Transcriptomic Meta-Analysis Unveils Shared Neurodevelopmental Toxicity Pathways and Sex-Specific Transcriptional Signatures of Established Neurotoxicants and Polystyrene Nanoplastics as an Emerging Contaminant
Abstract
1. Introduction
2. Materials and Methods
2.1. Identification and Organization of Datasets
2.2. Downloading and Processing Transcriptomic Data Profiles
2.3. Transcriptional Characteristics Clustering and Differential Gene Expression Analysis
2.4. Gene Set Enrichment Analysis (GSEA), Pathway, and Disease Gene Enrichment Analysis
2.5. Weighted Key Driver Analysis (wKDA) of DEGs
2.6. DEG-Disease Association Analysis
3. Results and Discussion
3.1. A Series of Criteria Are Used to Filter the Dataset Under Study
3.2. Biological Processes Affected by the Three ECs Differ Significantly
3.3. Similar Mechanisms of Neurotoxic Effects of BPA and PSNPs Compared to BDE-47 Are Identified
3.4. DEGs of EC Clusters Are Enriched for Diverse Pathways
3.5. Gene-Disease Association Analysis Focuses on Some Key Neurological Diseases
3.6. Deep Analysis of the BPA Dataset Shows That Its Neurotoxicity Exhibits Gender Differences
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Niu, H.; Xu, M.; Tu, P.; Xu, Y.; Li, X.; Xing, M.; Chen, Z.; Wang, X.; Lou, X.; Wu, L.; et al. Emerging Contaminants: An Emerging Risk Factor for Diabetes Mellitus. Toxics 2024, 12, 47. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Kuang, H.; Luo, Y.; Liu, S.; Meng, L.; Pang, Q.; Fan, R. Low-dose bisphenol A exposure impairs learning and memory ability with alterations of neuromorphology and neurotransmitters in rats. Sci. Total Environ. 2019, 697, 134036. [Google Scholar] [CrossRef] [PubMed]
- Aliakbarzadeh, F.; Rafiee, M.; Khodagholi, F.; Khorramizadeh, M.R.; Manouchehri, H.; Eslami, A.; Sayehmiri, F.; Mohseni-Bandpei, A. Adverse effects of polystyrene nanoplastic and its binary mixtures with nonylphenol on zebrafish nervous system: From oxidative stress to impaired neurotransmitter system. Environ. Pollut. 2023, 317, 120587. [Google Scholar] [CrossRef] [PubMed]
- Grandjean, P.; Landrigan, P.J. Neurobehavioural effects of developmental toxicity. Lancet Neurol. 2014, 13, 330–338. [Google Scholar] [CrossRef] [PubMed]
- Puri, M.; Gandhi, K.; Kumar, M.S. Emerging environmental contaminants: A global perspective on policies and regulations. J. Environ. Manag. 2023, 332, 117344. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Wang, S.; Mao, X.; Xiang, X.; Ye, S.; Chen, J.; Zhu, A.; Meng, Y.; Yang, X.; Peng, S.; et al. Adverse health effects of emerging contaminants on inflammatory bowel disease. Front. Public Health 2023, 11, 1140786. [Google Scholar] [CrossRef] [PubMed]
- Saunders, N.R.; Dziegielewska, K.M. Developmental neurotoxicity of industrial chemicals. Lancet 2007, 369, 821. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Tan, X.; Wu, Y.; Li, X.; Hu, Z.; Lei, S.; Fan, W.; Wang, Z. Long-term exposure to 6-PPD quinone at environmentally relevant concentrations causes neurotoxicity by affecting dopaminergic, serotonergic, glutamatergic, and GABAergic neuronal systems in Caenorhabditis elegans. Sci. Total Environ. 2024, 922, 171291. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Gao, J.; Chen, Y.; Huan, Z.; Liu, Y.; Zhou, T.; Dong, Z. Toxic effects of bisphenol AF on the embryonic development of marine medaka (Oryzias melastigma). Environ. Toxicol. 2023, 38, 1445–1454. [Google Scholar] [CrossRef] [PubMed]
