The Presence of Microplastics in Human Semen and Their Associations with Semen Quality
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Semen Collection and Quality Analysis
2.3. Identification and Quantification of MPs in Human Semen Samples
2.4. Quality Assurance and Quality Control
2.5. Statistical Analysis
3. Results
3.1. Demographic Characteristics of the Participating Men
3.2. Occurrence and Abundance of MPs in Semen Samples
3.3. Shape and Size Distribution of MPs in Semen Samples
3.4. Polymer Compositions of Microplastics in Semen Samples
3.5. Associations Between MP Exposure and Semen Quality
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
MPs | Microplastics |
LD-IR | Laser direct infrared spectroscopy |
ART | Assisted reproductive technology |
CASA | Computer-assisted semen analysis |
WHO | World Health Organization |
BMI | Body mass index |
BR | Butadiene rubber |
CPE | Chlorinated polyethylene |
PP | Polypropylene |
PET | Polyethylene terephthalate |
Flu | Fluororubber |
PE | Polyethylene |
PS | Polystyrene |
References
- Hartmann, N.B.; Hüffer, T.; Thompson, R.C.; Hassellöv, M.; Verschoor, A.; Daugaard, A.E.; Rist, S.; Karlsson, T.; Brennholt, N.; Cole, M.; et al. Are We Speaking the Same Language? Recommendations for a Definition and Categorization Framework for Plastic Debris. Environ. Sci. Technol. 2019, 53, 1039–1047. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M.B.; Rahman, M.S.; Alom, J.; Hasan, M.S.; Johir, M.A.H.; Mondal, M.I.H.; Lee, D.Y.; Park, J.; Zhou, J.L.; Yoon, M.H. Microplastic particles in the aquatic environment: A systematic review. Sci. Total Environ. 2021, 775, 145793. [Google Scholar] [CrossRef] [PubMed]
- Akdogan, Z.; Guven, B. Microplastics in the environment: A critical review of current understanding and identification of future research needs. Environ. Pollut. 2019, 254, 113011. [Google Scholar] [CrossRef] [PubMed]
- Christian, A.E.; Köper, I. Microplastics in biosolids: A review of ecological implications and methods for identification, enumeration, and characterization. Sci. Total Environ. 2023, 864, 161083. [Google Scholar] [CrossRef]
- Mamun, A.A.; Prasetya, T.A.E.; Dewi, I.R.; Ahmad, M. Microplastics in human food chains: Food becoming a threat to health safety. Sci. Total Environ. 2023, 858, 159834. [Google Scholar] [CrossRef]
- Prata, J.C.; da Costa, J.P.; Lopes, I.; Duarte, A.C.; Rocha-Santos, T. Environmental exposure to microplastics: An overview on possible human health effects. Sci Total Environ. 2020, 702, 134455. [Google Scholar] [CrossRef]
- Chen, G.L.; Feng, Q.Y.; Wang, J. Mini-review of microplastics in the atmosphere and their risks to humans. Sci. Total Environ. 2020, 703, 135504. [Google Scholar] [CrossRef]
- Leslie, H.A.; van Velzen, M.J.M.; Brandsma, S.H.; Vethaak, A.D.; Garcia-Vallejo, J.J.; Lamoree, M.H. Discovery and quantification of plastic particle pollution in human blood. Environ. Int. 2022, 163, 107199. [Google Scholar] [CrossRef]
- Ibrahim, Y.S.; Tuan Anuar, S.; Azmi, A.A.; Wan Mohd Khalik, W.M.A.; Lehata, S.; Hamzah, S.R.; Ismail, D.; Ma, Z.F.; Dzulkarnaen, A.; Zakaria, Z.; et al. Detection of microplastics in human colectomy specimens. JGH Open 2021, 5, 116–121. [Google Scholar] [CrossRef]
