett, R.; Moller, G.; Oram, L.; Wallschlager, D. Environmental Sources, Speciation and Partitioning of Selenium. In Ecological Assessment of Selenium in the Aquatic Environment; CRC Press: Boca Raton, FL, USA, 2010; pp. 47–92. [Google Scholar] [CrossRef]
- Adams, W.J.; Duguay, A. Selenium–Mercury Interactions and Relationship to Aquatic Toxicity: A Review. Integr. Environ. Assess. Manag. 2024, 21, 70–78. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.A.K.; Wang, F. Chemical Demethylation of Methylmercury by Selenoamino Acids. Chem. Res. Toxicol. 2010, 23, 1202–1206. [Google Scholar] [CrossRef] [PubMed]
- Marumoto, M.; Sakamoto, M.; Marumoto, K.; Tsuruta, S.; Komohara, Y. Mercury and Selenium Localization in the Cerebrum, Cerebellum, Liver, and Kidney of a Minamata Disease Case. ACTA Histochem. Cytochem. 2020, 53, 147–155. [Google Scholar] [CrossRef] [PubMed]
- Lailson-Brito, J.; Cruz, R.; Dorneles, P.R.; Andrade, L.R.; Azevedo, A.d.F.; Fragoso, A.B.; Vidal, L.G.; Costa, M.B.; Bisi, T.L.; Almeida, R.; et al. Mercury-Selenium Relationships in Liver of Guiana Dolphin: The Possible Role of Kupffer Cells in the Detoxification Process by Tiemannite Formation. PLoS ONE 2012, 7, e42162. [Google Scholar] [CrossRef] [PubMed]
- Palmisano, F.; Cardellicchio, N.; Zambonin, P.G. Speciation of Mercury in Dolphin Liver: A Two-Stage Mechanism for the Demethylation Accumulation Process and Role of Selenium. Mar. Environ. Res. 1995, 40, 109–121. [Google Scholar] [CrossRef]
- Wang, X.; Wang, W.-X. Selenium Induces the Demethylation of Mercury in Marine Fish. Environ. Pollut. 2017, 231, 1543–1551. [Google Scholar] [CrossRef] [PubMed]
- Bjerregaard, P.; Andersen, B.W.; Rankin, J.; Rankin, J.C. Retention of Methyl Mercury and Inorganic Mercury in Rainbow Trout Oncorhynchus Mykiss (W): Effect of Dietary Selenium. Aquat. Toxicol. 1999, 45, 171–180. [Google Scholar] [CrossRef]
- Bjerregaard, P.; Christensen, A. Selenium Reduces the Retention of Methyl Mercury in the Brown Shrimp Crangon Crangon. Environ. Sci. Technol. 2012, 46, 6324–6329. [Google Scholar] [CrossRef] [PubMed]
- Bjerregaard, P.; Fjordside, S.; Hansen, M.G.; Petrova, M.B. Dietary Selenium Reduces Retention of Methyl Mercury in Freshwater Fish. Environ. Sci. Technol. 2011, 45, 9793–9798. [Google Scholar] [CrossRef] [PubMed]
- Sørmo, E.G.; Ciesielski, T.M.; Øverjordet, I.B.; Lierhagen, S.; Eggen, G.S.; Berg, T.; Jenssen, B.M. Selenium Moderates Mercury Toxicity in Free-Ranging Freshwater Fish. Environ. Sci. Technol. 2011, 45, 6561–6566. [Google Scholar] [CrossRef] [PubMed]
- Ralston, N.V.C.; Raymond, L.J. Dietary Selenium’s Protective Effects against Methylmercury Toxicity. Toxicology 2010, 278, 112–123. [Google Scholar] [CrossRef] [PubMed]
- Kaneko, J.J.; Ralston, N.V.C. Selenium and Mercury in Pelagic Fish in the Central North Pacific near Hawaii. Biol. Trace Elem. Res. 2007, 119, 242–254. [Google Scholar] [CrossRef] [PubMed]
- Koeman, J.H.; Peeters, M.; Koudstaal-Hol, C.H.M.; Tjioe, P.S.; De, M. Mercury-Selenium Correlations in Marine Mammals. Nature 1973, 245, 385–386. [Google Scholar] [CrossRef] [PubMed]
