Argovit™ Silver Nanoparticles Mitigate Sodium Arsenite-Induced Cytogenotoxicity Effects in Cultured Human Lymphocytes
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation and Characterization of Argovit™ Silver Nanoparticles
2.2. Sodium Arsenite Treatment
2.3. Human Lymphocyte Culture
2.4. Modifications of the Culture Medium
2.5. Cytokinesis-Blocking Micronucleus Assay
2.6. Experimental Design
- (1)
- Control group: Phytohemagglutinin (PHA) and RPMI-1640 medium were added at 0 h to stimulate lymphocyte proliferation. At 72 h, the medium was partially replaced with fresh RPMI + PHA. Cytochalasin B (6 µg/mL) was added at 116 h to block cytokinesis, and the cultures were harvested at 144 h. This group establishes the baseline cellular behavior without exposure to toxicants or nanoparticles.
- (2)
- Sodium arsenite (NaAsO2) group: Identical to the control group, with the addition of sodium arsenite (3.7 × 10−3 µg/mL) at 24 h. This group serves as a positive control for genotoxicity based on the well-documented ability of NaAsO2 to induce chromosomal damage in human lymphocytes.
- (3)
- AgNPs group: AgNPs (3.6 × 10−3 µg/mL) were added at 24 h under identical conditions to the control. This group was designed to assess the intrinsic cytogenotoxic potential of Argovit™ AgNPs at a sub-toxic concentration previously validated in our group’s earlier work [10].
- (4)
- NaAsO2 + AgNPs group (post-treatment): PHA and RPMI-1640 were added at 0 h. Sodium arsenite was added alone at 24 h to induce cytogenotoxic damage. At 72 h, the medium was refreshed and supplemented with PHA and AgNPs (3.6 × 10−3 µg/mL). This group aimed to evaluate whether post-exposure application of AgNPs could mitigate the damage induced by NaAsO2, simulating a potential therapeutic or recovery model. Cytochalasin B was added at 116 h, and cells were harvested at 144 h.
2.7. Statistical Analysis
3. Results
3.1. Cytotoxicity
3.2. Genotoxicity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
LD | Linear dichroism |
MNi | Micronucleus |
NBuds | Nucleal buds |
NPB | Nucleoplasmatic bridges |
NDI | Nuclear Division Index |
References
- Eom, H.J.; Chatterjee, N.; Lee, J.; Choi, J. Integrated MRNA and Micro RNA Profiling Reveals Epigenetic Mechanism of Differential Sensitivity of Jurkat T Cells to AgNPs and Ag Ions. Toxicol. Lett. 2014, 229, 311–318. [Google Scholar] [CrossRef] [PubMed]
- Sinclair, T.R.; Van Den Hengel, S.K.; Raza, B.G.; Rutjes, S.A.; De Roda Husman, A.M.; Peijnenburg, W.J.G.M.; Roesink, H.D.W.; De Vos, W.M. Surface Chemistry-Dependent Antiviral Activity of Silver Nanoparticles. Nanotechnology 2021, 32, 365101. [Google Scholar] [CrossRef]
- Akter, M.; Sikder, M.T.; Rahman, M.M.; Ullah, A.K.M.A.; Hossain, K.F.B.; Banik, S.; Hosokawa, T.; Saito, T.; Kurasaki, M. A Systematic Review on Silver Nanoparticles-Induced Cytotoxicity: Physicochemical Properties and Perspectives. J. Adv. Res. 2018, 9, 1–16. [Google Scholar] [CrossRef]
- Elbaz, N.M.; Ziko, L.; Siam, R.; Mamdouh, W. Core-Shell Silver/Polymeric Nanoparticles-Based Combinatorial Therapy against Breast Cancer In-Vitro. Sci. Rep. 2016, 6, 30729. [Google Scholar] [CrossRef]
- Pathan, R.; Vidyavathi, M.; Kumar, R.V.S.; Narasimha, G. Design, Development, and Evaluation of Silver Nanoparticles Synthesized via Green Technology for Antioxidant, Antimicrobial, and Anticancer Activities. Bionanoscience 2025, 15, 225. [Google Scholar] [CrossRef]