- Abbasi, S.; Turner, A. Human exposure to microplastics: A study in Iran. J. Hazard. Mater. 2021, 403, 123799. [Google Scholar] [CrossRef]
- Huang, S.M.; Huang, X.X.; Bi, R.; Guo, Q.X.; Yu, X.L.; Zeng, Q.H.; Huang, Z.Y.; Liu, T.M.; Wu, H.S.; Chen, Y.L.; et al. Detection and Analysis of Microplastics in Human Sputum. Environ. Sci. Technol. 2022, 56, 2476–2486. [Google Scholar] [CrossRef] [PubMed]
- Amato-Lourenço, L.F.; Carvalho-Oliveira, R.; Ribeiro, G.; Galvao, L.D.; Ando, R.A.; Mauad, T. Presence of airborne microplastics in human lung tissue. J. Hazard. Mater. 2021, 416, 126124. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.Q.; Gao, J.N.; Yu, H.R.; Su, H.; Yang, Y.; Cao, Y.J.; Zhang, Q.; Ren, Y.J.; Hollert, H.; Shi, H.H.; et al. An emerging role of microplastics in the etiology of lung ground glass nodules. Environ. Sci. Eur. 2022, 34, 25. [Google Scholar] [CrossRef]
- Liu, S.; Lin, G.; Liu, X.; Yang, R.; Wang, H.; Sun, Y.; Chen, B.; Dong, R. Detection of various microplastics in placentas, meconium, infant feces, breastmilk and infant formula: A pilot prospective study. Sci Total Environ. 2022, 854, 158699. [Google Scholar] [CrossRef]
- Liu, S.; Liu, X.; Guo, J.; Yang, R.; Wang, H.; Sun, Y.; Chen, B.; Dong, R. The Association Between Microplastics and Microbiota in Placentas and Meconium: The First Evidence in Humans. Environ. Sci. Technol. 2022, 57, 17774–17785. [Google Scholar] [CrossRef]
- Ragusa, A.; Notarstefano, V.; Svelato, A.; Belloni, A.; Gioacchini, G.; Blondeel, C.; Zucchelli, E.; De Luca, C.; D’Avino, S.; Gulotta, A.; et al. Raman Microspectroscopy Detection and Characterisation of Microplastics in Human Breastmilk. Polymers 2022, 14, 2700. [Google Scholar] [CrossRef]
- Zhang, N.; Li, Y.B.; He, H.R.; Zhang, J.F.; Ma, G.S. You are what you eat: Microplastics in the feces of young men living in Beijing. Sci. Total Environ. 2021, 767, 144345. [Google Scholar] [CrossRef]
- Zhang, J.J.; Wang, L.; Trasande, L.; Kannan, K. Occurrence of Polyethylene Terephthalate and Polycarbonate Microplastics in Infant and Adult Feces. Environ. Sci. Technol. Lett. 2021, 8, 989–994. [Google Scholar] [CrossRef]
- Yan, Z.H.; Liu, Y.F.; Zhang, T.; Zhang, F.M.; Ren, H.Q.; Zhang, Y. Analysis of Microplastics in Human Feces Reveals a Correlation between Fecal Microplastics and Inflammatory Bowel Disease Status. Environ. Sci. Technol. 2022, 56, 414–421. [Google Scholar] [CrossRef]
- Gallo, A.; Boni, R.; Tosti, E. Gamete quality in a multistressor environment. Environ. Int. 2020, 138, 105627. [Google Scholar] [CrossRef]
- Han, X.; Huang, Q. Environmental pollutants exposure and male reproductive toxicity: The role of epigenetic modifications. Toxicology 2021, 456, 152780. [Google Scholar] [CrossRef] [PubMed]
- Jin, H.B.; Yan, M.H.; Pan, C.; Liu, Z.Y.; Sha, X.X.; Jiang, C.Y.; Li, L.X.; Pan, M.G.; Li, D.M.; Han, X.D.; et al. Chronic exposure to polystyrene microplastics induced male reproductive toxicity and decreased testosterone levels via the LH-mediated LHR/cAMP/PKA/StAR pathway. Part. Fibre Toxicol. 2022, 19, 13. [Google Scholar] [CrossRef] [PubMed]
- Hou, L.L.; Wang, D.X.; Yin, K.; Zhang, Y.; Lu, H.M.; Guo, T.T.; Li, J.B.; Zhao, H.J.; Xing, M.W. Polystyrene microplastics induce apoptosis in chicken testis via crosstalk between NF-KB and Nrf2 pathways. Comp. Biochem. Physiol. C 2022, 262, 109444. [Google Scholar] [CrossRef]