- Sumioka, A.; Usuki, F.U.; Fujimura, M. Development of a Sensor to Detect Methylmercury Toxicity. Sci. Rep. 2024, 14, 21832. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Ma, M.; Wang, R.; Gao, M.; Hu, L.; Liu, S.; Xu, M. Roles of Glutathione Peroxidase 4 on the Mercury-Triggered Ferroptosis in Renal Cells: Implications for the Antagonism between Selenium and Mercury. Metallomics 2023, 15, mfad014. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.-F.; Dong, Z.; Chen, C.; Li, B.; Gao, Y.; Qu, L.; Wang, T.; Fu, X.; Zhao, Y.; Chai, Z. Organic Selenium Supplementation Increases Mercury Excretion and Decreases Oxidative Damage in Long-Term Mercury-Exposed Residents from Wanshan, China. Environ. Sci. Technol. 2012, 46, 11313–11318. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Hong, Q.; Mei, J.; Chen, J.; Wu, W.; Han, F.; Xing, J.; Yang, S. Influence of Selenium Supplementation on Mercury Levels in Hair of Metropolitan Residents in China: Spatial Distribution, Impact Factors, and Antagonism. Expo. Health 2024, 16, 1365–1380. [Google Scholar] [CrossRef]
- Drasch, G.; Wanghofer, E.; Roider, G.; Strobach, S. Correlation of Mercury and Selenium in the Human Kidney. J. Trace Elem. Med. Biol. 1996, 10, 251–254. [Google Scholar] [CrossRef] [PubMed]
- Durante, C.A.; Manhaes, B.; Azevedo, A.; Crespo, E.A.; Lailson-Brito, J. Trace Elements in Trophic Webs from South Atlantic: The Use of Cetaceans as Sentinels. Mar. Pollut. Bull. 2020, 150, 110674. [Google Scholar] [CrossRef] [PubMed]
- Seixas, T.G.; Kehrig, H.D.A.; Costa, M.F.; Fillmann, G.; Paula, A.; Secchi, E.R.; Maria, C.; Malm, O.; Moreira, I. Total Mercury, Organic Mercury and Selenium in Liver and Kidney of a South American Coastal Dolphin. Environ. Pollut. 2008, 154, 98–106. [Google Scholar] [CrossRef] [PubMed]
- Burger, J.; Gochfeld, M.; Jeitner, C.; Donio, M.; Pittfield, T. Interspecific and Intraspecific Variation in Selenium: Mercury Molar Ratios in Saltwater Fish from the Aleutians: Potential Protection on Mercury Toxicity by Selenium. Sci. Total Environ. 2012, 431, 46–56. [Google Scholar] [CrossRef] [PubMed]
- Ganther, H.E.; Sunde, M.L. Effect of tuna fish and selenium on the toxicity of methylmercury: A progress report. J. Food Sci. 1974, 39, 1–5. [Google Scholar] [CrossRef]
- Belmonte, A.; Muñoz, P.; Santos-Echeandía, J.; Romero, D. Tissue Distribution of Mercury and Its Relationship with Selenium in Atlantic Bluefin Tuna (Thunnus thynnus L.). Int. J. Environ. Res. Public Health 2021, 18, 13376. [Google Scholar] [CrossRef] [PubMed]
- Pantoja-Echevarría, L.M.; Marmolejo-Rodríguez, A.J.; Galván-Magaña, F.; Elorriaga-Verplancken, F.R.; Tripp Valdéz, A.; Tamburin, E.; Lara, A.; Jonathan, M.P.; Sujitha, S.B.; Arreola-Mendoza, L. Mercury and Selenium Concentrations in Different Tissues of Brown Smooth-Hound Shark (Mustelus henlei) from the Western Coast of Baja California Sur, Mexico. Mar. Pollut. Bull. 2021, 170, 112609. [Google Scholar] [CrossRef] [PubMed]
- Lima, A.P.S.; Sarkis, J.E.S.; Shihomatsu, H.M.; Müller, R.C.S. Mercury and Selenium Concentrations in Fish Samples from Cachoeira Do PiriáMunicipality, ParáState, Brazil. Environ. Res. 2005, 97, 236–244. [Google Scholar] [CrossRef] [PubMed]
- Dorea, J.G.; Moreira, M.B.; East, G.; Barbosa, A.C. Selenium and Mercury Concentrations in Some Fish Species of the Madeira River, Amazon Basin, Brazil. Biol. Trace Elem. Res. 1998, 65, 211–220. [Google Scholar] [CrossRef] [PubMed]
- Kehrig, H.A.; Seixas, T.G.; Paula, A.; Malm, O. Selenium and Mercury in Widely Consumed Seafood from South Atlantic Ocean. Ecotoxicol. Environ. Saf. 2013, 93, 156–162. [Google Scholar] [CrossRef] [PubMed]
- FAO Fisheries & Aquaculture. Available online: https://www.fao.org/fishery/es/facp/BRA?lang=en (accessed on 6 June 2025).