- Tunç, T. Synthesis and Characterization of Silver Nanoparticles Loaded with Carboplatin as a Potential Antimicrobial and Cancer Therapy. Cancer Nanotechnol. 2024, 15, 2. [Google Scholar] [CrossRef]
- Nuta, O.; Moquet, J.; Bouffler, S.; Lloyd, D.; Sepai, O.; Rothkamm, K. Impact of Long-Term Exposure to Sodium Arsenite on Cytogenetic Radiation Damage. Mutagenesis 2014, 29, 123–129. [Google Scholar] [CrossRef] [PubMed]
- Vega, L.; Gonsebatt, M.E.; Ostrosky-Wegman, P. Aneugenic Effect of Sodium Arsenite on Human Lymphocytes in Vitro: An Individual Susceptibility Effect Detected. Mutat. Res./Environ. Mutagen. Relat. Subj. 1995, 334, 365–373. [Google Scholar] [CrossRef] [PubMed]
- Mironova, T.E.; Afonyushkin, V.N.; Cherepushkina, V.S.; Kozlova, Y.N.; Bobikova, A.S.; Koptev, V.Y.; Sigareva, N.A.; Kolpakov, F.A. Study of the Protective Effects of Virucidal Drugs on the Model of Coronavirus Pneumonia. Vet. Korml. 2020, 7, 35–38. [Google Scholar] [CrossRef]
- Ruiz-Ruiz, B.; Arellano-García, M.E.; Radilla-Chávez, P.; Salas-Vargas, D.S.; Toledano-Magaña, Y.; Casillas-Figueroa, F.; Luna Vazquez-Gomez, R.; Pestryakov, A.; García-Ramos, J.C.; Bogdanchikova, N. Cytokinesis-Block Micronucleus Assay Using Human Lymphocytes as a Sensitive Tool for Cytotoxicity/Genotoxicity Evaluation of AgNPs. ACS Omega 2020, 5, 12005–12015. [Google Scholar] [CrossRef]
- Shkil, N.N.; Nefedova, E.V. Effect of Silver Nanoparticles on Bactericidal Activity and Antibiotic Sensitivity of Salmonella Enteritidis182. Sib. Her. Agric. Sci. 2021, 51, 82–91. [Google Scholar] [CrossRef]
- Burmistrov, V.A.; Burmistrov, A.V.; Burmistrov, I.V.; Burmistrov, A.V.; Pestryakov, A.N.; Odegova, G.V.; Bogdanchikova, N.E. Method of Producing Coloidal Silver Nanoparticles. Patent No. RU2602534C2, 20 November 2016. [Google Scholar]
- Ferreira, A.M.; Vikulina, A.; Loughlin, M.; Volodkin, D. How Similar Is the Antibacterial Activity of Silver Nanoparticles Coated with Different Capping Agents? RSC Adv. 2023, 13, 10542–10555. [Google Scholar] [CrossRef]
- Kalantari, K.; Mostafavi, E.; Afifi, A.M.; Izadiyan, Z.; Jahangirian, H.; Rafiee-Moghaddam, R.; Webster, T.J. Wound Dressings Functionalized with Silver Nanoparticles: Promises and Pitfalls. Nanoscale 2020, 12, 2268–2291. [Google Scholar] [CrossRef] [PubMed]
- Mosqueda-Frómeta, O.; Bello-Bello, J.; Gómez-Merino, F.C.; Hajari, E.; Bogdanchikova, N.; Concepción, O.; Lorenzo, J.C.; Escalona, M. Argovit Mediates a Hormetic Response in Biochemical Indicators in Gerbera Jamesonii. In Vitro Cell. Dev. Biol.—Plant 2023, 59, 507–515. [Google Scholar] [CrossRef]
- Fahim, M.; Shahzaib, A.; Nishat, N.; Jahan, A.; Bhat, T.A.; Inam, A. Green Synthesis of Silver Nanoparticles: A Comprehensive Review of Methods, Influencing Factors, and Applications. JCIS Open 2024, 16, 100125. [Google Scholar] [CrossRef]
- Wang, X.; Nie, Y.; Si, B.; Wang, T.; Hei, T.K.; Du, H.; Zhao, G.; Chen, S.; Xu, A.; Liu, Y. Silver Nanoparticles Protect against Arsenic Induced Genotoxicity via Attenuating Arsenic Bioaccumulation and Elevating Antioxidation in Mammalian Cells. J. Hazard. Mater. 2021, 413, 125287. [Google Scholar] [CrossRef] [PubMed]
- ATSDR. Addendum: Toxicological Profile for Arsenic; ATSDR: Atlanta, GA, USA, 2016.
