Microplastic Uptake in Vegetables: Sources, Mechanisms, Transport and Food Safety
Abstract
1. Introduction
2. Materials and Methods
3. Microplastics in Agroecosystems
3.1. Sources of Microplastics in the Soil
3.1.1. Agriculture as a Source of Microplastics
3.1.2. Waste Management and Atmospheric Deposits as a Source of Microplastics
3.2. Influence of Microplastics on Soil Characteristics
4. Soil–Plant System
4.1. Mechanisms of Microplastic Uptake
4.2. Reaction of Plants to Microplastics
4.2.1. The Influence of Microplastics on Seed Germination
4.2.2. Changes in Morphological Features
4.2.3. Changes in Physiological and Biochemical Processes
4.3. Microplastics in Vegetables
Vegetables | Effects | Reference |
---|---|---|
Broccoli (Brassica oleracea var. italica Plenck.) | Decrease in growth, chlorophyll content, photosynthesis, and nutrient uptake | [74] |
Affected growth parameters, lipid peroxidation rate, and phytochemicals. | [75] | |
Cauliflower (Brassica oleracea var. botrytis L.) | Alteration in photosynthetic pigments and antioxidant enzyme activity | [76] |
Carrot (Daucus carota L.) | Deformation of cell walls | [77] |
Chinese flowering cabbage (Brassica rapa var. parachinensis L.) | Reduction in chlorophyll content, photosynthetic rates, plant growth and nutritional quality | [78] |
Delayed the seed germination process, disruptions in oxidative stress, osmoregulation, photosynthetic function, and elemental reservoirs | [79] | |
Decrease in plant growth | [80] | |
Cucumber (Cucumis sativus L.) | Alteration in nitrogen and carbohydrate metabolism; decrease in photosynthetic capacity. | [47] |
Increase in root activity, MDA, proline and soluble protein content; decreased Mg, Ca and Fe levels in fruits | [81] | |
Field mustard spinach (Brassica rapa var. perviridis L.) | Reduction in fresh and dry yield | [82] |
Garlic Chives (Allium tuberosum Rottler ex. Spring) | Reduction in chlorophyll content and photosynthetic rates | [78] |
Leaf mustard (Brassica juncea L.) | Inhibited nutrient uptake and promoted early flowering in plants, increased ROS in leaves. Reduced photosynthetic parameters. | [83] |
Lettuce (Lactuca sativa L.) | Alteration of plant growth and root activity, increase in cadmium concentration | [84] |
Decrease in shoot fresh and dry weight, photosynthetic activity and pigment content, increase in leaf water content | [85] | |
Decrease in plant growth | [86] | |
Increase in expression of flavonoid biosynthesis genes and flavonoid content | [68] | |
Alteration in plant growth and photosynthetic pigments; increase in antioxidant enzyme activity | [87] | |
Significant impact on metabolic pathways; increase in plant fresh and dry weight | [88] | |
Alteration in plant growth and antioxidant enzyme activity | [89] | |
Alteration in root morphological parameters and nutritional quality | [90] | |
Reduction in plant growth; increase in photosynthetic pigments, and enhanced cadmium toxicity | [91] | |
Increase in plant aboveground biomass, nitrogen use efficiency and chlorophyll content | [92] | |
Decrease in plant biomass and chlorophyll content, alteration in antioxidant enzyme activity | [93] | |
Significant impact on plant biomass and oxidative stress indicators | [94] | |
Reduction in plant growth, and chlorophyll content, increase in nitrate content and Cd accumulation, alteration in cell membrane integrity and metabolite levels, impaired antioxidant defense capacity, | [95] | |
Inhibition of seed germination, reduction in early plant height | [96] | |
Accumulation of heavy metals in roots Increase in heavy metal concentration | [97] | |
Reduction in plant growth and total phlorophyll content; increase in antioxidant enzyme activity | [98] | |
Reduction in plant growth total antioxidant capacity and essential amino acid biosynthesis, alteration in micronutrients and chlorophyll content, decrease in | [44] | |
Reduction in fresh weight, reduction in root and shoot length, induction of oxidative stress, impaired water and nutrient transport | [99] | |
Reduction in growth and chlorophyll content | [100] | |
Inhibition of root growth and seed germination | [60] | |
Decreased photosynthetic parameters and total chlorophyll content, increased hydrogen peroxide, malondialdehyde levels and nitrite content | [101] | |
Reduction in root and shoot biomass, induction of oxidative stress | [102] | |
Alteration in Cd accumulation | [103] | |
Reduction in plant growth, induction of oxidative stress | [104] | |
Melon (Cucumis melo L.) | Decrease in germination potential and plant growth | [53] |
Pak choi (Brassica rapa. ssp. Chinensis L.) | Decrease in plant growth; alteration in antioxidant enzyme activity and cell morphology | [105] |
Alteration in phenolic compounds; increase in phytohormone derivate content | [33] | |
Alteration in chlorophyll content, nitrogen use efficiency and overground and belowground mass | [92] | |
Increase in total leaf carbon and nitrogen content, relative water content and plant growth; decrease in chlorophyll content, transpiration rate and stomal conductance | [78] | |
Reduction in plant growth and chlorophyll content, alteration of soluble sugar content | [106] | |
Alteration in metabolic activities | [107] | |
Reduction in shoot and root length, plant biomass and chlorophyll content | [108] | |
Inhibition of plant growth, reduction in fresh and dry shoot weight, alteration of chlorophyll, soluble protein and vitamin C content | [109] | |
Reduction in shoot length and fresh weight, SPAD values, increase in SOD, POD and CAT activities | [110] | |
Reduction in leaf number, fresh weight, total protein content, photosynthetic pigment content, alteration in root activity and antioxidant enzyme activity | [111] | |
Pepper (Capsicum annuum L.) | Disruption in amino acid metabolism | [112] |
Decrease in plant growth, fruit yield and antioxidant enzyme activity, increase in MDA content | [113] | |
Potato (Solanum tuberosum L.) | Alteration in photosynthetic content and antioxidant enzyme activity | [76] |
Potherb mustrad (Brassica juncea var. multiceps L.) | Disruption in carbohydrate, amino acid and lipid metabolism; yield reduction; increase in Fe/Mn content and antioxidant enzyme activity | [114] |
Radish (Raphanus sativus L.) | Alteration in antioxidant enzyme activity, germination rates and relative root lengths | [76] |
Alteration in plant growth | [115] | |
Decrease in plant growth; alteration in antioxidant enzyme activity; increase in chlorophyll a content; | [116] | |
Decrease in plant growth and nutritional values, increase in MDA and anthocyanin content | [75] | |
Decrease in germination percentage, alteration in plant growth and antioxidant enzyme activity | [60] | |
Reduction in plant growth, increased variability in plant growth | [117] | |
Red amaranth (Amaranthus tricolor L.) | Alternation in plant growth; reduction in nitrogen, phosphorus and potassium content; increase in germination parameters and cadmium phytotoxicity | [118] |
Spinach (Spinacia oleracea L.) | Alteration in plant growth; reduction in membrane stability index and chlorophyll content; increase in proline, protein and soluble sugar content and antioxidant enzyme activity | [109] |
Reduction in chlorophyll a and b and ascorbic acid content and antioxidant enzyme activity; increase in carotenoid; alteration in antioxidant enzyme activity | [76] | |
Water spinach (Ipomea aquatica F.) | Oxidative stress induced | [119] |
Reduction in plant growth | [120] | |
Reduction in plant growth and chlorophyll a content | [121] |
4.3.1. Type and Form of Microplastics in Vegetables
4.3.2. Mechanisms of Uptake of Micro- and Nanoplastics by Vegetables
4.3.3. Conditions Affecting the Adoption of Microplastics
4.3.4. The Impact of Microplastics on Vegetables
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pastor, K.; Isić, B.; Horvat, M.; Horvat, Z.; Ilić, M.; Ačanski, M.; Marković, M. Omnipresence of plastics: A Review of the Microplastic Sources and Detection Methods. J. Fac. Civ. Eng. 2021, 39, 29–43. [Google Scholar] [CrossRef]
- Statista. Available online: https://www.statista.com (accessed on 1 April 2025).