- Costa, H.E.; Cairrao, E. Effect of bisphenol A on the neurological system: A review update. Arch. Toxicol. 2024, 98, 1–73. [Google Scholar] [CrossRef] [PubMed]
- Pang, W.; Lian, F.Z.; Leng, X.; Wang, S.M.; Li, Y.B.; Wang, Z.Y.; Li, K.R.; Gao, Z.X.; Jiang, Y.G. Microarray expression profiling and co-expression network analysis of circulating LncRNAs and mRNAs associated with neurotoxicity induced by BPA. Environ. Sci. Pollut. Res. Int. 2018, 25, 15006–15018. [Google Scholar] [CrossRef] [PubMed]
- Ali, N.; Katsouli, J.; Marczylo, E.L.; Gant, T.W.; Wright, S.; Bernardino de la Serna, J. The potential impacts of micro-and-nano plastics on various organ systems in humans. EBioMedicine 2024, 99, 104901. [Google Scholar] [CrossRef] [PubMed]
- Semmler-Behnke, M.; Lipka, J.; Wenk, A.; Hirn, S.; Schäffler, M.; Tian, F.; Schmid, G.; Oberdörster, G.; Kreyling, W.G. Size dependent translocation and fetal accumulation of gold nanoparticles from maternal blood in the rat. Part. Fibre Toxicol. 2014, 11, 33. [Google Scholar] [CrossRef] [PubMed]
- Evans, S.F.; Kobrosly, R.W.; Barrett, E.S.; Thurston, S.W.; Calafat, A.M.; Weiss, B.; Stahlhut, R.; Yolton, K.; Swan, S.H. Prenatal bisphenol A exposure and maternally reported behavior in boys and girls. Neurotoxicology 2014, 45, 91–99. [Google Scholar] [CrossRef] [PubMed]
- Harley, K.G.; Gunier, R.B.; Kogut, K.; Johnson, C.; Bradman, A.; Calafat, A.M.; Eskenazi, B. Prenatal and early childhood bisphenol A concentrations and behavior in school-aged children. Environ. Res. 2013, 126, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Azar, N.; Booij, L.; Muckle, G.; Arbuckle, T.E.; Séguin, J.R.; Asztalos, E.; Fraser, W.D.; Lanphear, B.P.; Bouchard, M.F. Prenatal exposure to polybrominated diphenyl ethers (PBDEs) and cognitive ability in early childhood. Environ. Int. 2021, 146, 106296. [Google Scholar] [CrossRef] [PubMed]
- Eriksson, P.; Jakobsson, E.; Fredriksson, A. Brominated flame retardants: A novel class of developmental neurotoxicants in our environment? Environ. Health Perspect. 2001, 109, 903–908. [Google Scholar] [CrossRef] [PubMed]
- Green, D.S.; Boots, B.; O′Connor, N.E.; Thompson, R. Microplastics Affect the Ecological Functioning of an Important Biogenic Habitat. Environ. Sci. Technol. 2017, 51, 68–77. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Zheng, J.; Zhang, J.; Duan, M.; Xu, H.; Zhao, W.; Yang, Y.; Wang, C.; Xu, Y. Exposure to difenoconazole induces reproductive toxicity in zebrafish by interfering with gamete maturation and reproductive behavior. Sci. Total Environ. 2022, 838 Pt 1, 155610. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Yan, L.; Zhang, Y.; Liu, X.; Wei, Y.; Zhao, Y.; Li, K.; Shi, Y.; Liu, H.; Lai, W.; et al. Maternal exposure to nanopolystyrene induces neurotoxicity in offspring through P53-mediated ferritinophagy and ferroptosis in the rat hippocampus. J. Nanobiotechnology 2024, 22, 651. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Q.; Wang, M.; Zhang, Z.; Wang, R.; Wang, D.; Sang, Z.; Zhao, P.; Liu, X.; Zhu, X.; Liang, G.; et al. The ameliorative effects of melatonin against BDE-47-induced hippocampal neuronal ferroptosis and cognitive dysfunction through Nrf2-Chaperone-mediated autophagy of ACSL4 degradation. Ecotoxicol. Environ. Saf. 2025, 290, 117542. [Google Scholar] [CrossRef] [PubMed]