- Abernathy, C.O.; Liu, Y.-P.; Longfellow, D.; Aposhian, H.V.; Beck, B.; Fowler, B.; Goyer, R.; Menzer, R.; Rossman, T.; Thompson, C.; et al. Arsenic: Health Effects, Mechanisms of Actions, and Research Issues. Environ. Health Perspect. 1999, 107, 593. [Google Scholar] [CrossRef]
- Faita, F.; Cori, L.; Bianchi, F.; Andreassi, M.G. Arsenic-Induced Genotoxicity and Genetic Susceptibility to Arsenic-Related Pathologies. Int. J. Environ. Res. Public Health 2013, 10, 1527. [Google Scholar] [CrossRef]
- Ahmad, A.; Ashraf, S.; Shakoori, A.R. Cytotoxic and Genotoxic Effects of Arsenic on Primary Human Breast Cancer Cell Lines. Pak. J. Zool. 2015, 47, 79–87. [Google Scholar]
- Graham-Evans, B.; Cohly, H.H.P.; Yu, H.; Tchounwou, P.B. Arsenic-Induced Genotoxic and Cytotoxic Effects in Human Keratinocytes, Melanocytes and Dendritic Cells. Int. J. Environ. Res. Public Health 2004, 1, 83. [Google Scholar] [CrossRef]
- Navasumrit, P.; Chaisatra, K.; Promvijit, J.; Parnlob, V.; Waraprasit, S.; Chompoobut, C.; Binh, T.T.; Hai, D.N.; Bao, N.D.; Hai, N.K.; et al. Exposure to Arsenic in Utero Is Associated with Various Types of DNA Damage and Micronuclei in Newborns: A Birth Cohort Study. Environ. Health 2019, 18, 51. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Kesari, V.P.; Khan, P.K. Fish Micronucleus Assay to Assess Genotoxic Potential of Arsenic at Its Guideline Exposure in Aquatic Environment. BioMetals 2013, 26, 337–346. [Google Scholar] [CrossRef] [PubMed]
- Medda, N.; De, S.K.; Maiti, S. Different Mechanisms of Arsenic Related Signaling in Cellular Proliferation, Apoptosis and Neo-Plastic Transformation. Ecotoxicol. Environ. Saf. 2021, 208, 111752. [Google Scholar] [CrossRef]
- Pratheeshkumar, P.; Son, Y.O.; Divya, S.P.; Wang, L.; Zhang, Z.; Shi, X. Oncogenic Transformation of Human Lung Bronchial Epithelial Cells Induced by Arsenic Involves ROS-Dependent Activation of STAT3-MiR-21-PDCD4 Mechanism. Sci. Rep. 2016, 6, 37227. [Google Scholar] [CrossRef] [PubMed]
- Hajji, S.; Ben Khedir, S.; Hamza-Mnif, I.; Hamdi, M.; Jedidi, I.; Kallel, R.; Boufi, S.; Nasri, M. Biomedical Potential of Chitosan-Silver Nanoparticles with Special Reference to Antioxidant, Antibacterial, Hemolytic and in Vivo Cutaneous Wound Healing Effects. Biochim. Biophys. Acta Gen. Subj. 2019, 1863, 241–254. [Google Scholar] [CrossRef]
- Fang, W.; Chi, Z.; Li, W.; Zhang, X.; Zhang, Q. Comparative Study on the Toxic Mechanisms of Medical Nanosilver and Silver Ions on the Antioxidant System of Erythrocytes: From the Aspects of Antioxidant Enzyme Activities and Molecular Interaction Mechanisms. J. Nanobiotechnol. 2019, 17, 66. [Google Scholar] [CrossRef]
- Hammam, M.A.; Khalil, G.A.; ElGawad, S.M.A.; Bisi, M.K.I.E.-; Mohamed, I.A.A. Hepatoprotective Effect and Antioxidant Activity of Silver Nanoparticles Biosynthesis from Cymbopogan Citratus (Lemongrass). Menoufia J. Agric. Biotechnol. 2020, 5, 11–22. [Google Scholar] [CrossRef]
- Kirsch-Volders, M.; Fenech, M.; Bolognesi, C. Validity of the Lymphocyte Cytokinesis-Block Micronucleus Assay (L-CBMN) as Biomarker for Human Exposure to Chemicals with Different Modes of Action: A Synthesis of Systematic Reviews. Mutat. Res./Genet. Toxicol. Environ. Mutagen. 2018, 836, 47–52. [Google Scholar] [CrossRef]