- Oliveira, R.C.; Dórea, J.G.; Bernardi, J.V.E.; Bastos, W.R.; Almeida, R.; Manzatto, Â.G. Fish Consumption by Traditional Subsistence Villagers of the Rio Madeira (Amazon): Impact on Hair Mercury. Ann. Hum. Biol. 2010, 37, 629–642. [Google Scholar] [CrossRef] [PubMed]
- Fabré, N.N.; Gonzales, J.C.A. Recursos íctios no Alto Amazonas e sua importância para as populações ribeirinhas. Bol. Mus. Para. Emílio Goeldi Belém 1998, 14, 19–55. [Google Scholar]
- Dórea, J.G. Fish Are Central in the Diet of Amazonian Riparians: Should We Worry about Their Mercury Concentrations? Environ. Res. 2003, 92, 232–244. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, C.; Machado, L.F.; Brasil, T. A Pesca Em Comunidades Ribeirinhas Na Região Do Médio Rio Madeira, Rondônia. Novos Cad. NAEA 2016, 19, 163–188. [Google Scholar] [CrossRef]
- Canela, T.A.; Monteiro, L.C.; Cabral, C.d.S.; Ximenes, F.d.S.; Oliveira, I.A.d.S.; Bernardi, J.V.E.; de Almeida, R.; Bastos, W.R. Mercury in Fish and Human Hair and Estimated Dietary Intake in a Riverside Community of the Madeira River Basin in the Brazilian Amazon. Toxics 2024, 12, 208. [Google Scholar] [CrossRef] [PubMed]
- Mussy, M.H.; de Almeida, R.; de Carvalho, D.P.; Lauthartte, L.C.; de Holanda, I.B.B.; de Almeida, M.G.; de Sousa-Filho, I.F.; de Rezende, C.E.; Malm, O.; Bastos, W.R. Evaluating Total Mercury and Methylmercury Biomagnification Using Stable Isotopes of Carbon and Nitrogen in Fish from the Madeira River Basin, Brazilian Amazon. Environ. Sci. Pollut. Res. 2022, 30, 33543–33554. [Google Scholar] [CrossRef] [PubMed]
- Mendes, V.A.; de Carvalho, D.P.; de Almeida, R.; Recktenvald, M.C.N.D.N.; Pedrosa, O.P.; de Sousa-Filho, I.F.; Dórea, J.G.; Bastos, W.R. Mercury in Blood, Hair, and Feces from Subsistence Fish-Eating Riverines of the Madeira River Basin (Western Amazon). J. Trace Elem. Med. Biol. 2021, 67, 126773. [Google Scholar] [CrossRef] [PubMed]
- Pfeiffer, W.C.; de Lacerda, L.D. Mercury Inputs into the Amazon Region, Brazil. Environ. Technol. Lett. 1988, 9, 325–330. [Google Scholar] [CrossRef]
- Lacerda, L.D.; de Almeida, R.; Bastos, W.R. A 35-Year Record (1987–2022) of Hg Concentrations in Two of the Fish Species Most Consumed by People Living in the Upper Madeira River Basin, Brazilian Amazon Region. Toxics 2024, 12, 144. [Google Scholar] [CrossRef] [PubMed]
- Azevedo-Silva, C.E.; Almeida, R.; Carvalho, D.P.; Ometto, J.P.H.B.; de Camargo, P.B.; Dorneles, P.R.; Azeredo, A.; Bastos, W.R.; Malm, O.; Torres, J.P.M. Mercury Biomagnification and the Trophic Structure of the Ichthyofauna from a Remote Lake in the Brazilian Amazon. Environ. Res. 2016, 151, 286–296. [Google Scholar] [CrossRef] [PubMed]
- Rabitto, I.d.S.; Bastos, W.R.; Almeida, R.; Anjos, A.; de Holanda, Í.B.B.; Galvão, R.C.F.; Neto, F.F.; de Menezes, M.L.; dos Santos, C.A.M.; de Oliveira Ribeiro, C.A. Mercury and DDT Exposure Risk to Fish-Eating Human Populations in Amazon. Environ. Int. 2011, 37, 56–65. [Google Scholar] [CrossRef] [PubMed]
- Basta, P.C.; Claudia, A.; Hallwass, G.; Yokota, D.; Daniel; Saraiva, D.; Ciro; Oliveira-da-Costa, M. Risk Assessment of Mercury-Contaminated Fish Consumption in the Brazilian Amazon: An Ecological Study. Toxics 2023, 11, 800. [Google Scholar] [CrossRef] [PubMed]
- Arisekar, U.; Shalini, R.; Iburahim, S.A.; Deepika, S.; Reddy, C.P.K.; Anantharaja, K.; Albeshr, M.F.; Ramkumar, S.; Kalidass, B.; Tamilarasan, K.; et al. Biomonitoring of Mercury and Selenium in Commercially Important Shellfish: Distribution Pattern, Health Benefit Assessment and Consumption Advisories. Environ. Geochem. Health 2024, 46, 122. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Ni, S.; Pei, C.; Sun, L.; Wu, L.; Xu, A.; Nie, Y.; Liu, Y. Parental Treatment with Selenium Protects Caenorhabditis Elegans and Their Offspring against the Reproductive Toxicity of Mercury. Sci. Total Environ. 2024, 912, 169461. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, T.A.S.; Dias, R.K.S.; Souza, L.R.R.; da Veiga, M.A.M.S. The Effect of Selenium Co-Ingestion on Mercury Bioaccessibility in Contaminated Fish of the Amazon Region. Environ. Adv. 2023, 14, 100450. [Google Scholar] [CrossRef]
- de Almeida, R.; Bernardi, J.V.E.; Oliveira, R.C.; de Carvalho, D.P.; Manzatto, A.G.; de Lacerda, L.D.; Bastos, W.R. Flood Pulse and Spatial Dynamics of Mercury in Sediments in Puruzinho Lake, Brazilian Amazon. Acta Amaz. 2014, 44, 99–105. [Google Scholar] [CrossRef]
- Azevedo, L.S.; Pestana, I.A.; Nery, A.F.C.; Bastos, W.R.; Souza, C.M.M. Influence of the Flood Pulse on Mercury Accumulation in Detritivorous, Herbivorous and Omnivorous Fish in Brazilian Amazonia. Ecotoxicology 2019, 28, 478–485. [Google Scholar] [CrossRef] [PubMed]
- Bastos, W.R.; Gomes, J.P.O.; Oliveira, R.C.; Almeida, R.; Nascimento, E.L.; Bernardi, J.V.E.; de Lacerda, L.D.; da Silveira, E.G.; Pfeiffer, W.C. Mercury in the Environment and Riverside Population in the Madeira River Basin, Amazon, Brazil. Sci. Total Environ. 2006, 368, 344–351. [Google Scholar] [CrossRef] [PubMed]
- Azevedo-Silva, C.E.; Pizzochero, A.C.; Galvão, P.M.; Ometto, J.P.; de Camargo, P.B.; Azeredo, A.; Coelho-Souza, S.A.; Das, K.; Bastos, W.R.; Malm, O.; et al. Trophic Dynamics of Methylmercury and Trace Elements in a Remote Amazonian Lake. Environ. Res. 2023, 237, 116889. [Google Scholar] [CrossRef] [PubMed]
- Froese, R.; Pauly, D. (Eds.) FishBase 99: Concepts, Design and Data Sources; ICLARM: Manila, Philippines, 1999; p. 329. [Google Scholar]
- Bastos, W.R.; Malm, O.; Pfeiffer, W.C.; Cleary, D. Establishment and analytical quality control of laboratories for Hg determination in biological and geological samples in the Amazon, Brasil. Ciênc Cult. 1998, 50, 255–260. [Google Scholar]
- Neubauer, K.; Magarini, R. Determination of arsenic and selenium in drinking water by ICP-OES with continuous flow hydride generation using a single pre-reduction procedure. In Application Note ICP-Optical Emission Spectroscopy; PerkinElmer: Waltham, MA, USA, 2021; Available online: https://www.perkinelmer.com/library/app-arsenic-and-selenium-in-drinking-water-by-icp-oes.html (accessed on 15 May 2025).