- Yan, H.; Cordier, M.; Uehara, T. Future Projections of Global Plastic Pollution: Scenario Analyses and Policy Implications. Sustainability 2024, 16, 643. [Google Scholar] [CrossRef]
- Pottinger, A.S.; Geyer, R.; Biyani, N.; Martinez, C.; Nathan, N.; Morse, M.R.; Liu, C.; Hu, S.; de Bruyn, M.; Boettiger, C.; et al. Pathways to reduce global plastic waste mismanagement and greenhouse gas emissions by 2050. Science 2024, 386, 1168–1173. [Google Scholar] [CrossRef] [PubMed]
- Lazăr, N.N.; Calmuc, M.; Milea, S.A.; Georgescu, P.L.; Iticescu, C. Micro and nano plastics in fruits and vegetables: A review. Heliyon 2024, 10, e28291. [Google Scholar] [CrossRef] [PubMed]
- Mathew, J.T.; Inobeme, A.; Adetuyi, B.O.; Adetunji, C.O.; Popoola, O.A.; Olaitan, F.Y.; Akinbo, O.; Shahnawaz, M.; Oyewole, O.A.; Eniola, K.I.T.; et al. General Introduction of Microplastic: Uses, Types, and Generation. In Microplastic Pollution; Shahnawaz, M., Adetunji, C.O., Dar, M.A., Zhu, D., Eds.; Springer: Singapore, 2024; pp. 3–21. [Google Scholar] [CrossRef]
- Wang, J.; Liu, X.; Li, Y.; Powell, T.; Wang, X.; Wang, G.; Zhang, P. Microplastics as contaminants in the soil environment: A mini-review. Sci. Total Environ. 2019, 691, 848–857. [Google Scholar] [CrossRef] [PubMed]
- Pinlova, B.; Nowack, B. From cracks to secondary microplastics—Surface characterization of polyethylene terephthalate (PET) during weathering. Chemosphere 2024, 352, 141305. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Lei, C.; Xu, J.; Li, R. Foliar uptake and leaf-to-root translocation of nanoplastics with different coating charge in maize plants. J. Hazard. Mater. 2021, 416, 125854. [Google Scholar] [CrossRef] [PubMed]
- Chia, R.W.; Lee, J.Y.; Cha, J.; Çelen-Erdem, İ. A comparative study of soil microplastic pollution sources: A review. Environ. Pollut. Bioaviolab. 2023, 35, 2280526. [Google Scholar] [CrossRef]
- Khan, M.R.; Tarafder, M.M.A.; Priti, M.S.; Haque, M.A. Micro-plastics in soil environment: A review. Bangladesh J. Nuc. Agri. 2024, 38, 1–19. [Google Scholar] [CrossRef]
- Nath, S.; Enerijiofi, K.E.; Astapati, A.D.; Guha, A. Microplastics and nanoplastics in soil: Sources, impacts, and solutions for soil health and environmental sustainability. J. Environ. Qual. 2024, 53, 1048–1072. [Google Scholar] [CrossRef] [PubMed]
- Dogra, K.; Kumar, M.; Bahukhandi, K.D.; Zang, J. Traversing the prevalence of microplastics in soil-agro ecosystems: Origin, occurrence, and pollutants synergies. J. Contam. Hydrol. 2024, 266, 104398. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; García-Perez, P.; Munoz-Palazon, B.; Gonzalez-Martinez, A.; Lucini, L.; Rodriguez-Sanchez, A. A metabolomics perspective on the effect of environmental micro and nanoplastics on living organisms: A review. Sci. Total Environ. 2024, 932, 172915. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Yu, L.; Li, Y.; Han, B.; Zhang, J.; Tao, S.; Liu, W. Status, characteristics, and ecological risks of microplastics in farmland surface soils cultivated with different crops across mainland China. Sci. Total Environ. 2023, 897, 165331. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Feng, Z.; Ghani, M.I.; Wang, Q.; Zeng, L.; Yang, X.; Cernava, T. Co-exposure to microplastics and soil pollutants significantly exacerbates toxicity to crops: Insights from a global meta and machine-learning analysis. Sci. Total Environ. 2024, 954, 176490. [Google Scholar] [CrossRef] [PubMed]
- Chadegani, A.; Salehi, H.; Yunus, M.; Farhadi, H.; Fooladi, M.; Farhadi, M.; Ebrahim, N. A comparison between two main academic literature collections: Web of Science and Scopus databases. Asian Soc. Sci. 2013, 9, 18–26. [Google Scholar] [CrossRef]
- He, D.; Luo, Y.; Lu, S.; Liu, M.; Song, Y.; Lei, L. Microplastics in soils: Analytical methods, pollution characteristics and ecological risks. TrAC Trends Anal. Chem. 2018, 109, 163–172. [Google Scholar] [CrossRef]
- Paganini, E.; Silva, R.B.; Roder, L.R.; Guerrini, I.A.; Capra, G.F.; Grilli, E.; Ganga, A. A Systematic Review and Meta-Analysis of the Sustainable Impact of Sewage Sludge Application on Soil Organic Matter and Nutrient Content. Sustainability 2024, 16, 9865. [Google Scholar] [CrossRef]
- Rodrigues, M.Â.; Sawimbo, A.; da Silva, J.M.; Correia, C.M.; Arrobas, M. Sewage Sludge Increased Lettuce Yields by Releasing Valuable Nutrients While Keeping Heavy Metals in Soil and Plants at Levels Well below International Legislative Limits. Horticulturae 2024, 10, 706. [Google Scholar] [CrossRef]
- Mostafa, S.M.; Gameh, M.A.; El Wahab, M.M.A.; El Desoky, M.A.; Negim, O.I. Environmental negative and positive impacts of treated sewage water on the soil: A case study from Sohag Governorate, Egypt. Egypt. Sugar J. 2022, 19, 1–11. [Google Scholar] [CrossRef]
- Barbosa, A.M.S.; Faria, R.T.; Saran, L.M.; Santos, G.O.; Dantas, G.F.; Coelho, A.P. Impact of treated sewage effluent on soil fertility, salinization, and heavy metal content. Bragantia 2022, 81, e0222. [Google Scholar] [CrossRef]
- Tiruneh, A.T.; Nkambule, S.J.; Murye, A.F. Assessment of the benefits and risks of sewage sludge application as soil amendment for agriculture in Eswatini. Afr. J. Food Agric. Nutr. Dev. 2024, 24, 24229–24260. [Google Scholar] [CrossRef]