- Jangid, N.; Sharma, A.; Srivastava, N. Potential involvement of ferroptosis in BPA-induced neurotoxicity: An in vitro study. Environ. Toxicol. Pharmacol. 2024, 106, 104355. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Zhao, Y.; Jiang, Y.; Zhang, Q. Deciphering the endometrial immune landscape of RIF during the window of implantation from cellular senescence by integrated bioinformatics analysis and machine learning. Front. Immunol. 2022, 13, 952708. [Google Scholar] [CrossRef] [PubMed]
- Qin, J.; Cao, P.; Ding, X.; Zeng, Z.; Deng, L.; Luo, L. Machine learning identifies ferroptosis-related gene ANXA2 as potential diagnostic biomarkers for NAFLD. Front. Endocrinol. 2023, 14, 1303426. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Peng, J.; Xie, J.; Xie, Y. Comprehensive analysis of the function of helicobacter-associated ferroptosis gene YWHAE in gastric cancer through multi-omics integration, molecular docking, and machine learning. Apoptosis 2024, 29, 439–456. [Google Scholar] [CrossRef] [PubMed]
- Soleman, S.; Filippov, M.A.; Dityatev, A.; Fawcett, J.W. Targeting the neural extracellular matrix in neurological disorders. Neuroscience 2013, 253, 194–213. [Google Scholar] [CrossRef] [PubMed]
- Sosunov, A.; Wu, X.; McGovern, R.; Mikell, C.; McKhann, G.M., II; Goldman, J.E. Abnormal mitosis in reactive astrocytes. Acta Neuropathol. Commun. 2020, 8, 47. [Google Scholar] [CrossRef] [PubMed]
- Dejanovic, B.; Sheng, M.; Hanson, J.E. Targeting synapse function and loss for treatment of neurodegenerative diseases. Nat. Rev. Drug Discov. 2024, 23, 23–42. [Google Scholar] [CrossRef] [PubMed]
- Peng, L.; Bestard-Lorigados, I.; Song, W. The synapse as a treatment avenue for Alzheimer′s Disease. Mol. Psychiatry 2022, 27, 2940–2949. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.P.; He, S.Y.; Wang, J.; Wang, X.Q.; Jin, Z.L.; Guo, H.; Wang, C.R.; Xu, Y.N.; Kim, N.H. BDE-47 Induces Mitochondrial Dysfunction and Endoplasmic Reticulum Stress to Inhibit Early Porcine Embryonic Development. Animals 2023, 13, 2291. [Google Scholar] [CrossRef] [PubMed]
- Glaviano, A.; Foo, A.S.C.; Lam, H.Y.; Yap, K.C.H.; Jacot, W.; Jones, R.H.; Eng, H.; Nair, M.G.; Makvandi, P.; Geoerger, B.; et al. PI3K/AKT/mTOR signaling transduction pathway and targeted therapies in cancer. Mol. Cancer 2023, 22, 138. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Liang, Y.; Zhang, X.; Liao, L.; Yang, Y.; Ouyang, W.; Xu, H. SHARPIN Promotes Melanoma Progression via Rap1 Signaling Pathway. J. Investig. Dermatol. 2020, 140, 395–403.e396. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Huang, R.; Tong, X.; Wang, Z.; Sun, S.; Wu, C. Molecular Characterization of AEBP1 at Transcriptional Level in Glioma. Biomed. Res. Int. 2021, 2021, 5579359. [Google Scholar] [CrossRef] [PubMed]
- Asadie, M.; Miri, A.; Badri, T.; Hosseini Nejad, J.; Gharechahi, J. Dysregulated AEBP1 and COLEC12 Genes in Late-Onset Alzheimer′s Disease: Insights from Brain Cortex and Peripheral Blood Analysis. J. Mol. Neurosci. 2024, 74, 37. [Google Scholar] [CrossRef] [PubMed]
- Seo, J.H.; Maki, T.; Miyamoto, N.; Choi, Y.K.; Chung, K.K.; Hamanaka, G.; Park, J.H.; Mandeville, E.T.; Takase, H.; Hayakawa, K.; et al. AKAP12 Supports Blood-Brain Barrier Integrity against Ischemic Stroke. Int. J. Mol. Sci. 2020, 21, 9078. [Google Scholar] [CrossRef] [PubMed]