- Burger, J.; Gochfeld, M. Selenium and Mercury Molar Ratios in Commercial Fish from New Jersey and Illinois: Variation within Species and Relevance to Risk Communication. Food Chem. Toxicol. 2013, 57, 235–245. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Minteer, S.D.; Tang, B.; Luo, W.; Ma, Y.; Ren, M.; Yu, Y.; Luo, X.-J.; Mai, B.-X. Níveis, distribuição espacial e fatores de impacto de metais pesados no cabelo de residentes metropolitanos na China e implicações para a saúde humana. Environ. Sci. Technol. 2021, 55, 10578–10588. [Google Scholar] [CrossRef] [PubMed]
- Ralston, N.V.C.; Ralston, C.R.; Raymond, L.J. Selenium Health Benefit Values: Updated Criteria for Mercury Risk Assessments. Biol. Trace Elem. Res. 2015, 171, 262–269. [Google Scholar] [CrossRef] [PubMed]
- Agência Nacional de Vigilância Sanitária. Ministério da Saúde. Resolução–RDC nº 42, de 29 de Agosto de 2013. Dispõe Sobre o Regulamento Técnico MERCOSUL Sobre Limites Máximos de Contaminantes Inorgânicos em Alimentos. Available online: https://bvsms.saude.gov.br/bvs/saudelegis/anvisa/2013/rdc0042_29_08_2013.html (accessed on 15 May 2025).
- FAO/WHO. Summary of Evaluations Performed by the Joint FAO/WHO Expert Committee on Food Additives; Food and Agriculture Organization of the United Nations/World Health Organization: Rome, Italy, 2003; Available online: https://inchem.org/documents/jecfa/jeceval/jec_1509.htm (accessed on 20 May 2025).
- Instituto Brasileiro de Geografia e Estatística. Tabela 2657: Estimativas Populacionais das Medianas de Altura e Peso de Crianças, Adolescentes e Adultos, por Sexo e Idade-Unidades da Federação. Available online: https://sidra.ibge.gov.br/Tabela/2657 (accessed on 20 May 2025).
- Campos, C.A.; Tonin, A.M.; Sena, G.; Gonçalves Júnior, J.F. Progressing a River Health Assessment Framework to Tropical Waters. Front. Water 2024, 6, 1423458. [Google Scholar] [CrossRef]
- Luo, Z.; Zuo, Q.; Shao, Q. A New Framework for Assessing River Ecosystem Health with Consideration of Human Service Demand. Sci. Total Environ. 2018, 640, 442–453. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing. 2024. Available online: https://www.R-project.org (accessed on 20 May 2025).