- Rydgård, M.; Bairaktar, A.; Thelin, G.; Bruun, S. Application of untreated versus pyrolysed sewage sludge in agriculture: A Life Cycle Assessment. J. Clean. Prod. 2024, 454, 142249. [Google Scholar] [CrossRef]
- Haider, I.; Ali, M.A.; Sanaullah, M.; Ahmed, N.; Hussain, S.; Shakeel, M.T.; Naqvi, S.A.H.; Dar, J.S.; Moustafa, M.; Alshaharni, M.O. Unlocking the secrets of soil microbes: How decades-long contamination and heavy metals accumulation from sewage water and industrial effluents shape soil biological health. Chemosphere 2023, 342, 140193. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Li, Y.; Jiang, L.; Chen, X.; Zhao, Y.; Shi, W.; Xing, Z. From organic fertiliser to the soils: What happens to the microplastics? A critical review. Sci. Total Environ. 2024, 919, 170217. [Google Scholar] [CrossRef] [PubMed]
- Santini, G.; Acconcia, S.; Napoletano, M.; Memoli, V.; Santorufo, L.; Maisto, G. Unbiodegradable and biodegradable plastic sheets modify the soil properties after six months since their applications. Environ. Pollut. 2022, 308, 119608. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Zou, G.; Zuo, Q.; Li, S.; Bao, Z.; Jin, T.; Liu, D.; Du, L. It is still too early to promote biodegradable mulch film on a large scale: A bibliometric analysis. Environ. Technol. Innov. 2022, 27, 102487. [Google Scholar] [CrossRef]
- Santini, G.; Castiglia, D.; Perrotta, M.M.; Landi, S.; Maisto, G.; Esposito, S. Plastic in the Environment: A Modern Type of Abiotic Stress for Plant Physiology. Plants 2023, 12, 3717. [Google Scholar] [CrossRef] [PubMed]
- Khalid, N.; Aqeel, M.; Noman, A.; Rizvi, Z.F. Impact of plastic mulching as a major source of microplastics in agroecosystems. J. Hazard. Mater. 2023, 445, 130455. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.S.; Chang, H.; Zheng, L.; Yan, Q.; Pfleger, B.F.; Klier, J.; Nelson, K.; Majumder, E.L.; Huber, G.W. A Review of Biodegradable Plastics: Chemistry, Applications, Properties, and Future Research Needs. ACS Chem. Rev. 2023, 23, 9915–9939. [Google Scholar] [CrossRef] [PubMed]
- Qin, M.; Chen, C.; Song, B.; Shen, M.; Cao, W.; Yang, H.; Zeng, G.; Gong, J. A review of biodegradable plastics to biodegradable microplastics: Another ecological threat to soil environments? J. Clean. Prod. 2021, 312, 127816. [Google Scholar] [CrossRef]
- Zytowski, E.; Mollavali, M.; Baldermann, S. Uptake and translocation of nanoplastics in mono and dicot vegetables. Plant Cell Environ. 2025, 48, 134–148. [Google Scholar] [CrossRef] [PubMed]
- Theofanidis, S.A.; Delikonstantis, E.; Yfanti, V.-L.; Galvita, V.V.; Lemonidou, A.A.; Van Geem, K. An electricity-powered future for mixed plastic waste chemical recycling. Waste Manag. 2025, 193, 155–170. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Li, Y.; Liu, S.; Junaid, M.; Wang, J. Effects of micro(nano)plastics on higher plants and the rhizosphere environment. Sci. Total Environ. 2022, 807, 150841. [Google Scholar] [CrossRef] [PubMed]
- Mou, X.; Zhu, H.; Dai, R.; Lu, L.; Qi, S.; Zhu, M.; Long, Y.; Ma, N.; Chen, C.; Shentu, J. Potential impact and mechanism of aged polyethylene microplastics on nitrogen assimilation of Lactuca sativa L. Ecotoxicol. Environ. Saf. 2025, 291, 117862. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.Y.; Li, Y.; Liang, X.; Lu, S.; Zhang, Y.; Han, Z.; Gao, B.; Sun, K. Effects of microplastics on soil carbon pool and terrestrial plant performance. Carbon Res. 2024, 3, 37. [Google Scholar] [CrossRef]
- Wang, L.; Liu, W.; Zeb, A.; Wang, L.; Mo, F.; Shi, R.; Sun, Y.; Wang, F. Biodegradable Microplastic-Driven Change in Soil pH Affects Soybean Rhizosphere Microbial N Transformation Processes. J. Agric. Food Chem. 2024, 72, 16674–16686. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Wang, F.; Huang, W.; Liu, Y. Response of soil biochemical properties and ecosystem function to microplastics pollution. Sci. Rep. 2024, 14, 28328. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Wang, X.; Song, N. Polyethylene microplastics increase cadmium uptake in lettuce (Lactuca sativa L.) by altering the soil microenvironment. Sci. Total Environ. 2021, 784, 147133. [Google Scholar] [CrossRef] [PubMed]
- Yue, Y.; Li, X.; Wei, Z.; Zhang, T.; Wang, H.; Huang, X.; Tang, S. Recent Advances on Multilevel Effects of Micro(Nano)Plastics and Coexisting Pollutants on Terrestrial Soil-Plants System. Sustainability 2023, 15, 4504. [Google Scholar] [CrossRef]
- Yu, H.; Zhang, Z.; Zhang, Y.; Fan, P.; Xi, B.; Tan, W. Metal type and aggregate microenvironment govern the response sequence of speciation transformation of different heavy metals to microplastics in soil. Sci. Total Environ. 2021, 752, 141956. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Luo, Y.; Li, R.; Zhou, Q.; Peijnenburg, W.J.G.M.; Yin, N.; Yang, J.; Tu, C.; Zhang, Y. Effective uptake of submicrometre plastics by crop plants via a crack-entry mode. Nat. Sustain. 2020, 3, 929–937. [Google Scholar] [CrossRef]