- Nersesyan, A.; Kundi, M.; Fenech, M.; Stopper, H.; da Silva, J.; Bolognesi, C.; Mišík, M.; Knasmueller, S. Recommendations and Quality Criteria for Micronucleus Studies with Humans. Mutat. Res. Rev. Mutat. Res. 2022, 789, 108410. [Google Scholar] [CrossRef]
- Salimi, M.; Mozdarani, H. Different Aspects of Cytochalasin B Blocked Micronucleus Cytome (CBMN Cyt) Assay as a Comprehensive Measurement Tool for Radiobiological Studies, Biological Dosimetry and Genome Instability. Int. J. Radiat. Res. 2015, 13, 101–126. [Google Scholar]
- Cornélio, D.A.; Tavares, J.C.M.; Pimentel, T.V.C.D.A.; Cavalcanti, G.B.; De Medeiros, S.R.B. Cytokinesis-Block Micronucleus Assay Adapted for Analyzing Genomic Instability of Human Mesenchymal Stem Cells. Stem Cells Dev. 2014, 23, 823–838. [Google Scholar] [CrossRef]
- Bardos, P.; Merly, C.; Kvapil, P.; Koschitzky, H.-P. Status of Nanoremediation and Its Potential for Future Deployment: Risk-Benefit and Benchmarking Appraisals. Remediat.-J. Environ. Cleanup Costs Technol. Tech. 2018, 28, 43–56. [Google Scholar] [CrossRef]
- Bertelà, F.; Marsotto, M.; Meneghini, C.; Burratti, L.; Maraloiu, V.A.; Iucci, G.; Venditti, I.; Prosposito, P.; D’ezio, V.; Persichini, T.; et al. Biocompatible Silver Nanoparticles: Study of the Chemical and Molecular Structure, and the Ability to Interact with Cadmium and Arsenic in Water and Biological Properties. Nanomaterials 2021, 11, 2540. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, T.; Imdad, S.; Yaldram, K.; Butt, N.M.; Pervez, A. Emerging Nanotechnology-Based Methods for Water Purification: A Review. Desalination Water Treat. 2014, 52, 4089–4101. [Google Scholar] [CrossRef]
- Abd-Elsalam, K.A.; Zahid, M. Aquananotechnology: Applications of Nanomaterials for Water Purification; Elsevier: Amsterdam, The Netherlands, 2020. [Google Scholar]
- Josende, M.E.; Nunes, S.M.; Müller, L.; dos Santos Francisco, W.; Gelesky, M.A.; Monserrat, J.M.; Ventura-Lima, J. Multigenerational Effects of Ecotoxicological Interaction between Arsenic and Silver Nanoparticles. Sci. Total Environ. 2019, 696, 133947. [Google Scholar] [CrossRef]
- Wang, T.; Ma, M.; Chen, C.; Yang, X.; Qian, Y. Three Widely Used Pesticides and Their Mixtures Induced Cytotoxicity and Apoptosis through the ROS-Related Caspase Pathway in HepG2 Cells. Food Chem. Toxicol. 2021, 152, 112162. [Google Scholar] [CrossRef] [PubMed]
- Shumakova, A.A.; Shipelin, V.A.; Efimochkina, N.R.; Minaeva, L.P.; Bykova, I.B.; Markova, Y.M.; Trushina, E.N.; Mustafina, O.K.; Gmoshinsky, I.V.; Khanferyan, R.A.; et al. Toxicological evaluation of colloidal nano-sized silver stabilized with polyvinylpyrrolidone. IV. Influence on intestinal microbiota and immune indexes. Vopr. Pitan. (Probl. Nutr.) 2016, 85, 27–35. [Google Scholar]
- Castañeda-Yslas, I.Y.; Torres-Bugarín, O.; García-Ramos, J.C.; Toledano-Magaña, Y.; Radilla-Chávez, P.; Bogdanchikova, N.; Pestryakov, A.; Ruiz-Ruiz, B.; Arellano-García, M.E. AgNPs ArgovitTM Modulates Cyclophosphamide-Induced Genotoxicity on Peripheral Blood Erythrocytes in Vivo. Nanomaterials 2021, 11, 2096. [Google Scholar] [CrossRef]