- World Health Organization; International Atomic Energy Agency & Food and Agriculture Organization of the United Nations. Trace Elements in Human Nutrition and Health; World Health Organization: Geneva, Switzerland; International Atomic Energy Agency & Food and Agriculture Organization of the United Nations: Vienna, Austria, 1996. [Google Scholar]
- Branfireun, B.A.; Cosio, C.; Poulain, A.J.; Riise, G.; Bravo, A.G. Mercury Cycling in Freshwater Systems—An Updated Conceptual Model. Sci. Total Environ. 2020, 745, 140906. [Google Scholar] [CrossRef] [PubMed]
- Pestana, I.A.; Azevedo, L.S.; Bastos, W.R.; Magalhães de Souza, C.M. The Impact of Hydroelectric Dams on Mercury Dynamics in South America: A Review. Chemosphere 2019, 219, 546–556. [Google Scholar] [CrossRef] [PubMed]
- Brito, B.C.; Forsberg, B.R.; Kasper, D.; Amaral, J.H.; de Vasconcelos, M.R.R.; Cunha, F.; Bastos, W.R. The Influence of Inundation and Lake Morphometry on the Dynamics of Mercury in the Water and Plankton in an Amazon Floodplain Lake. Hydrobiologia 2016, 790, 35–48. [Google Scholar] [CrossRef]
- Guimarães, J.R.D.; Meili, M.; Hylander, L.D.; Castro e Silva, E.; Roulet, M.; Mauro, J.B.N.; Lemos, R.A. Mercury Net Methylation in Five Tropical Flood Plain Regions of Brazil: High in the Root Zone of Floating Macrophyte Mats but Low in Surface Sediments and Flooded Soils. Sci. Total. Environ. 2000, 261, 99–107. [Google Scholar] [CrossRef] [PubMed]
- Nascimento, E.L.; Gomes, J.P.O.; Almeida, R.; Bastos, W.R.; Bernardi, J.V.E.; Miyai, R.K. Mercúrio No Plâncton de Um Lago Natural Amazônico, Lago Puruzinho (Brasil). J. Braz. Soc. Ecotoxicol. 2007, 2, 67–72. [Google Scholar] [CrossRef]
- Azevedo, L.S.; Pestana, I.A.; Nery, A.F.C.; Bastos, W.R.; Souza, C.M.M. Variation in Hg Accumulation between Demersal and Pelagic Fish from Puruzinho Lake, Brazilian Amazon. Ecotoxicology 2019, 28, 1143–1149. [Google Scholar] [CrossRef] [PubMed]
- Bastos, W.R.; Dórea, J.G.; Bernardi, J.V.E.; Lauthartte, L.C.; Mussy, M.H.; Lacerda, L.D.; Malm, O. Mercury in Fish of the Madeira River (Temporal and Spatial Assessment), Brazilian Amazon. Environ. Res. 2015, 140, 191–197. [Google Scholar] [CrossRef] [PubMed]
- Michelazzo, P.A.M.; Fostier, A.H.; Magarelli, G.; Santos, J.C.; de Carvalho, J.A. Emissões de mercúrio provenientes de queimadas na Amazônia Meridional. Geophys. Res. Lett. 2010, 37. [Google Scholar] [CrossRef]
- Bastos, W.R.; Dórea, J.G.; Lacerda, L.D.; Almeida, R.; Costa-Junior, W.A.; Baía, C.C.; Sousa-Filho, I.F.; Sousa, E.A.; Oliveira, I.A.S.; Cabral, C.S.; et al. Dynamics of Hg and MeHg in the Madeira River Basin (Western Amazon) before and after Impoundment of a Run-of-River Hydroelectric Dam. Environ. Res. 2020, 189, 109896. [Google Scholar] [CrossRef] [PubMed]
- Lino, A.S.; Kasper, D.; Guida, Y.S.; Thomaz, J.R.; Malm, O. Total and Methyl Mercury Distribution in Water, Sediment, Plankton and Fish along the Tapajós River Basin in the Brazilian Amazon. Chemosphere 2019, 235, 690–700. [Google Scholar] [CrossRef] [PubMed]
- Dai, L.; Zhang, B.; Liao, X.; Wang, L.; Zhang, Q.; Tian, S.; Liang, T.; O’Connor, D.; Rinklebe, J. Catchment Land Use Effect on Mercury Concentrations in Lake Sediments: A High-Resolution Study of Qinghai Lake. Sci. Total Environ. 2024, 916, 170260. [Google Scholar] [CrossRef] [PubMed]
- Dórea, J.G.; Monteiro, L.C.; Elias, V.; Fernandes, I.O.; Flora, S.; Rudrigues, P.; Oliveira, Y.; Cardoso, L.; Rodrigues, J. Land Use Impact on Mercury in Sediments and Macrophytes from a Natural Lake in the Brazilian Savanna. Environ. Pollut. 2023, 337, 122414. [Google Scholar] [CrossRef] [PubMed]
- Thomas, S.M.; Melles, S.J.; Mackereth, R.W.; Tunney, T.D.; Chu, C.; Oswald, C.J.; Bhavsar, S.P.; Johnston, T.A. Climate and Landscape Conditions Indirectly Affect Fish Mercury Levels by Altering Lake Water Chemistry and Fish Size. Environ. Res. 2020, 188, 109750. [Google Scholar] [CrossRef] [PubMed]
- da Silva, D.S.; Lucotte, M.; Paquet, S.; Davidson, R. Influence of Ecological Factors and of Land Use on Mercury Levels in Fish in the Tapajós River Basin, Amazon. Environ. Res. 2009, 109, 432–446. [Google Scholar] [CrossRef] [PubMed]
- Martoredjo, I.; Calvão Santos, L.B.; Vilhena, J.C.E.; Rodrigues, A.B.L.; de Almeida, A.; Sousa Passos, C.J.; Florentino, A.C. Trends in Mercury Contamination Distribution among Human and Animal Populations in the Amazon Region. Toxics 2024, 12, 204. [Google Scholar] [CrossRef] [PubMed]
- Albuquerque, F.E.A.; Minervino, A.H.H.; Herrero-Latorre, C.; Raimundo; Leonardo, F.; Claudia, M.; Ortolani, E.L.; López-Alonso, M. Toxic and Essential Trace Element Concentrations in Fish Species in the Lower Amazon, Brazil. Sci. Total Environ. 2020, 732, 138983. [Google Scholar] [CrossRef] [PubMed]