- Lian, J.; Liu, W.; Meng, L.; Wu, J.; Chao, L.; Zeb, A.; Sun, Y. Foliar-applied polystyrene nanoplastics (PSNPs) reduce the growth and nutritional quality of lettuce (Lactuca sativa L.). Environ. Pollut. 2021, 280, 116978. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Li, L.; Feng, Y.; Li, R.; Yang, J.; Peijnenburg, W.J.G.M.; Tu, C. Quantitative tracing of uptake and transport of submicrometre plastics in crop plants using lanthanide chelates as a dual-functional tracer. Nat. Nanotechnol. 2022, 17, 424–431. [Google Scholar] [CrossRef] [PubMed]
- Lozano, Y.M.; Lehnert, T.; Linck, L.T.; Lehmann, A.; Rillig, M.C. Microplastic shape, polymer type, and concentration affect soil properties and plant biomass. Front. Plant Sci. 2021, 12, 616645. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.; Shi, Z.; Shan, X.; Yang, S.Y.; Zhang, Y.; Guo, X.M. Insights into growth-affecting effect of nanomaterials: Using metabolomics and transcriptomics to reveal the molecular mechanisms of cucumber leaves upon exposure to polystyrene nanoplastics (PSNPs). Sci. Total Environ. 2023, 866, 161247. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Feng, X.; Liu, Y.; Adams, C.A.; Sun, Y.; Zhang, S. Micro(nano)plastics and terrestrial plants: Up-to-date knowledge on uptake, translocation, and phytotoxicity. Resour. Conserv. Recycl 2022, 185, 106503. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhao, M.; Meng, F.; Xiao, Y.; Dai, W.; Luan, Y. Effect of polystyrene microplastics on rice seed germination and antioxidant enzyme activity. Toxics 2021, 9, 179. [Google Scholar] [CrossRef] [PubMed]
- De Silva, Y.S.K.; Rajagopalan, U.M.; Kadono, H.; Li, D. Effects of microplastics on lentil (Lens culinaris) seed germination and seedling growth. Chemosphere 2022, 303, 135162. [Google Scholar] [CrossRef] [PubMed]
- Hu, M.; Huang, Y.; Liu, L.; Ren, L.; Li, C.; Yang, R.; Zhang, Y. The effects of Micro Nano-plastics exposure on plants and their toxic mechanisms: A review from multi-omics perspectives. J. Hazard. Mater. 2023, 465, 133279. [Google Scholar] [CrossRef] [PubMed]
- Mészáros, E.; Bodor, A.; Kovács, E.; Papp, S.; Kovács, K.; Perei, K.; Feigl, G. Impacts of Plastics on Plant Development: Recent Advances and Future Research Directions. Plants 2023, 12, 3282. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Zeng, X.; Sun, F.; Feng, T.; Xu, Y.; Li, Z.; Zhang, Z. Physiological analysis and transcriptome profiling reveals the impact of microplastic on melon (Cucumis melo L.) seed germination and seedling growth. J. Plant Phys. 2023, 287, 154039. [Google Scholar] [CrossRef] [PubMed]
- Kang, M.; Liu, Y.; Wang, H.; Weng, Y.; Gong, D.; Bai, X. Physiological Toxicity and Antioxidant Mechanism of Photoaging Microplastics on Pisum sativum L. Seedlings. Toxics 2023, 11, 242. [Google Scholar] [CrossRef] [PubMed]
- Serrano-Ruiz, H.; Martin-Closas, L.; Pelacho, A.M. Impact of buried debris from agricultural biodegradable plastic mulches on two horticultural crop plants: Tomato and lettuce. Sci. Total Environ. 2023, 856, 159167. [Google Scholar] [CrossRef] [PubMed]
- Bouaicha, O.; Tiziani, R.; Maver, M.; Lucini, L.; Miras-Moreno, B.; Zhang, L.; Trevisan, M.; Cesco, S.; Borruso, L.; Mimmo, T. Plant species-specific impact of polyethylene microspheres on seedling growth and the metabolome. Sci. Total Environ. 2022, 840, 156678. [Google Scholar] [CrossRef] [PubMed]
- Esterhuizen, M.; Vikfors, S.; Penttinen, O.-P.; Kim, Y.J.; Pflugmacher, S. Lolium multiflorum germination and growth affected by virgin, naturally, and artificially aged high-density polyethylene microplastic and leachates. Front. Environ. Sci. 2022, 10, 964230. [Google Scholar] [CrossRef]
- Shi, R.; Liu, W.; Lian, Y.; Wang, Q.; Zeb, A.; Tang, J. Phytotoxicity of polystyrene, polyethylene and polypropylene microplastics on tomato (Lycopersicon esculentum L.). J. Environ. Manag. 2022, 317, 115441. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Hou, H.; Liu, Y.; Yin, S.; Bian, S.; Liang, S.; Wan, C.; Yuan, S.; Xiao, K.; Liu, B. Microplastics affect rice (Oryza sativa L.) quality by interfering metabolite accumulation and energy expenditure pathways: A field study. J. Hazard. Mater. 2022, 422, 126834. [Google Scholar] [CrossRef] [PubMed]
- Gong, W.; Zhang, W.; Jiang, M.; Li, S.; Liang, G.; Bu, Q.; Xu, L.; Zhu, Z.; Lu, A. Species-dependent response of food crops to polystyrene nanoplastics and microplastics. Sci. Total Environ. 2021, 796, 148750. [Google Scholar] [CrossRef] [PubMed]
- Pignattelli, S.; Broccoli, A.; Renzi, M. Physiological responses of garden cress (L. sativum) to different types of microplastics. Sci. Total Environ. 2020, 727, 138609. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Jin, T.; Wang, L.; Tang, J. Polystyrene micro and nanoplastics attenuated the bioavailability and toxic effects of Perfluorooctane sulfonate (PFOS) on soybean (Glycine max) sprouts. J. Hazard. Mater. 2023, 448, 130911. [Google Scholar] [CrossRef] [PubMed]
- Liwarska-Bizukojc, E. Effect of innovative bio-based plastics on early growth of higher plants. Polymers 2023, 15, 438. [Google Scholar] [CrossRef] [PubMed]