- Castañeda-Yslas, I.Y.; Torres-Bugarín, O.; Arellano-García, M.E.; Ruiz-Ruiz, B.; García-Ramos, J.C.; Toledano-Magaña, Y.; Pestryakov, A.; Bogdanchikova, N. Protective Effect of Silver Nanoparticles Against Cytosine Arabinoside Genotoxicity: An In Vivo Micronucleus Assay. Int. J. Environ. Res. Public Health 2024, 21, 1689. [Google Scholar] [CrossRef]
- Khan, S.; Zahoor, M.; Sher Khan, R.; Ikram, M.; Islam, N.U. The Impact of Silver Nanoparticles on the Growth of Plants: The Agriculture Applications. Heliyon 2023, 9, e16928. [Google Scholar] [CrossRef]
- Xie, H.; Huang, S.P.; Martin, S.; Wise, J.P. Arsenic Is Cytotoxic and Genotoxic to Primary Human Lung Cells. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2014, 760, 33–41. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.; Ye, K.; Hu, T.; Liu, K.; You, M.; Wang, L.; Qin, H. Silver Nanoparticles Attenuate the Antimicrobial Activity of the Innate Immune System by Inhibiting Neutrophil-Mediated Phagocytosis and Reactive Oxygen Species Production. Int. J. Nanomed. 2021, 16, 1345–1360. [Google Scholar] [CrossRef]
- Burmistrov, V.A.; Shkil, N.N.; Shkil, S.P. Morphological and Physical Parameters of Argovit Silver Nanoparticles. Bull. NSAU (Novosib. State Agrar. Univ.) 2018, 48, 78–85. [Google Scholar] [CrossRef]
- Fenech, M.; Morley, A.A. Measurement of Micronuclei in Lymphocytes. Mutat. Res./Environ. Mutagen. Relat. Subj. 1985, 147, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Whitwell, J.; Smith, R.; Chirom, T.; Watters, G.; Hargreaves, V.; Lloyd, M.; Phillips, S.; Clements, J. Inclusion of an Extended Treatment with Recovery Improves the Results for the Human Peripheral Blood Lymphocyte Micronucleus Assay. Mutagenesis 2019, 34, 217–237. [Google Scholar] [CrossRef]
- Fenech, M. Cytokinesis-Block Micronucleus Cytome Assay. Nat. Protoc. 2007, 2, 1084–1104. [Google Scholar] [CrossRef]
- Fenech, M.; Crott, J.W. Micronuclei, Nucleoplasmic Bridges and Nuclear Buds Induced in Folic Acid Deficient Human Lymphocytes—Evidence for Breakage–Fusion-Bridge Cycles in the Cytokinesis-Block Micronucleus Assay. Mutat. Res./Fundam. Mol. Mech. Mutagen. 2002, 504, 131–136. [Google Scholar] [CrossRef]
- Fenech, M. Cytokinesis-Block Micronucleus Cytome Assay Evolution into a More Comprehensive Method to Measure Chromosomal Instability. Genes 2020, 11, 1203. [Google Scholar] [CrossRef]
- Fatemi, I.; Khalili, H.; Mehrzadi, S.; Basir, Z.; Malayeri, A.; Goudarzi, M. Mechanisms Involved in the Possible Protective Effect of Chrysin against Sodium Arsenite-Induced Liver Toxicity in Rats. Life Sci. 2021, 267, 118965. [Google Scholar] [CrossRef]
- Akinrinde, A.S.; Oyewole, S.O.; Ola-Davies, O.E. Supplementation with Sesame Oil Suppresses Genotoxicity, hepatotoxicity and Enterotoxicity Induced by Sodium Arsenite in Rats. Lipids Health Dis. 2023, 22, 1–15. [Google Scholar] [CrossRef]
- Fenech, M.; Crott, J.; Turner, J.; Brown, S. Necrosis, Apoptosis, Cytostasis and DNA Damage in Human Lymphocytes Measure Simultaneoulsy within the Cytokineses-Block Micronucleus Assay: Description of the Method and Results for Hydrogen Peroxide. Mutagenesis 1999, 14, 605–612. [Google Scholar] [CrossRef]