- da Silva, D.S.; Lucotte, M.; Paquet, S.; Brux, G.; Lemire, M. Inverse Mercury and Selenium Concentration Patterns between Herbivorous and Piscivorous Fish in the Tapajos River, Brazilian Amazon. Ecotoxicol. Environ. Saf. 2013, 97, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Verstijnem, Y.J.M.; Lucassen, E.C.H.E.T.; Wagenvoort, A.J.; Ketelaars, H.A.M.; Vem Der Velde, G.; Smolders, A.J.P. Trophic Transfer of Cd, Cu, Pb, Zn, P and Se in Dutch Storage Water Reservoirs. Arch. Environ. Contam. Toxicol. 2024, 86, 217–233. [Google Scholar] [CrossRef] [PubMed]
- Ferraz, A.H.; Costa, L.P.; Mirlean, N.; Seus-Arrache, E.R.; Adebayo, S. Selenium Content in Freshwater and Marine Fish from Southern Brazil Coastal Plain: A Comparative Analysis on Environmental and Dietary Aspects. Biol. Trace Elem. Res. 2022, 201, 946–958. [Google Scholar] [CrossRef] [PubMed]
- Zampetti, C.J.; Brandt, J.E. Co-Considering Selenium Concentrations Alters Mercury-Based Fish and Seafood Consumption Advice: A Data Compilation and Critical Assessment. Environ. Sci. Technol. Lett. 2023, 10, 179–185. [Google Scholar] [CrossRef]
- Regnell, O.; Tesson, S.V.M.; Oskolkov, N.; Nerentorp, M. Mercury–Selenium Accumulation Patterns in Muscle Tissue of Two Freshwater Fish Species, Eurasian Perch (Perca eluviatilis) and Vendace (Coregonus albula). Water Air Soil Pollut. 2022, 233, 236. [Google Scholar] [CrossRef]
- Silva Junior, E.C.; Wadt, L.H.O.; Silva, K.E.; Lima, R.M.B.; Batista, K.D.; Guedes, M.C.; Carvalho, G.S.; Carvalho, T.S.; Reis, A.R.; Lopes, G.; et al. Natural Variation of Selenium in Brazil Nuts and Soils from the Amazon Region. Chemosphere 2017, 188, 650–658. [Google Scholar] [CrossRef] [PubMed]
- Ullah, H.; Liu, G.; Yousaf, B.; Ali, M.U.; Irshad, S.; Abbas, Q.; Ahmad, R. A Comprehensive Review on Environmental Transformation of Selenium: Recent Advances and Research Perspectives. Environ. Geochem. Health 2018, 41, 1003–1035. [Google Scholar] [CrossRef] [PubMed]
- Fordyce, F.M. Selenium Deficiency and Toxicity in the Environment. In Essentials of Medical Geology; Selinus, O., Ed.; Springer: Dordrecht, The Netherlands, 2012; pp. 375–416. [Google Scholar] [CrossRef]
- Mirlean, N.; Seus-Arrache, E.R.; Vlasova, O. Selenium Deficiency in Subtropical Littoral Pampas: Environmental and Dietary Aspects. Environ. Geochem. Health 2017, 40, 543–556. [Google Scholar] [CrossRef] [PubMed]
- Córdoba-Tovar, L.; Vargas-Licona, S.; Palacios-Torres, Y.; Marrugo-Negrete, J.; Díez, S. Selenium-To-Mercury Ratios in Popularly Consumed Colombian Fish: A Comprehensive Risk-Benefit Assessment. J. Hazard. Mater. 2025, 494, 138601. [Google Scholar] [CrossRef] [PubMed]
- Maia, M.A.M. Geodiversidade do Estado do Amazonas/Organização Maria Adelaide Mansini Maia [e] José Luiz Marmos; CPRM: Manaus, Brazil, 2010. Available online: https://rigeo.sgb.gov.br/handle/doc/16624 (accessed on 15 May 2025).
- Hong, L.K.; Diamond, A.M. Chapter 26–Selenium. In Presente Knowledge in Nutrition, 11th ed.; Marriott, B.P., Birt, D.F., Stallings, V.A., Yates, A.A., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 443–456. [Google Scholar] [CrossRef]
- Xu, X.; Yan, M.; Liang, L.; Lu, Q.; Han, J.; Liu, L.; Feng, X.; Guo, J.; Wang, Y.; Qiu, G. Impacts of Selenium Supplementation on Soil Mercury Speciation, and Inorganic Mercury and Methylmercury Uptake in Rice (Oryza sativa L.). Environ. Pollut. 2019, 249, 647–654. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Feng, X.; Zhu, J.; Sapkota, A.; Meng, B.; Yao, H.; Qin, H.; Larssen, T. Selenium in Soil Inhibits Mercury Uptake and Translocation in Rice (Oryza sativa L.). Environ. Sci. Technol. 2012, 46, 10040–10046. [Google Scholar] [CrossRef] [PubMed]
- da Silva Junior, E.C.; de Oliveira Wadt, L.H.; da Silva, K.E.; de Lima, R.M.B.; Batista, K.D.; Guedes, M.C.; de Oliveira Junior, R.C.; dos Reis, A.R.; Lopes, G.; Broadley, M.R.; et al. Geochemistry of Selenium, Barium, and Iodine in Representative Soils of the Brazilian Amazon Rainforest. Sci. Total Environ. 2022, 828, 154426. [Google Scholar] [CrossRef] [PubMed]
- Natasha; Shahid, M.; Niazi, N.K.; Khalid, S.; Murtaza, B.; Bibi, I.; Rashid, M.I. A Critical Review of Selenium Biogeochemical Behavior in Soil-Plant System with an Inference to Human Health. Environ. Pollut. 2018, 234, 915–934. [Google Scholar] [CrossRef] [PubMed]
- Cusack, L.K.; Eagles-Smith, C.; Harding, A.K.; Kile, M.; Stone, D. Selenium: Mercury Molar Ratios in Freshwater Fish in the Columbia River Basin: Potential Applications for Specific Fish Consumption Advisories. Biol. Trace Elem. Res. 2016, 178, 136–146. [Google Scholar] [CrossRef] [PubMed]
- Bastos, W.R.; Rebelo, M.d.F.; Fonseca, M.d.F.; Almeida, R.d.; Malm, O. A Description of Mercury in Fishes from the Madeira River Basin, Amazon, Brazil. Acta Amaz. 2008, 38, 431–438. [Google Scholar] [CrossRef]