- Porcelli, S.; Balzarro, B.; Lee, S.J.; Han, C.; Patkar, A.A.; Pae, C.U.; Serretti, A. PDE7B, NMBR and EPM2A Variants and Schizophrenia: A Case-Control and Pharmacogenetics Study. Neuropsychobiology 2016, 73, 160–168. [Google Scholar] [CrossRef] [PubMed]
- Casingal, C.R.; Kikkawa, T.; Inada, H.; Sasaki, Y.; Osumi, N. Identification of FMRP target mRNAs in the developmental brain: FMRP might coordinate Ras/MAPK, Wnt/β-catenin, and mTOR signaling during corticogenesis. Mol. Brain 2020, 13, 167. [Google Scholar] [CrossRef] [PubMed]
- Solinas, C.; Vajda, F.J. Epilepsy and porphyria: New perspectives. J. Clin. Neurosci. 2004, 11, 356–361. [Google Scholar] [CrossRef] [PubMed]
- van Dam, S.; Võsa, U.; van der Graaf, A.; Franke, L.; de Magalhães, J.P. Gene co-expression analysis for functional classification and gene-disease predictions. Brief. Bioinform. 2018, 19, 575–592. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Jiang, H. Identification of oxidative stress-related biomarkers associated with the development of acute-on-chronic liver failure using bioinformatics. Sci. Rep. 2023, 13, 17073. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Cheng, W.; Hu, P.; Ling, T.; Hu, C.; Chen, Y.; Zheng, Y.; Wang, J.; Zhao, T.; You, Q. Integrative analysis identifies oxidative stress biomarkers in non-alcoholic fatty liver disease via machine learning and weighted gene co-expression network analysis. Front. Immunol. 2024, 15, 1335112. [Google Scholar] [CrossRef] [PubMed]
- Wei, W.; Li, Y.; Huang, T. Using Machine Learning Methods to Study Colorectal Cancer Tumor Micro-Environment and Its Biomarkers. Int. J. Mol. Sci. 2023, 24, 11133. [Google Scholar] [CrossRef] [PubMed]
- Lorincz, M.T. Neurologic Wilson′s disease. Ann. N. Y. Acad. Sci. 2010, 1184, 173–187. [Google Scholar] [CrossRef] [PubMed]
- Wungjiranirun, M.; Sharzehi, K. Wilson′s Disease. Semin. Neurol. 2023, 43, 626–633. [Google Scholar] [CrossRef] [PubMed]
- Bandmann, O.; Weiss, K.H.; Kaler, S.G. Wilson′s disease and other neurological copper disorders. Lancet Neurol. 2015, 14, 103–113. [Google Scholar] [CrossRef] [PubMed]
- Thongkorn, S.; Kanlayaprasit, S.; Kasitipradit, K.; Lertpeerapan, P.; Panjabud, P.; Hu, V.W.; Jindatip, D.; Sarachana, T. Investigation of autism-related transcription factors underlying sex differences in the effects of bisphenol A on transcriptome profiles and synaptogenesis in the offspring hippocampus. Biol. Sex Differ. 2023, 14, 8. [Google Scholar] [CrossRef] [PubMed]
- Kanlayaprasit, S.; Saeliw, T.; Thongkorn, S.; Panjabud, P.; Kasitipradit, K.; Lertpeerapan, P.; Songsritaya, K.; Yuwattana, W.; Jantheang, T.; Jindatip, D.; et al. Sex-specific impacts of prenatal bisphenol A exposure on genes associated with cortical development, social behaviors, and autism in the offspring′s prefrontal cortex. Biol. Sex Differ. 2024, 15, 40. [Google Scholar] [CrossRef] [PubMed]
- Kadonaga, J.T. The transformation of the DNA template in RNA polymerase II transcription: A historical perspective. Nat. Struct. Mol. Biol. 2019, 26, 766–770. [Google Scholar] [CrossRef] [PubMed]
- Nicolas, R.; Bonnin, M.A.; Blavet, C.; de Lima, J.E.; Legallais, C.; Duprez, D. 3D-environment and muscle contraction regulate the heterogeneity of myonuclei. Skelet. Muscle 2024, 14, 27. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.L.; Huang, K.T.; Cheng, C.Y.; Li, J.C.; Chan, H.Y.; Lin, T.Y.; Su, M.P.; Yang, W.Y.; Chang, H.C.; Wang, H.D.; et al. Vesicular transport mediates the uptake of cytoplasmic proteins into mitochondria in Drosophila melanogaster. Nat. Commun. 2020, 11, 2592. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, K.; Takagane, K.; Itoh, G.; Kuriyama, S.; Koyota, S.; Meguro, K.; Ling, Y.; Abé, T.; Ohashi, R.; Yashiro, M.; et al. Cell-cell contact-dependent secretion of large-extracellular vesicles from EFNB(high) cancer cells accelerates peritoneal dissemination. Br. J. Cancer 2024, 131, 982–995. [Google Scholar] [CrossRef] [PubMed]