- Foldbjerg, R.; Olesen, P.; Hougaard, M.; Dang, D.A.; Hoffmann, H.J.; Autrup, H.; Anh, D.; Jürgen, H.; Autrup, H.; Dang, D.A.; et al. PVP-Coated Silver Nanoparticles and Silver Ions Induce Reactive Oxygen Species, Apoptosis and Necrosis in THP-1 Monocytes. Toxicol. Lett. 2009, 190, 156–162. [Google Scholar] [CrossRef]
- Hackenberg, S.; Scherzed, A.; Kessler, M.; Hummel, S.; Technau, A.; Froelich, K.; Ginzkey, C.; Koehler, C.; Hagen, R.; Kleinsasser, N. Silver Nanoparticles: Evaluation of DNA Damage, Toxicity and Functional Impairment in Human Mesenchymal Stem Cells. Toxicol. Lett. 2011, 201, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Cheong, H.S.J.J.; Seth, I.; Joiner, M.C.; Tucker, J.D. Relationships among Micronuclei, Nucleoplasmic Bridges and Nuclear Buds within Individual Cells in the Cytokinesis-Block Micronucleus Assay. Mutagenesis 2013, 28, 433–440. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Ruiz, B.; Torres-Bugarín, O.; Zúñiga-Violante, E.; Casillas-Figueroa, F.; Luna-Vázquez-Gómez, R.; Campos-Gallegos, V.; Ruiz-Arellano, A.E.; Arellano-García, M.E. Genomic Instability and Cytotoxicity Evaluation of Two Communities Exposed to Pesticides in the Mexicali Valley by the L-CBMN Assay. Toxics 2023, 11, 807. [Google Scholar] [CrossRef] [PubMed]
- Monopoli, M.P.; Walczyk, D.; Campbell, A.; Elia, G.; Lynch, I.; Baldelli Bombelli, F.; Dawson, K.A. Physical-Chemical Aspects of Protein Corona: Relevance to in Vitro and in Vivo Biological Impacts of Nanoparticles. J. Am. Chem. Soc. 2011, 133, 2525–2534. [Google Scholar] [CrossRef]
- Miclăuş, T.; Beer, C.; Chevallier, J.; Scavenius, C.; Bochenkov, V.E.; Enghild, J.J.; Sutherland, D.S. Dynamic Protein Coronas Revealed as a Modulator of Silver Nanoparticle Sulphidation in Vitro. Nat. Commun. 2016, 7, 11770. [Google Scholar] [CrossRef]
- Mahmoudi, M.; Landry, M.P.; Moore, A.; Coreas, R. The Protein Corona from Nanomedicine to Environmental Science. Nat. Rev. Mater. 2023, 8, 422–438. [Google Scholar] [CrossRef]
- Ahlberg, S.; Antonopulos, A.; Diendorf, J.; Dringen, R.; Epple, M.; Flöck, R.; Goedecke, W.; Graf, C.; Haberl, N.; Helmlinger, J.; et al. PVP-Coated, Negatively Charged Silver Nanoparticles: A Multi-Center Study of Their Physicochemical Characteristics, Cell Culture and in Vivo Experiments. Beilstein J. Nanotechnol. 2014, 5, 1944–1965. [Google Scholar] [CrossRef]
- Robinson, B.V.; Sullivan, F.M.; Borzelleca, J.F.; Schwartz, S.L. PVP: A Critical Review of the Kinetics and Toxicology of Polyvinyl Pyrrolidone (Povidone); Lewis Publishers, Inc.: Chelsea, MI, USA, 1990. [Google Scholar]
- Tollefsbol, T.O.; Cohen, H.J. Culture Kinetics of Glycolytic Enzyme Induction, Glucose Utilization, and Thymidine Incorporation of Extended-exposure Phytohemagglutinin-stimulated Human Lymphocytes. J. Cell. Physiol. 1985, 122, 98–104. [Google Scholar] [CrossRef]
- Valenzuela-Salas, L.M.; Girón-Vázquez, N.G.; García-Ramos, J.C.; Torres-Bugarín, O.; Gómez, C.; Pestryakov, A.; Villarreal-Gómez, L.J.; Toledano-Magaña, Y.; Bogdanchikova, N. Antiproliferative and Antitumor Effect of Non-Genotoxic Silver Nanoparticles on Melanoma Models. Oxid. Med. Cell. Longev. 2019, 2019, 4528241. [Google Scholar] [CrossRef] [PubMed]