- Pestana, I.A.; de Rezende, C.E.; Almeida, R.; de Lacerda, L.D.; Bastos, W.R. Let’s Talk about Mercury Contamination in the Amazon (Again): The Case of the Floating Gold Miners’ Village on the Madeira River. Extr. Ind. Soc. 2022, 11, 101122. [Google Scholar] [CrossRef]
- Barone, G.; Storelli, A.; Mallamaci, R.; Storelli, M.M. Comparative Study on Trace Metal Accumulation in Liver of Mediterranean Deep-Sea Fish and Their Selenium/Mercury Molar Ratios. Water Air Soil Pollut. 2017, 228, 211. [Google Scholar] [CrossRef]
- Pontes, G.J.; Rocha, B.A.; Cruz, J.C.; Cezarette, G.N.; Omage, F.B.; Tasic, L.; Barbosa, F. Unraveling Mercury-Selenium Interactions through Metabolomics: Impacts on Riverside Communities in the Amazon. Environ. Pollut. 2025, 376, 126398. [Google Scholar] [CrossRef] [PubMed]
- Cezarette, G.N.; Esplugas, J.; Cruz, J.C.; Rocha, B.A.; Cassulatti, L.; Bueno, M.; Zayas, Z.P.; Barbosa, F. Exploring Mercury and Selenium Dynamics in Amazonian Human Populations: Insights from Urine, Blood, and Plasma Analyses. Chemosphere 2025, 375, 144258. [Google Scholar] [CrossRef] [PubMed]
- Passos, C.J.; Mergler, D.; Gaspar, E.; Morais, S.; Lucotte, M.; Larribe, F.; Davidson, R.; de Grosbois, S. Eating Tropical Fruit Reduces Mercury Exposure from Fish Consumption in the Brazilian Amazon. Environ. Res. 2003, 93, 123–130. [Google Scholar] [CrossRef] [PubMed]
- Strunz, C.C.; Oliveira, T.V.; Vinagre, J.C.M.; Lima, A.; Cozzolino, S.; Maranhão, R.C. Brazil Nut Ingestion Increased Plasma Selenium but Had Minimal Effects on Lipids, Apolipoproteins, and High-Density Lipoprotein Function in Human Subjects. Nutr. Res. 2008, 28, 151–155. [Google Scholar] [CrossRef] [PubMed]
- Heilpern, S.A.; Flecker, A.S.; López-Casas, S.; McIntyre, P.B.; Moya, L.; Sethi, S.; Fiorella, K.J. Accessible, Low-Mercury, and Nutritious Fishes Provide Win-Wins for Conservation and Public Health. One Earth 2025, 8, 101174. [Google Scholar] [CrossRef]
- Passos, C.J.S.; Mergler, D.; Fillion, M.; Lemire, M.; Mertens, F.; Guimarães, J.R.D.; Philibert, A. Epidemiologic Confirmation That Fruit Consumption Influences Mercury Exposure in Riparian Communities in the Brazilian Amazon. Environ. Res. 2007, 105, 183–193. [Google Scholar] [CrossRef] [PubMed]
- Begossi, A.; Salivonchyk, S.V.; Hallwass, G.; Hanazaki, N.; Lopes, P.F.M.; Silvano, R.A.M.; Dumaresq, D.; Pittock, J. Fish Consumption on the Amazon: A Review of Biodiversity, Hydropower and Food Security Issues. Braz. J. Biol. 2019, 79, 345–357. [Google Scholar] [CrossRef] [PubMed]
- Katherine, G.; Siqueira-Souza, F.K.; Aguiar, L.; Edwar, C. The Consumption of Fish by the Riverine Population of the Lower Solimões River, Amazonas, Brazil. Braz. J. Biol. 2023, 83, e271572. [Google Scholar] [CrossRef] [PubMed]
- Nardoto, G.B.; Murrieta, R.S.S.; Prates, L.E.G.; Adams, C.; Garavello, M.E.P.; Schor, T.; De Moraes, A.; Rinaldi, F.D.; Gragnani, J.G.; Moura, E.A.; et al. Frozen Chicken for Wild Fish: Nutritional Transition in the Brazilian Amazon Region Determined by Carbon and Nitrogen Stable Isotope Ratios in Fingernails. Am. J. Hum. Biol. 2011, 23, 642–650. [Google Scholar] [CrossRef] [PubMed]
- Basu, N.; Horvat, M.; Evers, D.C.; Zastenskaya, I.; Weihe, P.; Tempowski, J. A State-of-The-Science Review of Mercury Biomarkers in Human Populations Worldwide between 2000 and 2018. Environ. Health Perspect. 2018, 126, 106001. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, C.M.L.; Lu, J.; Zhang, X.; Arnér, E.S.J.; Holmgren, A. Effects of Selenite and Chelating Agents on Mammalian Thioredoxin Reductase Inhibited by Mercury: Implications for Treatment of Mercury Poisoning. FASEB J. 2010, 25, 370–381. [Google Scholar] [CrossRef] [PubMed]
- Bjørklund, G.; Aaseth, J.; Ajsuvakova, O.P.; Nikonorov, A.A.; Skalny, A.V.; Skalnaya, M.G.; Tinkov, A.A. Molecular Interaction between Mercury and Selenium in Neurotoxicity. Coord. Chem. Rev. 2017, 332, 30–37. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, W.; Zhao, J.; Lin, X.; Liu, J.; Cui, L.; Zhang, T.-L.; Li, B.; Li, Y.-F. Selenoprotein P as the Major Transporter for Mercury in Serum from Methylmercury-Poisoned Rats. J. Trace Elem. Med. Biol. 2018, 50, 589–595. [Google Scholar] [CrossRef] [PubMed]
- Sadat, M.A.; Guan, Y.; Zhang, D.; Shao, G.; Cheng, X.; Yang, Y. The Associations between River Health and Water Resources Management Lead to the Assessment of River State. Ecol. Indic. 2020, 109, 105814. [Google Scholar] [CrossRef]
- Minamata Convention on Mercury Text and Annexes. Available online: https://minamataconvention.org/en/resources/minamata-convention-mercury-text-and-annexe.pdf (accessed on 20 May 2025).