- Sun, S.M.; Jin, Y.T.; Luo, P.H.; Shi, X.T. Polystyrene microplastics induced male reproductive toxicity and transgenerational effects in freshwater prawn. Sci. Total Environ. 2022, 842, 156820. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, X.Y.; Sun, K.X.; Wang, S.C.; Gong, D.Q. Polystyrene microplastics induce apoptosis and necroptosis in swine testis cells via ROS/MAPK/HIF1α pathway. Environ. Toxicol. 2022, 37, 2483–2492. [Google Scholar] [CrossRef]
- Jin, H.; Ma, T.; Sha, X.; Liu, Z.; Zhou, Y.; Meng, X.; Chen, Y.; Han, X.; Ding, J. Polystyrene microplastics induced male reproductive toxicity in mice. J. Hazard. Mater. 2021, 401, 123430. [Google Scholar] [CrossRef]
- Xie, X.M.; Deng, T.; Duan, J.F.; Xie, J.; Yuan, J.L.; Chen, M.Q. Exposure to polystyrene microplastics causes reproductive toxicity through oxidative stress and activation of the p38 MAPK signaling pathway. Ecotoxicol. Environ. Saf. 2020, 190, 110133. [Google Scholar] [CrossRef]
- Zhao, Q.C.; Zhu, L.; Weng, J.M.; Jin, Z.R.; Cao, Y.L.; Jiang, H.; Zhang, Z. Detection and characterization of microplastics in the human testis and semen. Sci. Total Environ. 2023, 877, 162713. [Google Scholar] [CrossRef]
- Montano, L.; Giorgini, E.; Notarstefano, V.; Notari, T.; Ricciardi, M.; Piscopo, M.; Motta, O. Raman Microspectroscopy evidence of microplastics in human semen. Sci. Total Environ. 2023, 901, 165922. [Google Scholar] [CrossRef]
- Li, N.; Yang, H.; Dong, Y.; Wei, B.; Liang, L.; Yun, X.; Tian, J.; Zheng, Y.; Duan, S.; Zhang, L. Prevalence and implications of microplastic contaminants in general human seminal fluid: A Raman spectroscopic study. Sci. Total Environ. 2024, 937, 173522. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, G.H.; Sun, K.; Ren, J.C.; Zhou, J.M.; Liu, X.; Lin, F.L.; Yang, H.J.; Cao, J.H.; Nie, L.; et al. Association of mixed exposure to microplastics with sperm dysfunction: A multi-site study in China. Ebiomedicine 2024, 108, 105369. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. WHO Laboratory Manual for the Examination and Processing of Human Semen, 5th ed.; World Health Organization: Geneva, Switzerland, 2010; Available online: https://iris.who.int/handle/10665/44261 (accessed on 29 June 2025).
- Cole, M.; Webb, H.; Lindeque, P.K.; Fileman, E.S.; Halsband, C.; Galloway, T.S. Isolation of microplastics in biota-rich seawater samples and marine organisms. Sci. Rep. 2014, 4, 4528. [Google Scholar] [CrossRef] [PubMed]
- Pironti, C.; Ricciardi, M.; Motta, O.; Miele, Y.; Proto, A.; Montano, L. Microplastics in the Environment: Intake through the Food Web, Human Exposure and Toxicological Effects. Toxics 2021, 9, 224. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.Y.; Mruk, D.D. A local autocrine axis in the testes that regulates spermatogenesis. Nat. Rev. Endocrinol. 2010, 6, 380–395. [Google Scholar] [CrossRef]
- Wei, Y.; Zhou, Y.; Long, C.; Wu, H.; Hong, Y.; Fu, Y.; Wang, J.; Wu, Y.; Shen, L.; Wei, G. Polystyrene microplastics disrupt the blood-testis barrier integrity through ROS-Mediated imbalance of mTORC1 and mTORC2. Environ. Pollut. 2021, 289, 117904. [Google Scholar] [CrossRef]
Characteristic | Mean (SD) or N (%) |
---|---|
Age (years) | 31.1 (3.0) |
BMI (kg/m2) | 24.1 (2.9) |
18.5–23.9 | 22 (48.9%) |