- Keskey, R.C.; Xiao, J.; Hyoju, S.; Lam, A.; Kim, D.; Sidebottom, A.M.; Zaborin, A.; Dijkstra, A.; Meltzer, R.; Thakur, A.; et al. Enterobactin inhibits microbiota-dependent activation of AhR to promote bacterial sepsis in mice. Nat. Microbiol. 2025, 10, 388–404. [Google Scholar] [CrossRef] [PubMed]
- Zhong, M.Z.; Xu, M.N.; Zheng, S.Q.; Cheng, S.Q.; Zeng, K.; Huang, X.W. Manipulating host secreted protein gene expression: An indirect approach by HPV11/16 E6/E7 to suppress PBMC cytokine secretion. Virol. J. 2024, 21, 172. [Google Scholar] [CrossRef] [PubMed]
GSE | Contaminant | Species | Routes of Exposure | Dose/bw | Gender | Experiment: Control | Data Type | PMID | Date |
---|---|---|---|---|---|---|---|---|---|
243,612 | PSNPs | Rn | IV | 200 μg/mL | NA | 3:3 | Count | 38,490,422 | 2023.9.24 |
229,073 | BPA | Rn | OG | 5000 mg/kg | NA | 2:2 | FPKM | 38,750,585 | 2023.4.6 |
266,401 | BPA | Mm | SI | 50 μg/kg/day | M | 3:3 | Count | 39,112,449 | 2024.5.8 |
249,012 | BPA | Mm | OG | 40 μg/kg/day | F + M | 6:6 | Count | 38,777,957 | 2024.5.29 |
102,849 | BPA | Mm | DD-C | 50 mg/kg/diet | M | 4:4 | Count | 29,763,587 | 2018.6.19 |
19,867 | BDE-47 | Rn | TI | 0.002, 0.2 mg/kg | F | 3:3 | Array | 21,394,737 | 2010.1.13 |
128,431 | BDE-47 | Hs | IV | 1 μM | NA | 2:2 | FPKM | 31,326,446 | 2022.3.1 |
123,458 | BDE-47 | Hs | IV | 1 μM | NA | 3:3 | Array | 31,173,147 | 2019.5.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, W.; Liu, Y.; Ma, N.; Wang, R.; Fan, L.; Chen, C.; Yan, Q.; Ren, Z.; Ning, X.; Wei, S.; et al. Transcriptomic Meta-Analysis Unveils Shared Neurodevelopmental Toxicity Pathways and Sex-Specific Transcriptional Signatures of Established Neurotoxicants and Polystyrene Nanoplastics as an Emerging Contaminant. Toxics 2025, 13, 613. https://doi.org/10.3390/toxics13080613
Wang W, Liu Y, Ma N, Wang R, Fan L, Chen C, Yan Q, Ren Z, Ning X, Wei S, et al. Transcriptomic Meta-Analysis Unveils Shared Neurodevelopmental Toxicity Pathways and Sex-Specific Transcriptional Signatures of Established Neurotoxicants and Polystyrene Nanoplastics as an Emerging Contaminant. Toxics. 2025; 13(8):613. https://doi.org/10.3390/toxics13080613
Chicago/Turabian StyleWang, Wenhao, Yutong Liu, Nanxin Ma, Rui Wang, Lifan Fan, Chen Chen, Qiqi Yan, Zhihua Ren, Xia Ning, Shuting Wei, and et al. 2025. "Transcriptomic Meta-Analysis Unveils Shared Neurodevelopmental Toxicity Pathways and Sex-Specific Transcriptional Signatures of Established Neurotoxicants and Polystyrene Nanoplastics as an Emerging Contaminant" Toxics 13, no. 8: 613. https://doi.org/10.3390/toxics13080613
APA StyleWang, W., Liu, Y., Ma, N., Wang, R., Fan, L., Chen, C., Yan, Q., Ren, Z., Ning, X., Wei, S., & Ku, T. (2025). Transcriptomic Meta-Analysis Unveils Shared Neurodevelopmental Toxicity Pathways and Sex-Specific Transcriptional Signatures of Established Neurotoxicants and Polystyrene Nanoplastics as an Emerging Contaminant. Toxics, 13(8), 613. https://doi.org/10.3390/toxics13080613