- Spanò, C.; Muccifora, S.; Castiglione, M.R.; Bellani, L.; Bottega, S.; Giorgetti, L. Polystyrene nanoplastics affect seed germination, cell biology and physiology of rice seedlings in-short term treatments: Evidence of their internalization and translocation. Plant Physiol. Biochem. 2022, 172, 158–166. [Google Scholar] [CrossRef] [PubMed]
- Lian, J.; Wu, J.; Xiong, H.; Zeb, A.; Yang, T.; Su, X.; Su, L.; Liu, W. Impact of polystyrene nanoplastics (PSNPs) on seed germination and seedling growth of wheat (Triticum aestivum L.). J. Hazard. Mater. 2020, 385, 121620. [Google Scholar] [CrossRef] [PubMed]
- Colzi, I.; Renna, L.; Bianchi, E.; Castellani, M.B.; Coppi, A.; Pignattelli, S.; Loppi, S.; Gonnelli, C. Impact of microplastics on growth, photosynthesis and essential elements in Cucurbita pepo L. J. Hazard. Mater. 2022, 423, 127. [Google Scholar] [CrossRef] [PubMed]
- Zantis, L.J.; Adamczyk, S.; Velmala, S.M.; Adamczyk, B.; Vijver, M.G.; Peijnenburg, W.; Bosker, T. Comparing the impact of microplastics derived from a biodegradable and a conventional plastic mulch on plant performance. Sci. Total Environ. 2024, 935, 173265. [Google Scholar] [CrossRef] [PubMed]
- Xu, G.; Li, Y.; Lin, X.; Yu, Y. Effects and mechanisms of polystyrene micro- and nano-plastics on the spread of antibiotic resistance genes from soil to lettuce. Sci. Total Environ. 2024, 912, 169293. [Google Scholar] [CrossRef] [PubMed]
- Lozano, Y.M.; Rillig, M.C. Effects of microplastic fibers and drought on plant communities. Environ. Sci. Technol. 2020, 54, 6166–6173. [Google Scholar] [CrossRef] [PubMed]
- Jia, L.H.; Liu, L.; Zhang, Y.; Fu, W.; Liu, X.; Wang, Q.; Tanveer, M.; Huang, L. Microplastic stress in plants: Effects on plant growth and their remediations. Front. Plant Sci. 2023, 14, 1226484. [Google Scholar] [CrossRef] [PubMed]
- Rong, S.; Wang, S.; Liu, H.; Li, Y.; Huang, J.; Wang, W.; Liu, W. Evidence for the transportation of aggregated microplastics in the symplast pathway of oilseed rape roots and their impact on plant growth. Sci. Total Environ. 2024, 912, 169419. [Google Scholar] [CrossRef] [PubMed]
- Cui, J.; Li, X.; Gan, Q.; Lu, Z.; Du, Y.; Noor, I.; Wang, L.; Liu, S.; Jin, B. Flavonoids Mitigate Nanoplastic Stress in Ginkgo biloba. Plant Cell Environ. 2024, 48, 1790–1811. [Google Scholar] [CrossRef] [PubMed]
- Ren, F.; Huang, J.; Yang, Y. Unveiling the impact of microplastics and nanoplastics on vascular plants: A cellular metabolomic and transcriptomic review. Ecotoxicol. Environ. Saf. 2024, 279, 116490. [Google Scholar] [CrossRef] [PubMed]
- Yar, S.; Ashraf, M.A.; Rasheed, R.; Farooq, U.; Hafeez, A.; Ali, S.; Sarker, P.K. Taurine decreases arsenic and microplastic toxicity in broccoli (Brassica oleracea L.) through functional and microstructural alterations. BioMetals 2025, 38, 597–621. [Google Scholar] [CrossRef] [PubMed]
- López, M.D.; Toro, M.T.; Riveros, G.; Illanes, M.; Noriega, F.; Schoebitz, M.; Moreno, D.A. Brassica sprouts exposed to microplastics: Effects on phytochemical constituents. Sci. Total Environ. 2022, 823, 153796. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, T.; Hussain, H.; Sabir, A.; Irfan, M.; Ghafar, A.; Jafir, M.; Sabir, M.A.; Zulfiqar, U.; Binobead, M.A.; Al Munqedhi, B.M. Impact of Microplastic on Roadside Vegetable Cultivation: A Case Study of Agricultural Farmland. Pol. J. Environ. Stud. 2025, 34, 2525–2538. [Google Scholar] [CrossRef]
- Dong, Y.; Gao, M.; Qiu, W.; Song, Z. Uptake of microplastics by carrots in presence of as (III): Combined toxic effects. J. Hazard. Mater. 2021, 411, 125055. [Google Scholar] [CrossRef] [PubMed]
- Ilyas, M.; Liu, X.; Yang, J.; Xu, G. Foliar implications of polystyrene nanoplastics on leafy vegetables and its ecological consequences. J. Hazard. Mater. 2024, 480, 136346. [Google Scholar] [CrossRef] [PubMed]
- Pan, B.; Pan, B.; Lu, Y.; Cai, K.; Zhu, X.; Huang, L.; Mo, C.H. Polystyrene microplastics facilitate the chemical journey of phthalates through vegetable and aggravate phytotoxicity. J. Hazard. Mater. 2024, 480, 135770. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Chen, M.; Li, M.; Liu, H.; Tang, H.; Yang, Y. Do differentially charged nanoplastics affect imidacloprid uptake, translocation, and metabolism in Chinese flowering cabbage? Sci. Total Environ. 2023, 871, 161918. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Li, Q.; Li, R.; Zhou, J.; Wang, G. The distribution and impact of polystyrene nanoplastics on cucumber plants. Environ. Sci. Pollut. Res. 2021, 28, 16042–16053. [Google Scholar] [CrossRef] [PubMed]
- Maryam, B.; Asim, M.; Li, J.; Qayyum, H.; Liu, X. Luminous polystyrene upconverted nanoparticles to visualize the traces of nanoplastics in a vegetable plant. Environ. Sci. Nano 2025, 12, 1273–1287. [Google Scholar] [CrossRef]