- Love, E.M.; Hemalatha, S. Toxicity evaluation, plant growth promotion, and anti-fungal activity of endophytic bacteria–mediated silver nanoparticles. Appl. Biochem. Biotechnol. 2023, 195, 6309–6320. [Google Scholar] [CrossRef]
- Siddiqi, K.S.; Husen, A. Plant response to silver nanoparticles: A critical review. Crit. Rev. Biotechnol. 2021, 42, 973–990. [Google Scholar] [CrossRef] [PubMed]
- Luna-Vázquez-Gómez, R.; Arellano-García, M.E.M.E.; García-Ramos, J.C.J.C.; Radilla-Chávez, P.; Salas-Vargas, D.S.D.S.; Casillas-Figueroa, F.; Ruiz-Ruiz, B.; Bogdanchikova, N.; Pestryakov, A. Hemolysis of human erythrocytes by ArgovitTM AgNPs from healthy and diabetic donors: An in vitro study. Materials 2021, 14, 2792. [Google Scholar] [CrossRef] [PubMed]
- Gupta, G.; Hamawandi, B.; Sheward, D.J.; Murrell, B.; Hanke, L.; McInerney, G.; Blosi, M.; Costa, A.L.; Toprak, M.S.; Fadeel, B. Silver Nanoparticles with Excellent Biocompatibility Block Pseudotyped SARS-CoV-2 in the Presence of Lung Surfactant. Front. Bioeng. Biotechnol. 2022, 10, 1–16. [Google Scholar] [CrossRef]
- Abdelaal, A.; Soliman, M.; Rafik, H.; Emam, M.; Mohamed Elsadek, M.M. Blind Comparative Study between Silver Nanoparticles Dressings and Standard Moist Wound Dressings (SMWD) in Management of Diabetic Foot Ulcers. QJM 2021, 114, hcab097.040. [Google Scholar] [CrossRef]
- Appapalam, S.T.; Paul, B.; Arockiasamy, S.; Panchamoorthy, R. Phytofabricated silver nanoparticles: Discovery of antibacterial targets against diabetic foot ulcer derived resistant bacterial isolates. Mater. Sci. Eng. Mater. Bio. Appl. C 2020, 117, 111256. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jauregui Romo, M.d.C.; Ruiz Ruiz, B.; Casilas-Figueroa, F.; Girón Vázquez, N.G.; Luna Vázquez Gómez, R.; Torres-Bugarín, O.; Castañeda Yslas, I.Y.; Pestryakov, A.; Bogdanchikova, N.; Arellano García, M.E. Argovit™ Silver Nanoparticles Mitigate Sodium Arsenite-Induced Cytogenotoxicity Effects in Cultured Human Lymphocytes. Toxics 2025, 13, 539. https://doi.org/10.3390/toxics13070539
Jauregui Romo MdC, Ruiz Ruiz B, Casilas-Figueroa F, Girón Vázquez NG, Luna Vázquez Gómez R, Torres-Bugarín O, Castañeda Yslas IY, Pestryakov A, Bogdanchikova N, Arellano García ME. Argovit™ Silver Nanoparticles Mitigate Sodium Arsenite-Induced Cytogenotoxicity Effects in Cultured Human Lymphocytes. Toxics. 2025; 13(7):539. https://doi.org/10.3390/toxics13070539
Chicago/Turabian StyleJauregui Romo, María del Carmen, Balam Ruiz Ruiz, Francisco Casilas-Figueroa, Nayeli Guadalupe Girón Vázquez, Roberto Luna Vázquez Gómez, Olivia Torres-Bugarín, Idalia Yazmín Castañeda Yslas, Alexey Pestryakov, Nina Bogdanchikova, and María Evarista Arellano García. 2025. "Argovit™ Silver Nanoparticles Mitigate Sodium Arsenite-Induced Cytogenotoxicity Effects in Cultured Human Lymphocytes" Toxics 13, no. 7: 539. https://doi.org/10.3390/toxics13070539
APA StyleJauregui Romo, M. d. C., Ruiz Ruiz, B., Casilas-Figueroa, F., Girón Vázquez, N. G., Luna Vázquez Gómez, R., Torres-Bugarín, O., Castañeda Yslas, I. Y., Pestryakov, A., Bogdanchikova, N., & Arellano García, M. E. (2025). Argovit™ Silver Nanoparticles Mitigate Sodium Arsenite-Induced Cytogenotoxicity Effects in Cultured Human Lymphocytes. Toxics, 13(7), 539. https://doi.org/10.3390/toxics13070539