Indicator | Class | Unit | Excellent | Good | Moderate | Poor | Very Poor |
---|---|---|---|---|---|---|---|
Hg | Risk | mg kg−1 | 0.04 | 0.7 | 1.0 | 1.5 | 2.5 |
EDI—Model II | Risk | µg kg day−1 | 0.57 | 2 | 5 | 8 | 12 |
Se:Hg | Benefit | unitless | 0.977 | 0.735 | 0.564 | 0.465 | 0.279 |
HBVSe | Benefit | unitless | −0.0006 | −0.0030 | −0.0063 | −0.0108 | −0.0342 |
Trophic Guild | EDI—Model I (µg kg day−1) | EDI—Model II (µg kg day−1) | Reduction (%) | ||||
---|---|---|---|---|---|---|---|
Mean (SD) | Median (IQR) | Range | Mean (SD) | Median (IQR) | Range | ||
Herbivorous (n = 15) | 1.71 (1.22) | 2.01 (2.37) | 0.27–3.47 | 0.43 (0.36) | 0.30 (0.68) | 0.03–1.07 | 73.3 ± 14.6 |
Detritivorous (n = 32) | 5.85 (1.24) | 5.84 (1.39) | 2.87–8.49 | 2.75 (1.05) | 2.67 (1.38) | 0.59–5.38 | 54.3 ± 11.1 |
Planktivorous (n = 27) | 4.55 (1.20) | 4.50 (5.63) | 2.10–6.93 | 1.21 (1.02) | 0.92 (1.58) | 0.11–3.53 | 75.7 ± 17.1 |
Carnivorous (n = 44) | 7.78 (3.05) | 7.54 (4.09) | 2.65–14.76 | 4. 86 (2.93) | 4.27 (3.18) | 0.02–11.68 | 41.8 ± 19.4 |
Piscivorous (n = 60) | 6.04 (2.33) | 5.49 (2.62) | 2.13–15.44 | 3.53 (2.02) | 3.16 (2.44) | 0.16–10.46 | 44.1 ± 19.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cabral, C.d.S.; Monteiro, L.C.; Maciel Pereira, T.A.; da Costa Júnior, W.A.; Oliveira, I.A.d.S.; Canela, T.A.; Bernardi, J.V.E.; Pestana, I.A.; Almeida, R.d. A Novel Approach to Estimate Mercury Exposure Risks Through Fish Consumption Based on the Selenium–Mercury Molar Ratio. Toxics 2025, 13, 621. https://doi.org/10.3390/toxics13080621
Cabral CdS, Monteiro LC, Maciel Pereira TA, da Costa Júnior WA, Oliveira IAdS, Canela TA, Bernardi JVE, Pestana IA, Almeida Rd. A Novel Approach to Estimate Mercury Exposure Risks Through Fish Consumption Based on the Selenium–Mercury Molar Ratio. Toxics. 2025; 13(8):621. https://doi.org/10.3390/toxics13080621
Chicago/Turabian StyleCabral, Cássio da Silva, Lucas Cabrera Monteiro, Thiago Aluisio Maciel Pereira, Walkimar Aleixo da Costa Júnior, Iuri Aparecida da Silva Oliveira, Thayson Araujo Canela, José Vicente Elias Bernardi, Inácio Abreu Pestana, and Ronaldo de Almeida. 2025. "A Novel Approach to Estimate Mercury Exposure Risks Through Fish Consumption Based on the Selenium–Mercury Molar Ratio" Toxics 13, no. 8: 621. https://doi.org/10.3390/toxics13080621
APA StyleCabral, C. d. S., Monteiro, L. C., Maciel Pereira, T. A., da Costa Júnior, W. A., Oliveira, I. A. d. S., Canela, T. A., Bernardi, J. V. E., Pestana, I. A., & Almeida, R. d. (2025). A Novel Approach to Estimate Mercury Exposure Risks Through Fish Consumption Based on the Selenium–Mercury Molar Ratio. Toxics, 13(8), 621. https://doi.org/10.3390/toxics13080621