- Wang, B.; Wang, P.; Zhao, S.; Shi, H.; Zhu, Y.; Teng, Y.; Liu, S. Combined effects of microplastics and cadmium on the soil-plant system: Phytotoxicity, Cd accumulation and microbial activity. Environ. Pollut. 2023, 333, 121960. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Li, B.; Zhou, J.; Li, D.; Liu, Y.; Wang, Y.; Chen, G. Effects of naturally aged microplastics on arsenic and cadmium accumulation in lettuce: Insights into rhizosphere microecology. J. Hazard. Mater. 2025, 486, 136988. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Hoagland, L.; Yang, Y.; Becchi, P.P.; Sobolev, A.P.; Scioli, G.; Lucini, L. The combination of hyperspectral imaging, untargeted metabolomics and lipidomics highlights a coordinated stress-related biochemical reprogramming triggered by polyethylene nanoparticles in lettuce. Sci. Total Environ. 2025, 964, 178604. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhang, S.; Xing, H.; Yan, P.; Wang, J. Soil moisture and texture mediating the micro (nano) plastics absorption and growth of lettuce in natural soil conditions. J. Hazard. Mater. 2025, 482, 136575. [Google Scholar] [CrossRef] [PubMed]
- Adamczyk, S.; Zantis, L.J.; van Loon, S.; van Gestel, C.A.; Bosker, T.; Hurley, R.; Velmala, S. Biodegradable microplastics induce profound changes in lettuce (Lactuca sativa) defense mechanisms and to some extent deteriorate growth traits. Environ. Pollut. 2024, 363, 125307. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Vaccari, F.; Bandini, F.; Puglisi, E.; Trevisan, M.; Lucini, L. The short-term effect of microplastics in lettuce involves size-and dose-dependent coordinate shaping of root metabolome, exudation profile and rhizomicrobiome. Sci. Total Environ. 2024, 945, 174001. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Xu, Y.; Liu, G.; Li, B.; Guo, T.; Ouyang, D.; Zhang, H. Polyethylene microplastic modulates lettuce root exudates and induces oxidative damage under prolonged hydroponic exposure. Sci. Total Environ. 2024, 916, 170253. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Huang, W.; Wang, Y.; Wen, Q.; Zhou, J.; Wu, S.; Qiu, R. Effects of naturally aged microplastics on the distribution and bioavailability of arsenic in soil aggregates and its accumulation in lettuce. Sci. Total Environ. 2024, 914, 169964. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Peng, C.; Shao, X.; Gong, K.; Zhao, X.; Xie, W.; Tan, J. Unveiling the impacts of biodegradable microplastics on cadmium toxicity, translocation, transformation, and metabolome in lettuce. Sci. Total Environ. 2024, 957, 177669. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; He, J.; Chen, X.; Dong, X.; Liu, S.; Anderson, C.W.; Lan, T. Interactive effects of microplastics and cadmium on soil properties, microbial communities and bok choy growth. Sci. Total Environ. 2024, 955, 176831. [Google Scholar] [CrossRef] [PubMed]
- Hua, Z.; Zhang, T.; Luo, J.; Bai, H.; Ma, S.; Qiang, H.; Guo, X. Internalization, physiological responses and molecular mechanisms of lettuce to polystyrene microplastics of different sizes: Validation of simulated soilless culture. J. Hazard. Mater. 2024, 462, 132710. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Lin, X.; Xu, G.; Yan, Q.; Yu, Y. Toxic effects and mechanisms of engineered nanoparticles and nanoplastics on lettuce (Lactuca sativa L.). Sci. Total Environ. 2024, 908, 168421. [Google Scholar] [CrossRef] [PubMed]
- Xu, G.; Lin, X.; Yu, Y. Different effects and mechanisms of polystyrene micro-and nano-plastics on the uptake of heavy metals (Cu, Zn, Pb and Cd) by lettuce (Lactuca sativa L.). Environ. Pollut. 2023, 316, 120656. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Wang, J.; Yan, P.; Aurangzeib, M. Middle concentration of microplastics decreasing soil moisture-temperature and the germination rate and early height of lettuce (Lactuca sativa var. ramosa Hort.) in Mollisols. Sci. Total Environ. 2023, 905, 167184. [Google Scholar] [CrossRef] [PubMed]
- Bethanis, J.; Golia, E.E. Revealing the Combined Effects of Microplastics, Zn, and Cd on Soil Properties and Metal Accumulation by Leafy Vegetables: A Preliminary Investigation by a Laboratory Experiment. Soil Syst. 2023, 7, 65. [Google Scholar] [CrossRef]
- Wang, Y.; Xiang, L.; Wang, F.; Wang, Z.; Bian, Y.; Gu, C.; Xing, B. Positively charged microplastics induce strong lettuce stress responses from physiological, transcriptomic, and metabolomic perspectives. Environ. Sci. Technol. 2022, 56, 16907–16918. [Google Scholar] [CrossRef] [PubMed]
- Gao, M.; Xu, Y.; Liu, Y.; Wang, S.; Wang, C.; Dong, Y.; Song, Z. Effect of polystyrene on di-butyl phthalate (DBP) bioavailability and DBP-induced phytotoxicity in lettuce. Environ. Pollut. 2021, 268, 115870. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, C.; Jiang, M.; Zhou, G. Bio-effects of bio-based and fossil-based microplastics: Case study with lettuce-soil system. Environ. Pollut. 2022, 306, 119395. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Song, Z.; Liu, Y.; Gao, M. Polystyrene particles combined with di-butyl phthalate cause significant decrease in photosynthesis and red lettuce quality. Environ. Pollut. 2021, 278, 116871. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Luo, X.S.; Xu, J.; Yao, X.; Fan, J.; Mao, Y.; Khattak, W.A. Dry–wet cycle changes the influence of microplastics (MPs) on the antioxidant activity of lettuce and the rhizospheric bacterial community. J. Soils Sediments 2023, 23, 2189–2201. [Google Scholar] [CrossRef]