24.0–27.9 | 18 (40.0%) |
≥28.0 | 5 (11.1%) |
Educational level | |
Middle school or below | 6 (13.3%) |
High school | 5 (11.1%) |
College or above | 34 (75.6%) |
Current cigarette smoker | 13 (28.9%) |
Current alcohol consumption | 9 (20.0%) |
Semen parameters | |
Concentration (106/mL) | 23.7 (14.7) |
Total sperm count (×106) | 94.0 (7.0) |
Progressive motility (%) | 33.3 (16.1) |
Non-progressive motility (%) | 13.9 (6.0) |
Immotile spermatozoa (%) | 52.8 (17.9) |
Categories | Detection Rate (%) | Mean | SD |
---|---|---|---|
Total MPs | 75.6 | 17.0 | 42.0 |
BR | 28.9 | 4.5 | 11.7 |
CPE | 28.9 | 2.1 | 4.9 |
PP | 26.7 | 1.2 | 3.5 |
PET | 11.1 | 6.1 | 38.8 |
Flu | 11.1 | 0.5 | 1.7 |
PE | 11.1 | 0.3 | 1.0 |
PVC | 6.7 | 0.2 | 0.8 |
PS | 6.7 | 0.1 | 0.7 |
SBS | 4.4 | 0.2 | 1.2 |
PU | 4.4 | 0.1 | 0.7 |
EAA | 2.2 | 1.6 | 10.7 |
CPI | 2.2 | 0.1 | 0.6 |
EPN | 2.2 | 0.0 | 0.3 |
ABS | 2.2 | 0.0 | 0.2 |
PLA | 2.2 | 0.0 | 0.1 |
Sperm Concentration (106/mL) | Total Sperm Count (×106) | Progressive Motility (%) | Non-Progressive Motility (%) | Immotile Spermatozoa (%) | |
---|---|---|---|---|---|
Total MPs | |||||
No (n = 11) | 18.6 ± 12.4 | 80.7 ± 52.7 | 34.5 ± 15.7 | 13.6 ± 5.3 | 51.9 ± 15.4 |
Yes (n = 34) | 25.3 ± 15.2 | 98.3 ± 75.4 | 32.9 ± 16.4 | 14.0 ± 6.3 | 53.1 ± 18.9 |
BR | |||||
No (n = 32) | 22.6 ± 14.8 | 97.7 ± 79.2 | 31.5 ± 16.7 | 13.4 ± 4.7 | 55.1 ± 17.0 |
Yes (n = 13) | 26.4 ± 14.7 | 85.0 ± 43.0 | 37.6 ± 14.2 | 15.3 ± 8.5 | 47.2 ± 19.5 |
CPE | |||||
No (n = 32) | 24.8 ± 15.1 | 99.6 ± 77.3 | 33.6 ± 15.4 | 14.0 ± 4.8 | 52.4 ± 16.3 |
Yes (n = 13) | 20.9 ± 14.0 | 80.2 ± 49.5 | 32.5 ± 18.5 | 13.6 ± 8.6 | 53.8 ± 22.1 |
PP | |||||
No (n = 33) | 22.8 ± 14.0 | 86.5 ± 51.8 | 31.5 ± 16.2 | 14.2 ± 6.6 | 54.3 ± 18.5 |
Yes (n = 12) | 26.2 ± 17.1 | 114.8 ± 106.6 | 38.1 ± 15.3 | 13.2 ± 4.0 | 48.7 ± 16.2 |
PET | |||||
No (n = 40) | 23.5 ± 14.8 | 95.6 ± 72.6 | 34.9 ± 15.9 # | 14.1 ± 6.2 | 51.1 ± 17.4 # |
Yes (n = 5) | 24.7 ± 16.0 | 81.1 ± 54.0 | 20.6 ± 12.8 # | 12.8 ± 5.3 | 66.7 ± 17.5 # |
Flu | |||||
No (n = 40) | 23.5 ± 15.2 | 94.4 ± 73.5 | 32.4 ± 16.5 | 13.9 ± 6.2 | 53.7 ± 18.6 |
Yes (n = 5) | 24.9 ± 10.9 | 91.1 ± 42.2 | 40.3 ± 11.0 | 14.3 ± 5.0 | 45.4 ± 9.1 |
PE | |||||
No (n = 40) | 22.6 ± 14.2 | 91.1 ± 69.4 | 33.0 ± 16.6 | 13.9 ± 6.2 | 53.1 ± 18.4 |
Yes (n = 5) | 32.6 ± 17.7 | 117.7 ± 82.2 | 35.5 ± 13.1 | 13.8 ± 5.3 | 50.8 ± 14.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Y.; Rong, M.; Fan, Y.; Teng, X.; Jin, L.; Zhao, Y. The Presence of Microplastics in Human Semen and Their Associations with Semen Quality. Toxics 2025, 13, 566. https://doi.org/10.3390/toxics13070566
Guo Y, Rong M, Fan Y, Teng X, Jin L, Zhao Y. The Presence of Microplastics in Human Semen and Their Associations with Semen Quality. Toxics. 2025; 13(7):566. https://doi.org/10.3390/toxics13070566
Chicago/Turabian StyleGuo, Yi, Mengxun Rong, Yuping Fan, Xiaoming Teng, Liping Jin, and Yan Zhao. 2025. "The Presence of Microplastics in Human Semen and Their Associations with Semen Quality" Toxics 13, no. 7: 566. https://doi.org/10.3390/toxics13070566
APA StyleGuo, Y., Rong, M., Fan, Y., Teng, X., Jin, L., & Zhao, Y. (2025). The Presence of Microplastics in Human Semen and Their Associations with Semen Quality. Toxics, 13(7), 566. https://doi.org/10.3390/toxics13070566