- Wang, Y.; Qian, X.; Chen, J.; Yuan, X.; Zhu, N.; Chen, Y.; Feng, Z. Co-exposure of polystyrene microplastics influence cadmium trophic transfer along the “lettuce-snail” food chain: Focus on leaf age and the chemical fractionations of Cd in lettuce. Sci. Total Environ. 2023, 892, 164799. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Xiang, L.; Wang, F.; Redmile-Gordon, M.; Bian, Y.; Wang, Z.; Xing, B. Transcriptomic and metabolomic changes in lettuce triggered by microplastics-stress. Environ. Pollut. 2023, 320, 121081. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Cao, W.; Wu, W.; Xin, X.; Jia, H. Transcription-metabolism analysis of various signal transduction pathways in Brassica chinensis Lexposed to PLA-MPs. J. Hazard. Mater. 2025, 486, 136968. [Google Scholar] [CrossRef] [PubMed]
- Men, C.; Xie, Z.; Li, K.; Xing, X.; Li, Z.; Zuo, J. Single and combined effect of polyethylene microplastics (virgin and naturally aged) and cadmium on pakchoi (Brassica rapa subsp. chinensis) under different growth stages. Sci. Total Environ. 2024, 951, 175602. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.Y.; Niu, S.H.; Li, H.Y.; Liao, X.D.; Xing, S.C. Multiomics analysis of the effects of manure-borne doxycycline combined with oversized fiber microplastics on pak choi growth and the risk of antibiotic resistance gene transmission. J. Hazard. Mater. 2024, 475, 134931. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Yan, J.; Li, Y.; Liu, Y.; Andom, O.; Li, Z. Microplastics alter cadmium accumulation in different soil-plant systems: Revealing the crucial roles of soil bacteria and metabolism. J. Hazard. Mater. 2024, 474, 134768. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Han, S.; Wang, P.; Zhang, X.; Zhang, J.; Hou, L.; Lin, Y. Soil microorganisms play an important role in the detrimental impact of biodegradable microplastics on plants. Sci. Total Environ. 2024, 933, 172933. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Teng, Y.; Wang, X.; Wen, D.; Gao, P.; Yan, D.; Yang, N. Biodegradable PBAT microplastics adversely affect pakchoi (Brassica chinensis L.) growth and the rhizosphere ecology: Focusing on rhizosphere microbial community composition, element metabolic potential, and root exudates. Sci. Total Environ. 2024, 912, 169048. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Li, J.; Song, Y.; Zhang, Z.; Yu, S.; Xu, M.; Zhao, Y. Stimulation versus inhibition: The effect of microplastics on pak choi growth. Appl. Soil Ecol. 2022, 177, 104505. [Google Scholar] [CrossRef]
- Cui, Y.; Zhang, Y.; Guan, M.; Fu, Y.; Yang, X.; Hu, M.; Yang, R. The effect of Polyethylene Terephthalate (PET) Microplastic stress on the composition and gene regulatory network of amino acid in Capsicum annuum. Environ. Exp. Bot. 2024, 228, 106029. [Google Scholar] [CrossRef]
- He, B.; Liu, Z.; Wang, X.; Li, M.; Lin, X.; Xiao, Q.; Hu, J. Dosage and exposure time effects of two micro (nono) plastics on arbuscular mycorrhizal fungal diversity in two farmland soils planted with pepper (Capsicum annuum L.). Sci. Total Environ. 2024, 917, 170216. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Liu, W.; Wang, X.; Zeb, A.; Wang, Q.; Mo, F.; Lian, Y. Assessing stress responses in potherb mustard (Brassica juncea var. multiceps) exposed to a synergy of microplastics and cadmium: Insights from physiology, oxidative damage, and metabolomics. Sci. Total Environ. 2024, 907, 167920. [Google Scholar] [CrossRef] [PubMed]
- Ju, H.; Yang, X.; Tang, D.; Osman, R.; Geissen, V. Pesticide bioaccumulation in radish produced from soil contaminated with microplastics. Sci. Total Environ. 2024, 910, 168395. [Google Scholar] [CrossRef] [PubMed]
- Cui, M.; Yu, S.; Yu, Y.; Chen, X.; Li, J. Responses of cherry radish to different types of microplastics in the presence of oxytetracycline. Plant Physiol. Biochem. 2022, 191, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Tympa, L.-E.; Katsara, K.; Moschou, P.N.; Kenanakis, G.; Papadakis, V.M. Do microplastics enter our food chain via root vegetables? A Raman based spectroscopic study on raphanus sativus. Materials 2021, 14, 2329. [Google Scholar] [CrossRef] [PubMed]
- Roy, R.; Hossain, A.; Sultana, S.; Deb, B.; Ahmod, M.M.; Sarker, T. Microplastics increase cadmium absorption and impair nutrient uptake and growth in red amaranth (Amaranthus tricolor L.) in the presence of cadmium and biochar. BMC Plant Biol. 2024, 24, 608. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Du, A.; Ge, T.; Li, G.; Lian, X.; Zhang, S.; Wang, X. Accumulation modes and effects of differentially charged polystyrene nano/microplastics in water spinach (Ipomoea aquatica F.). J. Hazard. Mater. 2024, 480, 135892. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Hu, C.; Wang, X.; Cheng, H.; Xing, J.; Li, Y.; Wang, L.; Ge, T.; Du, A.; Wang, Z. Water Spinach (Ipomoea aquatica F.) Effectively Absorbs and Accumulates Microplastics at the Micron Level—A Study of the Co-Exposure to Microplastics with Varying Particle Sizes. Agriculture 2024, 14, 301. [Google Scholar] [CrossRef]
- Gao, D.; Liao, H.; Junaid, M.; Chen, X.; Kong, C.; Wang, Q.; Wang, J. Polystyrene nanoplastics’ accumulation in roots induces adverse physiological and molecular effects in water spinach Ipomoea aquatica Forsk. Sci. Total Environ. 2023, 872, 162278. [Google Scholar] [CrossRef] [PubMed]
- Giorgetti, L.; Spanò, C.; Muccifora, S.; Bottega, S.; Barbieri, F.; Bellani, L.; Castiglione, M.R. Exploring the interaction between polystyrene nanoplastics and Allium cepa during germination: Internalization in root cells, induction of toxicity and oxidative stress. Plant Physiol. Biochem. 2020, 149, 170–177. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; An, S.; Kim, L.; Byeon, Y.M.; Lee, J.; Choi, M.J.; An, Y.J. Translocation and chronic effects of microplastics on pea plants (Pisum sativum) in copper-contaminated soil. J. Hazard. Mater. 2020, 436, 129194. [Google Scholar] [CrossRef] [PubMed]
- Shorobi, F.M.; Vyavahare, G.D.; Seok, Y.J.; Park, J.H. Effect of polypropylene microplastics on seed germination and nutrient uptake of tomato and cherry tomato plants. Chemosphere 2023, 329, 138679. [Google Scholar] [CrossRef] [PubMed]
- Conti, G.O.; Ferrante, M.; Banni, M.; Favara, C.; Nicolosi, I.; Cristaldi, A.; Fiore, M.; Zuccarello, P. Micro- and nano-plastics in edible fruit and vegetables. The first diet risks assessment for the general population. Environ. Res. 2020, 187, 109677. [Google Scholar] [CrossRef]
- Rajendran, K.; Rajendiran, R.; Pasupathi, M.S.; Ahamed, S.B.N.; Kalyanasundaram, R.; Velu, R.K. Authentication of Microplastic Accumulation in Customary Fruits and Vegetables. Res. Squ. 2022. preprint. [Google Scholar] [CrossRef]
- Canha, N.; Jafarova, M.; Grifoni, L.; Gamelas, C.A.; Alves, L.C.; Almeida, S.M.; Loppi, S. Microplastic contamination of lettuces grown in urban vegetable gardens in Lisbon (Portugal). Sci. Rep. 2023, 13, 14278. [Google Scholar] [CrossRef] [PubMed]
- Aydın, R.B.; Yozukmaz, A.; Şener, İ.; Temiz, F.; Giannetto, D. Occurrence of Microplastics in Most Consumed Fruits and Vegetables from Turkey and Public Risk Assessment for Consumers. Life 2023, 13, 1686. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Xu, X.; Guo, L.; Jin, R.; Lu, Y. Uptake and transport of micro/nanoplastics in terrestrial plants: Detection, mechanisms, and influencing factors. Sci. Total Environ. 2024, 907, 168155. [Google Scholar] [CrossRef] [PubMed]
- Castan, S.; Sherman, A.; Peng, R.; Zumstein, M.T.; Wanek, W.; Hüffer, T.; Hofmann, T. Uptake, metabolism, and accumulation of tire wear particle-derived compounds in lettuce. Environ. Sci. Technol. 2022, 57, 168–178. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Wei, J.H.; Wei, B.K.; Chen, Z.Q.; Liu, H.L.; Zhang, W.Y.; Zhou, D.M. Metabolic response of lettuce (Lactuca sativa L.) to polystyrene nanoplastics and microplastics after foliar exposure. Environ. Sci. Nano 2024, 11, 4847–4861. [Google Scholar] [CrossRef]
- Jiang, X.; White, J.C.; He, E.; Van Gestel, C.A.; Cao, X.; Zhao, L.; Qiu, H. Foliar exposure of deuterium stable isotope-labeled nanoplastics to lettuce: Quantitative determination of foliar uptake, transport, and trophic transfer in a terrestrial food chain. Environ. Sci. Technol. 2024, 58, 15438–15449. [Google Scholar] [CrossRef] [PubMed]
- Meng, J.; Diao, C.; Cui, Z.; Li, Z.; Zhao, J.; Zhang, H.; Chen, H. Unravelling the influence of microplastics with/without additives on radish (Raphanus sativus) and microbiota in two agricultural soils differing in pH. J. Hazard. Mater. 2024, 478, 135535. [Google Scholar] [CrossRef] [PubMed]
- Bostan, N.; Ilyas, N.; Saeed, M.; Umer, M.; Debnath, A.; Akhtar, N.; Bukhari, N.A. An in vitro phytotoxicity assessment of UV-enhanced biodegradation of plastics for spinach cultivation. Front. Environ. Sci. Eng. 2025, 19, 17. [Google Scholar] [CrossRef]
Database | Search Strategy | Number of Articles |
---|---|---|
Scopus | TITLE-ABS-KEY (microplastic* OR “micro-plastics” OR nanoplastic*) AND TITLE-ABS-KEY (vegetables) AND PUBYEAR > 2020 AND PUBYEAR < 2026 | 260 |
Scopus | TITLE-ABS-KEY (microplastic* OR “micro-plastics” OR nanoplastic*) AND TITLE-ABS-KEY (vegetables) AND PUBYEAR > 2020 AND PUBYEAR < 2026 AND (EXCLUDE (SUBJAREA, “MEDI”) OR EXCLUDE (SUBJAREA, “SOCI”) OR EXCLUDE (SUBJAREA, “ENER”) OR EXCLUDE (SUBJAREA, “CENG”) | 189 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Srećkov, Z.; Mrkonjić, Z.; Bojović, M.; Nikolić, O.; Radić, D.; Vasić, V. Microplastic Uptake in Vegetables: Sources, Mechanisms, Transport and Food Safety. Toxics 2025, 13, 609. https://doi.org/10.3390/toxics13080609
Srećkov Z, Mrkonjić Z, Bojović M, Nikolić O, Radić D, Vasić V. Microplastic Uptake in Vegetables: Sources, Mechanisms, Transport and Food Safety. Toxics. 2025; 13(8):609. https://doi.org/10.3390/toxics13080609
Chicago/Turabian StyleSrećkov, Zorana, Zorica Mrkonjić, Mirjana Bojović, Olivera Nikolić, Danka Radić, and Vesna Vasić. 2025. "Microplastic Uptake in Vegetables: Sources, Mechanisms, Transport and Food Safety" Toxics 13, no. 8: 609. https://doi.org/10.3390/toxics13080609
APA StyleSrećkov, Z., Mrkonjić, Z., Bojović, M., Nikolić, O., Radić, D., & Vasić, V. (2025). Microplastic Uptake in Vegetables: Sources, Mechanisms, Transport and Food Safety. Toxics, 13(8), 609. https://doi.org/10.3390/toxics13080609